2016 Annual Report

Total Page:16

File Type:pdf, Size:1020Kb

2016 Annual Report Annual Report cover image: Gauge refl ection, by Howard Colvin, winner of the open category of the 'Waddamana in focus' photo competition this page: Low water level at Lake Gordon, photo courtesy of ABC News Directors’ statement To the Honourable Matthew Groom MP, Minister for Energy, in compliance with the requirements of the Government Business Enterprises Act 1995. In accordance with Section 55 of the Government Business Enterprises Act 1995, we hereby submit for your information and presentation to Parliament the report of the Hydro-Electric Corporation for the year ended 30 June 2016. The report has been prepared in accordance with the provisions of the Government Business Enterprises Act 1995. Grant Every-Burns Chairman, Hydro-Electric Corporation October 2016 Stephen Davy Director, Hydro-Electric Corporation October 2016 Hydro-Electric Corporation ABN 48 072 377 158 Our vision Australia’s leading clean energy business inspiring pride and building value for our owners, our customers and our people Our values We put people’s health and safety first We build value for our partners and customers through innovation and outstanding service We behave with honesty and integrity We work together, respect each other and value our diversity We are accountable for our actions We are committed to creating a sustainable future Contents Annual Report 2016 The year at a glance 2 About this report 4 Material issues 5 Statement of Corporate Intent 7 Message from the Board Chairman and Chief Executive Offi cer 11 Economic 15 Governance 17 Customers 22 Assets and water resources 28 Environment and heritage 34 Community 38 Our people 42 Financial report 47 Statistical summaries 116 Abbreviations and glossary 121 Global Reporting Index 123 Index 125 Hydro Tasmania Annual Report 2016 1 Entura’s Natalie Williams participating in the CSIRO’s Scientists and Mathematicians in Schools initiative (see page 40) The year at a glance Challenges Achievements Awards • Record-breaking low rainfall in • We delivered works to ensure the • Hydro Tasmania won the Corporate spring 2015 aff ected hydropower long-term sustainability of our Award in the Tasmanian Volunteering generation storages. generation assets, totalling $75 million Awards for the management and of capital expenditure. structure of our volunteering program, • The prolonged outage of the Basslink with participation by more than interconnector aff ected our ability • In August 2015, Entura’s Managing 25 per cent of employees. to import electricity for more than Director, Tammy Chu, was elected fi ve months. to the Board of the International • Hydro Tasmania’s Alan Evans was Hydropower Association. awarded Company Secretary of • Temporary diesel generation needed the Year in the Climate Alliance to be installed rapidly. • Our employees and stakeholders Leadership Awards for his leadership made remarkable eff orts to • Bushfi res interrupted the operation in addressing and mitigating the implement the Energy Supply Plan, challenges posed by climate change. and management of some of our including installing 220 MW of power generation assets. temporary diesel generation. • Hydro Tasmania won the Tasmanian project of the year in the Australian • High rainfall infl ows posed challenges • Momentum Energy continued to for managing our storages, and Institute of Project Management’s attract more gas and electricity category of Construction/Engineering fl ooding caused some damage to customers. our assets. for our Rowallan Dam refurbishment • We celebrated the centenary of our project. • We needed to keep the Tasmanian fi rst power station, Waddamana A. community and stakeholders • Hydro Tasmania’s Nicole Pace informed throughout Tasmania’s • Entura and Momentum Energy was awarded Vocational Student unprecedented energy supply achieved market-leading results for of the Year in the Tasmanian challenge. customer satisfaction. Training Awards. • Conditions in the National Electricity • Our Hybrid Off -grid Solutions team Market (NEM) were diffi cult in both started to deploy innovative and retail and wholesale energy. eff ective remote-area power projects to customers on Rottnest Island in Western Australia and Coober Pedy in South Australia. 2 Hydro Tasmania Annual Report 2016 Tasmania’s energy supply challenge 2015–16 Storages reach 29.1% at 30 June Heavy rainfall Storages at events Record dry cause 29.6% on spring starts 1 July flooding across Tasmania Major industrial load reduction; refilling storages allow full production to resume Record inflows start to refill Major storages industrial load reduction Storages fall below 13%, a record low 20 TOTAL ENERGY IN STORAGE %* ENERGY IN STORAGE TOTAL 10 JULY JULY AUG SEPT OCT NOV DEC JAN FEB MAR APR MAY JUN Basslink returns to service and 0 exporting Temporary TVPS gas diesel turbines’ generation operations sites start reduced operating Tasmania Decision to return Basslink TVPS Trent gas turbine imports via the TVPS combined outage Temporary returns Basslink to cycle gas turbine starts diesel to service help meet to service generation demand turned o Planning for temporary diesel generation * Expressed as a percentage of the total begins Demobilisation of maximum amount of energy that our water temporary diesel storages could hold. The figure is not the same Cloud seeding generation as the level of water in our storages. begins begins TVPS combined cycle gas turbine is returned to service Hydro Tasmania Annual Report 2016 3 About this report Hydro Tasmania’s annual report integrates fi nancial, environmental and social performance. It covers the fi nancial year from 1 July 2015 to 30 June 2016. The report complies with the requirements of the Government Business Enterprises Act 1995 and the associated ‘Treasurer’s Instructions and Guidelines for Tasmanian Government Businesses’. We recognise that Hydro Tasmania belongs to the people of Tasmania, and our actions aff ect all Tasmanians. We have prepared this report for a primary audience of the Tasmanian public, to report on our performance across all areas of our business activity for the 2015–16 fi nancial year. Specifi c stakeholder groups—those interested Refl ections on yingina / Great Lake in our organisation and this report—are listed on page 41. across a range of economic, social and Measuring environmental sustainability topics sustainability including some specifi c to electricity Our sustainability utilities. GRI is a non-profi t organisation, vision performance founded by the United Nations Environment Program and The Investors Hydro Tasmania is Australia’s leading Key issues of 2015–16 and Environmentalists for Sustainable clean energy business. We are committed Prosperity. GRI off ers a high level of The content of Hydro Tasmania’s annual to balancing social, environmental and transparency, enabling readers of our report is determined by our reporting economic considerations to ensure the annual report to track our performance compliance requirements and by a set resilience of our business and the State from year to year and to compare our of key factors and concerns identifi ed of Tasmania. Our commitment is drawn performance with other companies through 2015–16, both positive from our values and our Sustainability that have adopted the same indicators. and negative, that we call ‘material Code, and frames business activities, GRI guidelines are regularly reviewed issues’. These signifi cant issues are policies and procedures. The structure of to ensure they remain relevant to determined from the input of external the annual report aligns with the seven changes in sustainability management. stakeholders and from opinions within principles of our Sustainability Code. Another benefi t of GRI is the possibility Hydro Tasmania. External stakeholder of including third-party validation or We believe that delivering on our seven perspectives are gathered from assurance. sustainability principles will allow our customer surveys, media monitoring, business and our communities to prosper community surveys and Tasmanian Hydro Tasmania has assessed that this in a changing world. parliamentary committee hearings report conforms to the ‘in accordance’ on government business enterprises. In 2015–16 Hydro Tasmania reviewed core level of GRI reporting. See the full Hydro Tasmania’s people identify issues and updated our Sustainability Code; we GRI index on pages 123–4. through executive interviews, and from have also approved and implemented a risk-management plans and operational Code of Ethical Behaviour. We regularly plans. We determine the priority of issues Assurance review these commitments and we by assessing how frequently they are External assurance provides valuable ensure that they are communicated raised and how signifi cant they are to feedback for improving Hydro Tasmania’s to all our employees and stakeholders. stakeholders. Our ‘material issues’ are All employees are required to formally business performance, processes and listed on page 5. acknowledge their understanding and systems, and provides greater confi dence compliance with these codes after for our readers that our reporting is completing a formal induction process, Why we use the Global accurate, transparent and balanced. in addition to ongoing training. (These Reporting Initiative Hydro Tasmania engaged KPMG to statements GRI indicator G4-56 and have sustainability indicators assure this report against the widely been assured by KPMG) used standard Assurance Engagements Hydro Tasmania has chosen to use the Other than Audits or Reviews
Recommended publications
  • The Evolution of Tasmania's Energy Sector
    Electricity Supply Industry Expert Panel The Evolution of Tasmania’s Energy Sector Discussion Paper April 2011 The Evolution of Tasmania’s Energy Sector Discussion Paper Electricity Industry Panel - Secretariat GPO Box 123 Hobart TAS 7001 Telephone: (03) 6232 7123 Email: [email protected] http://www.electricity.tas.gov.au April 2011 © Copyright State of Tasmania, 2011 Table of Contents Glossary ..................................................................................................................................................... 5 Foreword ................................................................................................................................................... 1 1. Highlights ........................................................................................................................................... 3 2. The Tasmanian Electricity Market - Agents of Change ............................................................. 7 3. A New Strategic Direction for Tasmania’s Energy Market – the 1997 Directions Statement ....................................................................................................................................... 12 4. Delivering the Reform Framework .............................................................................................. 14 4.1. Structural Reform of the Hydro-Electric Commission ....................................................... 14 4.2. The Development of Supply Options ................................................................................
    [Show full text]
  • Rapid Reserve Generation from a Francis Turbine for System Frequency Control
    energies Article Rapid Reserve Generation from a Francis Turbine for System Frequency Control Dean R. Giosio 1,*, Alan D. Henderson 2, Jessica M. Walker 1 and Paul A. Brandner 1 1 Australian Maritime College, University of Tasmania, Launceston 7250, Tasmania, Australia; [email protected] (J.M.W.); [email protected] (P.A.B.) 2 School of Engineering & ICT, University of Tasmania, Hobart 7005, Tasmania, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-3-6324-9489 Academic Editor: K.T. Chau Received: 24 February 2017; Accepted: 31 March 2017; Published: 7 April 2017 Abstract: The increase in contributions from non base load renewables, such as wind and solar, can have adverse effects on the stability of an electrical grid. In this study, the possibility of rapidly loading a Francis turbine from a tail water depression (TWD) mode for providing additional system frequency control is investigated. Based on the analysis of full-scale TWD test results and key findings from the transient testing of a micro-hydro scale turbine unit, a detailed description of the TWD transition process is given. The formulation of an improved turbine model for use in one-dimensional hydro-electric plant models is presented with simulation results compared to full-scale data. The analytical model, which calculates output power according to the conservation of angular momentum and identified sources of loss, is used in parallel with full-scale and model scale test observations to elucidate the events and mechanisms occurring during this proposed transition. The output response, in terms of active power, was found to be highly dependent on guide vane opening rate in both full-scale and model tests.
    [Show full text]
  • Water Management in the Anthony–Pieman Hydropower Scheme
    Water management in the Anthony–Pieman hydropower scheme Pieman Sustainability Review June 2015 FACT SHEET Background The Anthony–Pieman hydropower scheme provides a highly valued and reliable source of electricity. The total water storage of the hydropower scheme is 512 gigalitres and the average annual generation is 2367 gigawatt hours. Construction of the Anthony–Pieman hydropower scheme has resulted in creation of water storages (lakes) and alterations to the natural flow of existing rivers and streams. The Pieman Sustainability Review is a review of operational, social and environmental aspects of the Anthony–Pieman hydropower scheme that are influenced by Hydro Tasmania. This fact sheet elaborates on water management issues presented in the summary report, available at http://www.hydro.com.au/pieman-sustainability-review Water storage levels in the Anthony–Pieman Water levels have been monitored at these storages since hydropower scheme their creation in stages between 1981 and 1991. The Anthony–Pieman hydropower scheme includes eight Headwater storages: Lake Mackintosh and Lake water storages, classified as headwater storages (Lakes Murchison Mackintosh and Murchison), diversion storages (Lakes Lakes Mackintosh and Murchison are the main headwater Henty and Newton and White Spur Pond) and run-of-river storages for the Anthony–Pieman hydropower scheme. storages (Lakes Rosebery, Plimsoll and Pieman). Lakes The water level fluctuates over the entire operating range Murchison, Henty and Newton and White Spur Pond do not from Normal Minimum Operating Level (NMOL) to Full release water directly to a power station; rather they are Supply Level (FSL) (Figures 1, 2). used to transfer water to other storages within the scheme.
    [Show full text]
  • Implications for Tasmanian Electricity System of The
    Backroad Connections Pty Ltd ABN: 64 090 245 382 [email protected] (0407) 486-651 www.backroad.com.au Implications for the Tasmanian electricity system of the proposal to restore Lake Pedder July 2019 Overview The paper analyses the implication for the Tasmanian electricity system of the proposal by the Lake Pedder Restoration Committee (LPRC) to restore the original Lake Pedder. It provides information on the current contribution of the Gordon Scheme to Tasmanian electricity generation and energy storage and provides some information and estimates on alternatives to replace this generation if the original Lake Pedder was restored. Background The original Lake Pedder was flooded in 1972 as part of an expansion of the Tasmanian hydro-electric scheme. The flooded area created is still officially known as Lake Pedder although the LPRC prefer the name Huon- Serpentine Impoundment. In this paper we will use the term ‘new Lake Pedder’. The new Lake Pedder at 242 sq km is vastly bigger than the original Lake Pedder at 10 sq km. The new Lake Pedder does not have its own hydro-electric generation. Its purpose is to trap and raise the level of the water that would otherwise flow down the Huon and Serpentine rivers. The water is raised to the level where it flows through a channel created at McPartlan Pass into the Gordon Dam and contributes to the storage and generation of the Gordon Scheme. As a result the level of the new Lake Pedder does not vary more than a few metres. This makes it more visually attractive and more suitable for recreational use than the adjacent Gordon Reservoir.
    [Show full text]
  • 2011 Annual Report
    directors’ statement To the Honourable Bryan Green, MHA, Minister for Energy and Resources, in compliance with requirements of the Government Business Enterprises Act 1995. In accordance with Section 55 of the Government Business Enterprises Act 1995, we hereby submit for your information and presentation to Parliament the report of the Hydro-Electric Corporation for the year ended 30 June 2011. The report has been prepared in accordance with the provisions of the Government Business Enterprises Act 1995. David Crean Chairman Hydro-Electric Corporation October 2011 Roy Adair CEO Hydro-Electric Corporation October 2011 Hydro-Electric Corporation ARBN 072 377 158 ABN 48 072 377 158 contents page 1 Our vision: Introduction 3 About this report 5 Australia’s leading clean About Hydro Tasmania 8 energy business, inspiring Achievements and challenges 2010-2011 10 Progress against 2010 commitments 11 pride and building value for Chairman’s review 12 our owners, our customers CEO’s report 15 and our people Statement of corporate intent 18 Independent assurance statement 21 Annual Report 2011 Tasmania Hydro Performance 25 Sustainability 27 Our values: Economic performance 30 Momentum 36 • We put people’s health Entura 38 and safety first Roaring 40s 41 Assets and resource use 43 • We always behave with Governance 49 The Board 52 honesty and integrity Executives 55 • We work together, People 57 respect each other and Employees 59 External stakeholders 66 value our diversity Environment 73 • We strive to deliver Ecosystems and heritage 75 Financial
    [Show full text]
  • Hydro Tasmania 4 Elizabeth Street Hobart TAS 7000
    Certificate of Registration ENVIRONMENTAL MANAGEMENT SYSTEM - ISO 14001:2015 This is to certify that: Hydro Tasmania 4 Elizabeth Street Hobart TAS 7000 Holds Certificate Number: EMS 603522 and operates an Environmental Management System which complies with the requirements of ISO 14001:2015 for the following scope: Operation, maintenance and management of electricity generation facilities including power stations (hydroelectric, solar, diesel and wind), distribution network, associated lakes and waterways. For and on behalf of BSI: Chris Cheung, Head of Compliance & Risk - Asia Pacific Original Registration Date: 1998-05-15 Effective Date: 2018-11-12 Latest Revision Date: 2018-11-16 Expiry Date: 2021-11-28 Page: 1 of 3 This certificate was issued electronically and remains the property of BSI Group ANZ Pty Limited, ACN 078 659 211 and is bound by the conditions of contract. This certificate can be verified at www.bsi-global.com/clientdirectory. Printed copies can be validated at www.bsi-global.com/ClientDirectory. Further clarifications regarding the scope of this certificate and the applicability of ISO 14001:2015 requirements may be obtained by consulting the organization. This certificate is valid only if provided original copies are in complete set. Information and Contact: BSI, Kitemark Court, Davy Avenue, Knowlhill, Milton Keynes MK5 8PP. Tel: + 44 345 080 9000 BSI Assurance UK Limited, registered in England under number 7805321 at 389 Chiswick High Road, London W4 4AL, UK. Information and Contact: BSI Group ANZ Pty Limited, ACN 078 659 211: Suite 2, Level 7, 15 Talavera Road, Macquarie Park, NSW 2113 A Member of the BSI Group of Companies.
    [Show full text]
  • Hydro 4 Water Storage
    TERM OF REFERENCE 3: STATE-WIDE WATER STORAGE MANAGEMENT The causes of the floods which were active in Tasmania over the period 4-7 June 2016 including cloud-seeding, State-wide water storage management and debris management. 1 CONTEXT 1.1 Cause of the Floods (a) It is clear that the flooding that affected northern Tasmania (including the Mersey, Forth, Ouse and South Esk rivers) during the relevant period was directly caused by “a persistent and very moist north-easterly airstream” which resulted in “daily [rainfall] totals [that were] unprecedented for any month across several locations in the northern half of Tasmania”, in some cases in excess of 200mm.1 (b) This paper addresses Hydro Tasmania’s water storage management prior to and during the floods. 1.2 Overview (a) In 2014, Tasmania celebrated 100 years of hydro industrialisation and the role it played in the development of Tasmania. Hydro Tasmania believes that understanding the design and purpose of the hydropower infrastructure that was developed to bring electricity and investment to the state is an important starting point to provide context for our submission. The Tasmanian hydropower system design and operation is highly complex and is generally not well understood in the community. We understand that key stakeholder groups are seeking to better understand the role that hydropower operations may have in controlling or contributing to flood events in Tasmania. (b) The hydropower infrastructure in Tasmania was designed and installed for the primary purpose of generating hydro-electricity. Flood mitigation was not a primary objective in the design of Hydro Tasmania’s dams when the schemes were developed, and any flood mitigation benefit is a by-product of their hydro- generation operation.
    [Show full text]
  • Derwent Catchment Review
    Derwent Catchment Review PART 1 Introduction and Background Prepared for Derwent Catchment Review Steering Committee June, 2011 By Ruth Eriksen, Lois Koehnken, Alistair Brooks and Daniel Ray Table of Contents 1 Introduction ..........................................................................................................................................1 1.1 Project Scope and Need....................................................................................................1 2 Physical setting......................................................................................................................................1 2.1 Catchment description......................................................................................................2 2.2 Geology and Geomorphology ...........................................................................................5 2.3 Rainfall and climate...........................................................................................................9 2.3.1 Current climate ............................................................................................................9 2.3.2 Future climate............................................................................................................10 2.4 Vegetation patterns ........................................................................................................12 2.5 River hydrology ...............................................................................................................12 2.5.1
    [Show full text]
  • Final Report
    RELIABILITY PANEL Reliability Panel AEMC FINAL REPORT 2020 ANNUAL MARKET REVIEW PERFORMANCE REVIEW 20 MAY 2021 Reliability Panel AEMC Final report Final Report 20 May 2021 INQUIRIES Reliability Panel c/- Australian Energy Market Commission GPO Box 2603 Sydney NSW 2000 E [email protected] T (02) 8296 7800 Reference: REL0081 CITATION Reliability Panel, 2020 Annual Market Performance Review, Final report, 20 May 2021 ABOUT THE RELIABILITY PANEL The Panel is a specialist body established by the Australian Energy Market Commission (AEMC) in accordance with section 38 of the National Electricity Law and the National Electricity Rules. The Panel comprises industry and consumer representatives. It is responsible for monitoring, reviewing and reporting on reliability, security and safety on the national electricity system, and advising the AEMC in respect of such matters. This work is copyright. The Copyright Act 1968 permits fair dealing for study, research, news reporting, criticism and review. Selected passages, tables or diagrams may be reproduced for such purposes provided acknowledgement of the source is included. Reliability Panel AEMC Final report Final Report 20 May 2021 RELIABILITY PANEL MEMBERS Charles Popple (Chairman), Chairman and AEMC Commissioner Stephen Clark, Marinus Link Project Director, TasNetworks Kathy Danaher, Chief Financial Officer and Executive Director, Sun Metals Craig Memery, Director - Energy + Water Consumer's Advocacy Program, PIAC Ken Harper, Group Manager Operational Support, AEMO Keith Robertson, General Manager Regulatory Policy, Origin Energy Ken Woolley, Executive Director Merchant Energy, Alinta Energy John Titchen, Managing Director, Goldwind Australia David Salisbury, Executive Manager Engineering, Essential Energy Reliability Panel AEMC Final report Final Report 20 May 2021 FOREWORD I am pleased to present this report setting out the findings of the Reliability Panel's (Panel) annual review of market performance, for the period 2019-20.
    [Show full text]
  • Liawenee Flume Project
    Liawenee Flume Project of consumables by boat over 12,000 miles from Barnsley in the United Kingdom to Hobart. On arrival in Hobart, we were met by Hydro Tasmania repre- sentative Norm Cribbin, whose help, local knowledge and sup- port were to prove invaluable, plus he carried the snakebite kits! Also there were representatives of JDP Coatings, a potential new installer for Australia. We hired a small truck and a large station Liawenee flume is situated high in the mountains north of Ho- wagon, loaded up and set off up the mountain. bart, capital city of Tasmania, an island 180 miles south of Aus- At site we unloaded the preparation equipment and set about tralia. Hobart is Australia’s second oldest and southernmost city, removing the moss, growths and unsound areas from the sur- next stop Antarctica. face with a high-pressure jet washer and in more difficult areas Fernco Environmental Ltd. is an U.K. company that markets a with a pneumatic scabbler. For the next stage we sprayed the unique range of products targeted at the preservation, conserva- whole area to be coated with a dilute bleach as a mild biocide tion, harvesting and recycling of water assets. We presented Fernco Ultracoat, an epoxy coating system de- The challenges were a remote site, no facilities veloped by Warren Environmental, to Tasmania Hydro, highlight- whatsoever, in a national park, an area of conservation, ing its special qualities as a no VOCs, high build in one coat, conditions varied from freezing to +20 degrees Celsius. structurally reinforcing and rapidly applied epoxy coating system with over 15 years of successful in ground history.
    [Show full text]
  • HYDROELECTRICITY FACT SHEET 1 an Overview of Hydroelectricity in Australia
    HYDROELECTRICITY FACT SHEET 1 An overview of hydroelectricity in Australia About hydroelectricity in Australia → In 2011, hydroelectric plants produced a total of 67 per cent of Australia’s total clean energy generation1, enough energy to power the equivalent of 2.8 million average Australian homes. → Australia’s 124 operating hydro power plants generated 6.5 per cent of Australia’s annual electricity supply in 20112. → The Australian hydro power industry has already attracted over one billion dollars of investment to further develop Australian hydro power projects3. → Opportunities for further growth in the hydro power industry are principally in developing mini hydro plants or refurbishing, upgrading and modernising Australia’s current fleet. The Clean Energy Council’s most recent hydro report provides an overview of the industry and highlights opportunities for further growth. Climate Change and Energy Efficiency Minister Greg Combet stated: “This is a welcome report and highlights the importance of iconic Australian power generation projects such as the Snowy Mountains Scheme and Tasmanian hydro power. This report reminds us of the importance of the 20 per cent Renewable Energy Target, and the need for a carbon price to provide certainty to investors. Reinvestment in ageing hydro power assets will form an important part of the future energy market and efforts to reduce carbon pollution.” Source: Hydro Tasmania Hydro Source: 1 Clean Energy Council Clean Energy Australia Report 2011 pg. 28) 3 ibid 2 Clean Energy Council Hydro Sector Report 2010 pg 14 The Clean Energy Council is the peak body representing Australia’s clean energy sector. It is an industry association made up of more than 550 member companies operating in the fields of renewable energy and energy efficiency.
    [Show full text]
  • Many Reasons to Invest in Renewable Energy
    Tasmania Delivers... Many reasons to invest in renewable energy » Abundance of secure renewable energy for businesses who are and just one per cent of Australia’s land area1), and a significant serious about achieving real sustainability targets. wind resource with the state being perfectly situated to capture the » Opportunities for renewable energy generation through wind, prevailing westerly winds from the ‘roaring forties’. As of June 2015, biomass, and geothermal activity and to sell into the National total installed electricity generating capacity on mainland Tasmania was Electricity Market (NEM). 2975 MW, comprising 2281 MW of hydro-electric generation, 386 MW of thermal generation and 308 MW of wind generation. » Opportunities to increase competition in a contestable retail energy market. There is also a growing number of generators embedded in the distribution network, with small scale solar photovoltaic generation » Opportunity to develop a hydrogen production facility to providing approximately one per cent of Tasmania’s electricity. service emerging global demand. Additionally, Tasmania has the lowest per capita greenhouse gas emissions of any Australian state or territory. Our latest figures show Renewable energy that Tasmania has reduced its emissions by 90 per cent from 1990 levels. Tasmania is Australia’s leader in renewable energy and offers a compelling location for forward-thinking investors who either 1. www.bom.gov.au/water/dashboards/#/water-storages wish to invest in the renewable energy sector or achieve real sustainability targets through renewable energy use and generation. Tasmania is also open for business to new energy retailers who can effectively add a new level of competition for consumers.
    [Show full text]