And Toxicokinetics of Selected Exogenous and Endogenous Estrogens: a Review of the Data and Identification of Knowledge Gaps

Total Page:16

File Type:pdf, Size:1020Kb

And Toxicokinetics of Selected Exogenous and Endogenous Estrogens: a Review of the Data and Identification of Knowledge Gaps http://informahealthcare.com/txc ISSN:1040-8444 (print), 1547-6898 (electronic) Crit Rev Toxicol, 2014; Early Online: 1–29 © 2014 Informa Healthcare USA, Inc. DOI: 10.3109/10408444.2014.930813 REVIEW ARTICLE Pharmaco- and toxicokinetics of selected exogenous and endogenous estrogens: A review of the data and identification of knowledge gaps Donald R. Mattison1,2, Nataliya Karyakina1, Michael Goodman3, and Judy S. LaKind4,5,6 1Risk Sciences International, Ottawa, ON, Canada, 2McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada, 3Department of Epidemiology, Emory University School of Public Health, Atlanta, Georgia, USA, 4LaKind Associates, LLC, Catonsville, Maryland, USA, 5Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA, and 6Department of Pediatrics, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, Pennsylvania, USA Abstract Keywords Chemicals with estrogenic activity are derived from many different natural and synthetic bisphenol A, conjugated estrogens, daidzein, processes and products, including endogenous production (e.g., estradiol, conjugated estro- daidzin, estradiol, ethinyl estradiol, equol, gens), drugs (e.g., ethinyl estradiol, conjugated estrogens), plants used as foods (phytoestrogens genistein, genistin, pharmacokinetics, such as genistein, daidzein, S-equol), and man-made chemicals (xenoestrogens such as bisphenol pharmacodynamics, physiologically based A). Human exposure to low doses of endogenous estrogens, estrogenic drugs, phytoestrogens, pharmacokinetics and xenoestrogens has the potential to improve health or disrupt normal endocrine activity, as well as impact the diverse systems with which estrogens interact, including the cardiovascular system, and lipid and carbohydrate metabolism. Mechanisms of action and diversity of adverse History and non-adverse effects following human exposure to low doses of estrogen active chemicals Received 23 October 2013 (EACs, defined as chemicals which interact with an estrogen receptor [ER]) are poorly under- Revised 1 June 2014 stood. This review summarizes our current understanding of the pharmacological action Accepted 1 June 2014 with a focus on pharmacokinetics (PK) and toxicokinetics (TK) of several representative EACs in Published online 7 August 2014 both physiological and pathological processes. The goal of this review is to assess the current state-of-the-science on: (i) the potential for EACs to interfere with endocrine activity, (ii) factors For personal use only. which contribute to endocrine-related clinical outcomes, and (iii) existing knowledge gaps. While classical PK approaches (compartmental or non-compartmental) can be used to characterize absorption, distribution, metabolism, and elimination of EACs, many of the detailed pharmaco- logical characteristics necessary to understand benefit-risk balance have not yet been clarified. Pharmacological complexities mirror the complexity of determining whether and under what conditions exposure to estrogens in drugs, foods or to xenoestrogenic chemicals are beneficial or harmful to human health. Table of Contents Elimination ... ... ... .. ... ... ... .. ... ... ... .. ... ... ... .. 8 Introduction ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 2 Mechanism of action... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 9 Literature search and review ... ... ... .. ... ... ... .. ... ... ... .. 2 Summary ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 9 Critical Reviews in Toxicology Downloaded from informahealthcare.com by 108.3.173.129 on 08/06/14 Background information on estrogens selected Knowledge gaps . ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 9 for this review. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 3 PBPK model for estradiol. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...10 Endogenous and therapeutic estrogens ... ... ... ... ... ... ... ... ... ... 5 PBPK model for E2—knowledge gaps ... ... ... ... ... ... ... ... ... ...10 17b-Estradiol ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 5 Endogenous and therapeutic estrogens: Ethinyl estradiol . ... ... ...10 Ethinyl estradiol... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 5 Absorption ... ... ... .. ... ... ... .. ... ... ... .. ... ... ... .. .10 Conjugated estrogens ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 5 Distribution. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...11 Phytoestrogens (isoflavones) ... ... ... .. ... ... ... .. ... ... ... 6 Metabolism. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...11 Genistein. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 6 Elimination ... ... ... .. ... ... ... .. ... ... ... .. ... ... ... .. .11 Daidzein ... ... ... .. ... ... ... .. ... ... ... .. ... ... ... .. ... 6 Mechanism of action... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...11 S-equol ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 6 Summary ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...11 Xenoestrogen: Bisphenol A ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 6 Knowledge gaps . ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...12 Pharmacokinetics of estrogenic compounds. ... ... ... ... ... ... ... ... ... 6 Endogenous and therapeutic estrogens: Conjugated Endogenous and therapeutic estrogens: 17ß-Estradiol ... ... ... .. 6 estrogens ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...12 Absorption and distribution ... ... ... ... ... ... ... ... ... ... ... ... ... ... 7 Absorption ... ... ... .. ... ... ... .. ... ... ... .. ... ... ... .. .12 Metabolism. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 8 Distribution. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...13 Metabolism. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...13 Address for correspondence: Dr Judy S. LaKind, LaKind Associates, Elimination ... ... ... .. ... ... ... .. ... ... ... .. ... ... ... .. .13 LLC, 106 Oakdale Avenue, Catonsville, 21228 Maryland, USA. Mechanism of action... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...13 Tel: 1-410-788-8639. Fax: 1-410-788-8639. E-mail: lakindassoc@ Summary ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...13 gmail.com Knowledge gaps . ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...13 2 D. R. Mattison et al. Crit Rev Toxicol, 2014; Early Online: 1–29 Phytoestrogens: Genistein, daidzein... ... ... ... ... ... ... ... ... ... ... ...14 and PD), as well as the influence of such important factors as Absorption ... ... ... .. ... ... ... .. ... ... ... .. ... ... ... .. .14 sex, age, hormonal status, and the features of exposure such Distribution. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...14 Metabolism. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...14 as timing, dose, and duration, it will be difficult to interpret Elimination ... ... ... .. ... ... ... .. ... ... ... .. ... ... ... .. .15 the health-based information that is appearing in the epide- Mechanism of action... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...15 miological and experimental clinical literature. Phytoestrogens: S-equol ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...15 The goal of this review is to assess the current state-of- Absorption ... ... ... .. ... ... ... .. ... ... ... .. ... ... ... .. .16 the-science on: (i) the potential for EACs to interfere with Distribution. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...16 Metabolism. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...16 endocrine activity, (ii) factors which contribute to endocrine- Excretion. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...16 related clinical outcomes, and (iii) existing knowledge gaps. Mechanism of action... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...16 While classical PK approaches (compartmental or non- Summary ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...16 compartmental) can be used to characterize absorption, dis- Knowledge gaps . ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...17 tribution, metabolism, and elimination of EACs, many of the PBPK model for genistein ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...17 Genistein PBPK knowledge gaps ... ... ... ... ... ... ... ... ... ... ... ...17 detailed pharmacological characteristics necessary to under- Xenoestrogens: Bisphenol A ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...18 stand benefit-risk balance have not yet been clarified. This Absorption ... ... ... .. ... ... ... .. ... ... ... .. ... ... ... .. .18 review is not meant to be exhaustive; rather, we have chosen Distribution. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...18 to highlight concepts which summarize our current
Recommended publications
  • FULLTEXT01.Pdf
    http://www.diva-portal.org This is the published version of a paper published in International Journal of Cancer. Citation for the original published paper (version of record): Murphy, N., Achaintre, D., Zamora-Ros, R., Jenab, M., Boutron-Ruault, M-C. et al. (2018) A prospective evaluation of plasma polyphenol levels and colon cancer risk International Journal of Cancer, 143(7): 1620-1631 https://doi.org/10.1002/ijc.31563 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-151155 IJC International Journal of Cancer A prospective evaluation of plasma polyphenol levels and colon cancer risk Neil Murphy 1, David Achaintre1, Raul Zamora-Ros 2, Mazda Jenab1, Marie-Christine Boutron-Ruault3, Franck Carbonnel3,4, Isabelle Savoye3,5, Rudolf Kaaks6, Tilman Kuhn€ 6, Heiner Boeing7, Krasimira Aleksandrova8, Anne Tjønneland9, Cecilie Kyrø 9, Kim Overvad10, J. Ramon Quiros 11, Maria-Jose Sanchez 12,13, Jone M. Altzibar13,14, Jose Marıa Huerta13,15, Aurelio Barricarte13,16,17, Kay-Tee Khaw18, Kathryn E. Bradbury 19, Aurora Perez-Cornago 19, Antonia Trichopoulou20, Anna Karakatsani20,21, Eleni Peppa20, Domenico Palli 22, Sara Grioni23, Rosario Tumino24, Carlotta Sacerdote 25, Salvatore Panico26, H. B(as) Bueno-de-Mesquita27,28,29,30, Petra H. Peeters31,32, Martin Rutega˚rd33, Ingegerd Johansson34, Heinz Freisling1, Hwayoung Noh1, Amanda J. Cross29, Paolo Vineis32, Kostas Tsilidis29,35, Marc J. Gunter1 and Augustin Scalbert1 1 Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France 2 Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain 3 CESP, INSERM U1018, Univ.
    [Show full text]
  • Mass Spectrometry Analysis of Hormones in Water by Direct Injection
    Application Note Environmental Mass Spectrometry Analysis of Hormones in Water by Direct Injection Using the Agilent 6470 Triple Quadrupole Mass Spectrometer Authors Abstract Imma Ferrer, E. Michael Thurman, and Some hormones are included in the Contaminant Candidate List CCL4 of the Jerry A. Zweigenbaum Environmental Protection Agency (EPA) to be assessed for regulation in drinking University of Colorado and water. These compounds are also of regulatory interest in the EU, China, and other Agilent Technologies, Inc. countries. Therefore, the environmental community often desires the analysis of these compounds in water samples. This Application Note describes the methodology used for the determination of eight hormones (17-α-ethinylestradiol, 17-β-estradiol, estriol, 4-androstene-3,17-dione, equilin, estrone, progesterone, and testosterone) in tap water using an Agilent 6470 triple quadrupole mass spectrometer. A direct injection method using 100 µL of water sample was carried out. This method saves time, reduces handling errors and analytical variability, and is sensitive enough to detect hormones in surface and drinking water at ng/L levels. Introduction Both positive and negative ion modes and stored at −18 °C. A mix of all were used, depending on the specific the hormones was prepared at a The presence of hormones in compound. We also used a novel concentration of 1 μg/mL. Serial dilutions environmental waters has always been mobile phase approach that included were prepared to obtain a calibration controversial because either none have ammonium fluoride to enhance the curve ranging from 1 to 500 ng/L. been detected, or very low traces have negative ion signal4.
    [Show full text]
  • Study Protocol and Statistical Analysis Plan
    Confidential Clinical study protocol number: J1228 Page 1 Version Date: May 7, 2018 IRB study Number: NA_00067315 A Trial of maintenance Rituximab with mTor inhibition after High-dose Consolidative Therapy in CD20+, B-cell Lymphomas, Gray Zone Lymphoma, and Hodgkin’s Lymphoma Principal Investigator: Douglas E. Gladstone, MD The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins 1650 Orleans Street, CRBI-287 Baltimore, MD 21287 Phone: 410-955-8781 Fax: 410-614-1005 Email: [email protected] IRB Protocol Number: NA_00067315 Study Number: J1228 IND Number: EXEMPT Novartis Protocol Number: CRAD001NUS157T Version: May 7, 2018 Co-Investigators: Jonathan Powell 1650 Orleans Street, CRBI-443 Phone: 410-502-7887 Fax: 443-287-4653 Email: [email protected] Richard Jones 1650 Orleans Street, CRBI-244 Phone: 410-955-2006 Fax: 410-614-7279 Email: [email protected] Confidential Clinical study protocol number: J1228 Page 2 Version Date: May 7, 2018 IRB study Number: NA_00067315 Satish Shanbhag Johns Hopkins Bayview Medical Center 301 Building, Suite 4500 4940 Eastern Ave Phone: 410-550-4061 Fax: 410-550-5445 Email: [email protected] Statisticians: Gary Rosner Phone: 410-955-4884 Email: [email protected] Marianna Zahurak Phone: 410-955-4219 Email: [email protected] Confidential Clinical study protocol number: J1228 Page 3 Version Date: May 7, 2018 IRB study Number: NA_00067315 Table of contents Table of contents ......................................................................................................................... 3 List of abbreviations
    [Show full text]
  • (Cyp19a1b-GFP) Zebrafish Embryos
    Screening Estrogenic Activities of Chemicals or Mixtures In Vivo Using Transgenic (cyp19a1b-GFP) Zebrafish Embryos Franc¸ois Brion1, Yann Le Page2, Benjamin Piccini1, Olivier Cardoso1, Sok-Keng Tong3, Bon-chu Chung3, Olivier Kah2* 1 Unite´ d’Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques, Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil-en- Halatte, France, 2 Universite´ de Rennes 1, Institut de Recherche Sante´ Environnement & Travail (IRSET), INSERM U1085, BIOSIT, Campus de Beaulieu, Rennes France, 3 Taiwan Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan Abstract The tg(cyp19a1b-GFP) transgenic zebrafish expresses GFP (green fluorescent protein) under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i) it is only expressed in radial glial progenitors in the brain of fish and (ii) it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture), including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective.
    [Show full text]
  • Is an Activator of the Human Estrogen Receptor Alpha
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Newcastle University E-Prints 1 The ionic liquid 1-octyl-3-methylimidazolium (M8OI) is an activator of the human estrogen receptor alpha Alistair C. Leitch1, Anne F. Lakey1, William E. Hotham1, Loranne Agius1, George E.N. Kass2, Peter G. Blain1, Matthew C. Wright1,* 1Institute Cellular Medicine, Health Protection Research Unit, Level 4 Leech, Newcastle University, Newcastle Upon Tyne, United Kingdom NE24HH. 2European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy. *Corresponding author. Address: Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK. [email protected] Email addresses: [email protected] (A. Leitch), [email protected] (A. Lakey), [email protected] (W. Hotham), [email protected] (L Aguis), , [email protected] (G Kass), [email protected] (P. Blain) [email protected] (M. Wright). Abbreviations AhR, aryl hydrocarbon receptor; ICI182780, also known as fulvestrant; E2, 17β estradiol; EE, ethinylestradiol; ERα, estrogen receptor alpha, also known as NR3A1; ERβ, estrogen receptor beta, also known as ER3A2; M8OI, 1-octyl-3-methylimidazolium chloride, also known as C8min; PBC, primary biliary cholangitis; PPARα, peroxisome proliferator activated receptor alpha; TFF1, trefoil factor 1. 2 ABSTRACT Recent environmental sampling around a landfill site in the UK demonstrated that unidentified xenoestrogens were present at higher levels than control sites; that these xenoestrogens were capable of super-activating (resisting ligand-dependent antagonism) the murine variant 2 ERβ and that the ionic liquid 1-octyl-3-methylimidazolium chloride (M8OI) was present in some samples.
    [Show full text]
  • The Reactivity of Human and Equine Estrogen Quinones Towards Purine Nucleosides
    S S symmetry Article The Reactivity of Human and Equine Estrogen Quinones towards Purine Nucleosides Zsolt Benedek †, Peter Girnt † and Julianna Olah * Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary; [email protected] (Z.B.); [email protected] (P.G.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Conjugated estrogen medicines, which are produced from the urine of pregnant mares for the purpose of menopausal hormone replacement therapy (HRT), contain the sulfate conjugates of estrone, equilin, and equilenin in varying proportions. The latter three steroid sex hormones are highly similar in molecular structure as they only differ in the degree of unsaturation of the sterane ring “B”: the cyclohexene ring in estrone (which is naturally present in both humans and horses) is replaced by more symmetrical cyclohexadiene and benzene rings in the horse-specific (“equine”) hormones equilin and equilenin, respectively. Though the structure of ring “B” has only moderate influence on the estrogenic activity desired in HRT, it might still significantly affect the reactivity in potential carcinogenic pathways. In the present theoretical study, we focus on the interaction of estrogen orthoquinones, formed upon metabolic oxidation of estrogens in breast cells with purine nucleosides. This multistep process results in a purine base loss in the DNA chain (depurination) and the formation of a “depurinating adduct” from the quinone and the base. The point mutations induced in this manner are suggested to manifest in breast cancer development in the long run.
    [Show full text]
  • Memorandum Date: June 6, 2014
    DEPARTMENT OF HEALTH & HUMAN SERVICES Public Health Service Food and Drug Administration Memorandum Date: June 6, 2014 From: Bisphenol A (BPA) Joint Emerging Science Working Group Smita Baid Abraham, M.D. ∂, M. M. Cecilia Aguila, D.V.M. ⌂, Steven Anderson, Ph.D., M.P.P.€* , Jason Aungst, Ph.D.£*, John Bowyer, Ph.D. ∞, Ronald P Brown, M.S., D.A.B.T.¥, Karim A. Calis, Pharm.D., M.P.H. ∂, Luísa Camacho, Ph.D. ∞, Jamie Carpenter, Ph.D.¥, William H. Chong, M.D. ∂, Chrissy J Cochran, Ph.D.¥, Barry Delclos, Ph.D.∞, Daniel Doerge, Ph.D.∞, Dongyi (Tony) Du, M.D., Ph.D. ¥, Sherry Ferguson, Ph.D.∞, Jeffrey Fisher, Ph.D.∞, Suzanne Fitzpatrick, Ph.D. D.A.B.T. £, Qian Graves, Ph.D.£, Yan Gu, Ph.D.£, Ji Guo, Ph.D.¥, Deborah Hansen, Ph.D. ∞, Laura Hungerford, D.V.M., Ph.D.⌂, Nathan S Ivey, Ph.D. ¥, Abigail C Jacobs, Ph.D.∂, Elizabeth Katz, Ph.D. ¥, Hyon Kwon, Pharm.D. ∂, Ifthekar Mahmood, Ph.D. ∂, Leslie McKinney, Ph.D.∂, Robert Mitkus, Ph.D., D.A.B.T.€, Gregory Noonan, Ph.D. £, Allison O’Neill, M.A. ¥, Penelope Rice, Ph.D., D.A.B.T. £, Mary Shackelford, Ph.D. £, Evi Struble, Ph.D.€, Yelizaveta Torosyan, Ph.D. ¥, Beverly Wolpert, Ph.D.£, Hong Yang, Ph.D.€, Lisa B Yanoff, M.D.∂ *Co-Chair, € Center for Biologics Evaluation & Research, £ Center for Food Safety and Applied Nutrition, ∂ Center for Drug Evaluation and Research, ¥ Center for Devices and Radiological Health, ∞ National Center for Toxicological Research, ⌂ Center for Veterinary Medicine Subject: 2014 Updated Review of Literature and Data on Bisphenol A (CAS RN 80-05-7) To: FDA Chemical and Environmental Science Council (CESC) Office of the Commissioner Attn: Stephen M.
    [Show full text]
  • DDT and Its Derivatives Have Remained in the Environment
    International Journal of Molecular Sciences Review A Novel Action of Endocrine-Disrupting Chemicals on Wildlife; DDT and Its Derivatives Have Remained in the Environment Ayami Matsushima Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan; [email protected]; Tel.: +81-92-802-4159 Received: 20 March 2018; Accepted: 2 May 2018; Published: 5 May 2018 Abstract: Huge numbers of chemicals are released uncontrolled into the environment and some of these chemicals induce unwanted biological effects, both on wildlife and humans. One class of these chemicals are endocrine-disrupting chemicals (EDCs), which are released even though EDCs can affect not only the functions of steroid hormones but also of various signaling molecules, including any ligand-mediated signal transduction pathways. Dichlorodiphenyltrichloroethane (DDT), a pesticide that is already banned, is one of the best-publicized EDCs and its metabolites have been considered to cause adverse effects on wildlife, even though the exact molecular mechanisms of the abnormalities it causes still remain obscure. Recently, an industrial raw material, bisphenol A (BPA), has attracted worldwide attention as an EDC because it induces developmental abnormalities even at low-dose exposures. DDT and BPA derivatives have structural similarities in their chemical features. In this short review, unclear points on the molecular mechanisms of adverse effects of DDT found on alligators are summarized from data in the literature, and recent experimental and molecular research on BPA derivatives is investigated to introduce novel perspectives on BPA derivatives. Especially, a recently developed BPA derivative, bisphenol C (BPC), is structurally similar to a DDT derivative called dichlorodiphenyldichloroethylene (DDE).
    [Show full text]
  • Daidzein Intake Is Associated with Equol Producing Status Through an Increase in the Intestinal Bacteria Responsible for Equol Production
    Article Daidzein Intake Is Associated with Equol Producing Status through an Increase in the Intestinal Bacteria Responsible for Equol Production Chikara Iino 1, Tadashi Shimoyama 2,*, Kaori Iino 3, Yoshihito Yokoyama 3, Daisuke Chinda 1, Hirotake Sakuraba 1, Shinsaku Fukuda 1 and Shigeyuki Nakaji 4 1 Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; [email protected] (C.I.); [email protected] (D.C.); [email protected] (H.S.); [email protected] (S.F.) 2 Aomori General Health Examination Center, Aomori 030-0962, Japan 3 Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; [email protected] (K.I.); [email protected] (Y.Y.) 4 Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-017-741-2336 Received: 9 January 2019; Accepted: 7 February 2019; Published: 19 February 2019 Abstracts: Equol is a metabolite of isoflavone daidzein and has an affinity to estrogen receptors. Although equol is produced by intestinal bacteria, the association between the status of equol production and the gut microbiota has not been fully investigated. The aim of this study was to compare the intestinal bacteria responsible for equol production in gut microbiota between equol producer and non-producer subjects regarding the intake of daidzein. A total of 1044 adult subjects who participated in a health survey in Hirosaki city were examined. The concentration of equol in urine was measured by high-performance liquid chromatography.
    [Show full text]
  • Full Text Pdf
    Eastern Biologist No. 4 2015 Protective Effects of Conjugated Equine Estrogens and 17-β Estradiol on Oxidatively Stressed Astrocytes Whitley E. Grimes and Kathleen S. Hughes The Eastern Biologist . ♦ A peer-reviewed journal that publishes original articles focused on the many diverse disciplines of biological research, except for the natural history science disciplines (ISSN 2165-6657 [online]). ♦ Subject areas - The journal welcomes manuscripts based on original research and observations, as well as research summaries and general interest articles. Subject areas include, but are not limited to, biochemistry, biotechnology, cell biology, developmental biology, genetics and genomics, immunology, microbiology, molecular evolution, neurobiology, parasitology, physiology, toxicology, as well as scientific pedagogy. ♦ Offers article-by-article online publication for prompt distribution to a global audience ♦ Offers authors the option of publishing large files such as data tables, audio and video clips, and even PowerPoint presentations as online supplemental files. ♦ Special issues - The Eastern Biologist welcomes proposals for special issues that are based on conference proceedings or on a series of invitational articles. Special issue editors can rely on the publisher’s years of experiences in efficiently handling most details relating to the publication of special issues. ♦ Indexing - As is the case with Eagle Hill's other journals, the Eastern Biologist is expected to be fully indexed in Elsevier, Thomson Reuters, Proquest, EBSCO, Google Scholar, and other databases. ♦ The journal staff is pleased to discuss ideas for manuscripts and to assist during all stages of manuscript preparation. The journal has a mandatory page charge to help defray a portion of the costs of publishing the manuscript.
    [Show full text]
  • Failures and Controversies of the Antiestrogen Treatment of Breast Cancer
    In: Estrogen Prevention for Breast Cancer ISBN: 978-1-62417-378-3 Editor: Zsuzsanna Suba © 2013 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter VII Failures and Controversies of the Antiestrogen Treatment of Breast Cancer Zsuzsanna Suba National Institute of Oncology, Department of Surgical and Molecular Pathology, Budapest, Hungary Abstract In postmenopausal women, estrogens have unquestionable preventive and curative effects against atherogenic cardiovascular lesions, osteoporosis and neurodegenerative diseases. Moreover, recent studies on correlations between hormone replacement therapy and cancer risk could justify preventive, anticancer capacities of estrogen both on smoking associated and hormone related cancers. Experimental developing of antiestrogen compounds aimed to inhibit the binding of presumably harmful, endogenous estrogen to its receptor system so as to achieve a regression of hormone-related cancers. However, antiestrogens proved to be ineffective in the majority of selected receptor positive breast cancer cases and produced severe side effects, such as vascular complications and cancer development at several sites. Failure of antiestrogen therapy was designated as ―endocrine resistance‖ of tumors.
    [Show full text]
  • Pp375-430-Annex 1.Qxd
    ANNEX 1 CHEMICAL AND PHYSICAL DATA ON COMPOUNDS USED IN COMBINED ESTROGEN–PROGESTOGEN CONTRACEPTIVES AND HORMONAL MENOPAUSAL THERAPY Annex 1 describes the chemical and physical data, technical products, trends in produc- tion by region and uses of estrogens and progestogens in combined estrogen–progestogen contraceptives and hormonal menopausal therapy. Estrogens and progestogens are listed separately in alphabetical order. Trade names for these compounds alone and in combination are given in Annexes 2–4. Sales are listed according to the regions designated by WHO. These are: Africa: Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Comoros, Congo, Côte d'Ivoire, Democratic Republic of the Congo, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Niger, Nigeria, Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, South Africa, Swaziland, Togo, Uganda, United Republic of Tanzania, Zambia and Zimbabwe America (North): Canada, Central America (Antigua and Barbuda, Bahamas, Barbados, Belize, Costa Rica, Cuba, Dominica, El Salvador, Grenada, Guatemala, Haiti, Honduras, Jamaica, Mexico, Nicaragua, Panama, Puerto Rico, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Suriname, Trinidad and Tobago), United States of America America (South): Argentina, Bolivia, Brazil, Chile, Colombia, Dominican Republic, Ecuador, Guyana, Paraguay,
    [Show full text]