Tectonic Setting Seismic Hazard Epicentral Region Finite Fault Model

Total Page:16

File Type:pdf, Size:1020Kb

Tectonic Setting Seismic Hazard Epicentral Region Finite Fault Model EARTHQUAKE SUMMARY MAP U.S. DEPARTMENT OF THE INTERIOR Prepared in cooperation with the U.S. GEOLOGICAL SURVEY Global Seismographic Network M7.3 Off the West Coast of Northern Sumatra Earthquake of 10 January 2012 C A S P I A U Z N B E K S I S Tectonic Setting Epicentral Region E T A N A E U R A S I A A Z E R B A I J A N K u n l u n F a u l t T P L A T E U R N O R T H K M K O R E A SEA OF JAPAN E N T A J I K I S T A N I S T A t N a u l h F Ubon a g T y n l t e S O U T H A H Nakhon Mashhad g Ratchathani K n K O R E A s Xining a Jinan u i n u Taejon n t a H j u n J A P A N u n o Phra Nakhon RatchaEsiXmPa LANATION M Lanzhou Qingdao Taegu Kabul Zhengzhou Y E L L O W Pusan Saraburi Srinagar Xi'an Luoyang S E A Kwangju Si Ayutthaya Peshawar H C H I N A 2009 Kita Kyushu A F G H A N I S T A N I Tavoy Rawalpindi M H Main Shock I R A N Nanjing Fukuoka C A N Samut Bangkok Hefei g E Faisalabad Amritsar in R L Ja Shanghai T g A n ) Chengdu Wuhan h a Sakhon Lahore Y C Hangzhou U Siemreab Shiraz A Chongqing Y Samut E A S T K Madras K U W A I T Delhi Nanchang C H I N A U Batdambang N Y Prakan E P Changsha A S E A R PA K I S T A N L ( B H U T A N Y A N G T Z E P Jaipur Lucknow Earthquake Magnitude e r Guiyang O s i a P L A T E n T B A H R A I N G Kanpur 1941 u l f Patna Fuzhou O OKINAWA Karachi Varanasi Kunming H Q A T A R G 5.50 - 5.99 u Taipei S PLATE l f Hyderabad o f O m Phnom a n T'aichung Pondicherry Port B A N G L A - - Bhopal D E S H I Finite Fault Model Ahmadabad Guangzhou E U . A . E . I N D I A Fangcheng T'ainan S A R A B I A Khulna Dhaka Nanning Kowloon T A I W A N N A N Blair Penh P L A T E Gang 6.00 - 6.99 Nagpur Calcutta Chittagong M Y A N M A R Hanoi Kaoshsiung ( B U R M A ) Victoria Ho Chi Minh N A M Bombay I N D I A L A O S City O e 7.00 - 7.99 P L A T E P H I L I P P I N E g Bien Hoa Pune d Distribution of the magnitude and direction of slip for subfault elements of the fault rupture model are Vishakhapatnam i Long S E A R Tan An Hyderabad Rangoon A R A B I A N u Xuyen determined from the inversion of teleseismic body waveforms and long period surface waves. Arrows P L A T E a My Tho S E A Quezon l a ≥ 8.00 N P Andaman Sea E Vinh M T H A I L A N D City Rach Gia Can indicate the amplitude and direction of slip (of the hanging wall with respect to the foot wall); the slip is also Y E - Manila P u Long e n Madras P h i l i p p i n e H h Tho colored by magnitude. The view of the rupture plane is from above. The strike of the fault rupture plane is Bangalore Bangkok V I E T N A M s A d F a u l t Earthquake Depth f I o u l f C A M B O D I A L G u BURMA y Soc A r a b i a n B a s i n I Bac Lieu e K 101 ESE and the dip is 75 NNE. The dimensions of the subfault elements are 6 km in the strike direction and P n PLATE Phnom P H I L I P P I N E S o P P h i l i p p i n e Z Trang Penh I B a s i n N 0 - 69 3.5 km in the dip direction. The rupture surface is 35 km along strike and 10 km downdip. The seismic e Gulf r Cochin Madurai u of Ho Chi S O U T H E t Nakhon Si C Thailand N c A T a h Minh City C H I N A moment release based upon this plane is 8.71e+26 dyne.cm (Mw7.23). r Trivandrum H a F W R g S E A A G Thammarat E n C o S R I L A N K A L U e s 70 - 299 a A O Davao N w r Colombo l - P R 2010 O s C T A b L I e H L r a A g c c M R M S U N D AB RPU NLE IA T E a i d A O EXPLANATION d ≥ 300 g L S e i Medan M A L D I V E S v A C e l e b e s W e s t C a r o l i n e S u m a t r a F a u l t CAROLINE e Y B a s i n Kuala Lumpur I A B a s i n Kandy S S P PLATE I Y Songkhla A l A a L A t M i d - I n d i a n M MM aa ii nn SS hh oo cc kk e Singapore S I N G A P O R E Colombo a B a s i n N u E W GUINE A TR EN Yala Kota MOLUCCA SEA BIRD'S HEAD CH Alor S o m a l i SER Distance Along Strike (km) I N D O N E S I A AM T -40 -30 -20 -10 0 10 20 30 40 B a s i n PLATE RE PLATE Setar Baharu Palembang NC Galle H Mag ≥ 7.0 Makassar Kuala Epicentral Region Jakarta BANDA SEA Banda Aceh Pinang M Terengganu S I E n Semarang S O M AL L I A MAOKE 0 - 69 km v PLATE E i Bandung H H e e Y C d Surabaya G PLATE s SPE L A T E g U t - O d i TIMOR-LESTE R g I i S R T 70 - 299 a O n TIM Ipoh R U t N M o d D t a r A s i s ( J c R AV a a A 300 - 600 a ) i T R r EN Kuantan d C H e E n g n TIMOR e e y P PLATE New Port R t l RPlate Boundary a N o r t h e t Medan i A e A u s t r a l i a n Kuala n a -10 0 10 C d B a s i n u O s b o r n i S g P l a t e a u A N G Subduction Lumpur e Distance Along Dip (km) A M a s c a r e n e D B a s i n A N O C E A N M Transform I N D I A Seremban R 2010 o d r i g u e s F. Z . M A U R I T I U S E x m o u t h Divergent P l a t e a u Melaka Wallaby Plateau 1907 2005 W h a r t o n Johor Others B a s i n 1969 Baharu Cuv ier A U S T R A L I A Plateau Singapore Slip (cm) Volcanoes e g n d i i s A U S T R A L I A R a B n 0 - 100 P L A T E r a a i c Pekanbaru s d a n g I a 100 - 200 d t s Kilometers a M a E 0 200 400 800 1,200P e r t h1,600 RELATIVE PLATE MOTIONS: B 200 - 300 r o k B a s i n e n R i d The broad red vector represents the motion of the Australia g e 2009 300 - 400 plate with respect toA tNheT APaRcCifiTcI pClaAte near the epicentral region. 1935 1943 P L A T E Padang 400 - 500 Jambi 500 - 600 600 - 700 Seismic Hazard Palembang 1928 2007 2010 Bengkulu Bombay Pune Vishakhapatnam 2007 1914 Hyderabad Rangoon Significant Earthquakes Mag >= 7.5 Year Mon Day Time Lat Long Dep Mag 1907 01 04 0519 2.000 94.500 50 7.5 Bangkok M7.3 Off the West Coast of Northern Sumatra Earthquake of 10 January 2012 1914 06 25 1907 -4.500 102.500 0 7.6 Bangalore Madras Phnom 10 January 2012 18:37:01 UTC 1928 03 09 1805 -2.954 88.801 15 7.7 Penh Ho Chi 1935 12 28 0235 -0.345 98.147 35 7.8 Minh City 2.396° N., 93.175° E.
Recommended publications
  • Playing Jigsaw with Large Igneous Provinces a Plate Tectonic
    PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Playing jigsaw with Large Igneous Provinces—A plate tectonic 10.1002/2015GC006036 reconstruction of Ontong Java Nui, West Pacific Key Points: Katharina Hochmuth1, Karsten Gohl1, and Gabriele Uenzelmann-Neben1 New plate kinematic reconstruction of the western Pacific during the 1Alfred-Wegener-Institut Helmholtz-Zentrum fur€ Polar- und Meeresforschung, Bremerhaven, Germany Cretaceous Detailed breakup scenario of the ‘‘Super’’-Large Igneous Province Abstract The three largest Large Igneous Provinces (LIP) of the western Pacific—Ontong Java, Manihiki, Ontong Java Nui Ontong Java Nui ‘‘Super’’-Large and Hikurangi Plateaus—were emplaced during the Cretaceous Normal Superchron and show strong simi- Igneous Province as result of larities in their geochemistry and petrology. The plate tectonic relationship between those LIPs, herein plume-ridge interaction referred to as Ontong Java Nui, is uncertain, but a joined emplacement was proposed by Taylor (2006). Since this hypothesis is still highly debated and struggles to explain features such as the strong differences Correspondence to: in crustal thickness between the different plateaus, we revisited the joined emplacement of Ontong Java K. Hochmuth, [email protected] Nui in light of new data from the Manihiki Plateau. By evaluating seismic refraction/wide-angle reflection data along with seismic reflection records of the margins of the proposed ‘‘Super’’-LIP, a detailed scenario Citation: for the emplacement and the initial phase of breakup has been developed. The LIP is a result of an interac- Hochmuth, K., K. Gohl, and tion of the arriving plume head with the Phoenix-Pacific spreading ridge in the Early Cretaceous. The G.
    [Show full text]
  • Subsidence and Growth of Pacific Cretaceous Plateaus
    ELSEVIER Earth and Planetary Science Letters 161 (1998) 85±100 Subsidence and growth of Paci®c Cretaceous plateaus Garrett Ito a,Ł, Peter D. Clift b a School of Ocean and Earth Science and Technology, POST 713, University of Hawaii at Manoa, Honolulu, HI 96822, USA b Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received 10 November 1997; revised version received 11 May 1998; accepted 4 June 1998 Abstract The Ontong Java, Manihiki, and Shatsky oceanic plateaus are among the Earth's largest igneous provinces and are commonly believed to have erupted rapidly during the surfacing of giant heads of initiating mantle plumes. We investigate this hypothesis by using sediment descriptions of Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) drill cores to constrain plateau subsidence histories which re¯ect mantle thermal and crustal accretionary processes. We ®nd that total plateau subsidence is comparable to that expected of normal sea¯oor but less than predictions of thermal models of hotspot-affected lithosphere. If crustal emplacement was rapid, then uncertainties in paleo-water depths allow for the anomalous subsidence predicted for plumes with only moderate temperature anomalies and volumes, comparable to the sources of modern-day hotspots such as Hawaii and Iceland. Rapid emplacement over a plume head of high temperature and volume, however, is dif®cult to reconcile with the subsidence reconstructions. An alternative possibility that reconciles low subsidence over a high-temperature, high-volume plume source is a scenario in which plateau subsidence is the superposition of (1) subsidence due to the cooling of the plume source, and (2) uplift due to prolonged crustal growth in the form of magmatic underplating.
    [Show full text]
  • Present-Day Crustal Motion in the Solomon Islands from GPS
    GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 19, PAGES 3627-3630, OCTOBER 1, 1998 Present-day crustal motion in the Solomon Islands from GPS observations Paul Tregoning Research School of Earth Sciences, The Australian National University, Canberra, Australia Francis Tan, John Gilliland School of Geoinformatics, Planning and Building, The University of South Australia, Adelaide, Australia Herbert McQueen and Kurt Lambeck Research School of Earth Sciences, The Australian National University, Canberra, Australia Abstract. Site velocities in the Solomon Islands from Ontong Java Plateau (OJP) collided with the Solomon Arc, Global Positioning System measurements spanning two years probably ∼20 to 25 Ma [e.g. Coleman and Kroenke, 1981; provide direct evidence of active deformation between the Kroenke, 1984; Yan and Kroenke, 1993]. Since that time it Pacific Plate and the Solomon Arc block. Convergence is is thought that subduction of the Pacific Plate ceased dur- occurring at the San Cristobal Trench at a rate of ∼524 ing the Early Miocene but it may have recommenced in the mm/yr, with no apparent local deformation occurring in the Mid-Miocene. About 10 Ma polarity reversal occurred and Australian Plate at a distance of ∼100 km from the trench. the Australian Plate began subducting to the northeast at The islands of Guadalcanal and Makira are in a first ap- the New Britain and San Cristobal Trenches, thus creating proximation moving with the Pacific Plate although there is the southern islands of the New Georgia group, Bougainville evidence of small but significant decoupling from the Pacific and Buka Island [Vedder and Bruns, 1989]. Active shallow Plate of 14-23 mm/yr in a direction of 75-85◦.
    [Show full text]
  • Tsunamigenic Earthquakes
    Fifteen Years of (Major to Great) Tsunamigenic Earthquakes F Romano, S Lorito, and A Piatanesi, Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy T Lay, Earth and Planetary Sciences Department, University of California Santa Cruz, Santa Cruz, CA, United States © 2020 Elsevier Inc. All rights reserved. Tsunamis, Seismically Induced 1 Fifteen Years of Major to Great Tsunamigenic Earthquakes 3 The Study of Tsunamigenic Earthquakes 3 Megathrust Tsunamigenic Earthquakes 4 The Sunda 2004–10 Sequence in the Indian Ocean 4 Peru 2007 5 Maule 2010 5 Tohoku 2011 5 Santa Cruz 2013 6 Iquique 2014 6 Illapel 2015 6 Tsunamigenic Doublets 7 Kurils 2006–07 7 Samoa 2009 7 Tsunami Earthquakes 7 Java 2006 8 Mentawai 2010 8 Recent Special Cases 8 Sumatra 2012 8 Solomon 2007 8 Haida Gwaii 2012 9 Kaikoura 2016 9 Mexico 2017 9 Palu 2018 9 Conclusions 10 References 10 Further Reading 12 Tsunamis, Seismically Induced Tsunamis are a series of long gravity waves generated by the displacement of a significant volume of water that propagating in the sea, under the action of the gravity force, returns in its original equilibrium position. Differently from the common wind waves, tsunamis are characterized by large wavelengths (ranging from tens to hundreds of km) and long periods (ranging from minutes to hours). Several natural phenomena such as earthquakes, landslides, volcanic eruptions, the rapid change of atmospheric pressure (meteotsunami), or asteroids impacts can be the source of a tsunami; among these, the most frequent is represented by the earthquakes. Most of the very tsunamigenic earthquakes occur nearby the Earth convergent boundaries (Fig.
    [Show full text]
  • Visualization of the Geophysical Settings in the Philippine Sea Margins by Means of GMT and ISC Data
    Central European Journal of Geography and Sustainable Development 2020, Volume 2, Issue 1, Pages: 5-15 ISSN 2668-4322, ISSN-L 2668-4322 https://doi.org/10.47246/CEJGSD.2020.2.1.1 Visualization of the geophysical settings in the Philippine Sea margins by means of GMT and ISC data Polina Lemenkova* Ocean University of China, College of Marine Geo-sciences, 238 Songling Rd, Laoshan, 266100, Qingdao, Shandong, China; [email protected] Received: 22 February 2020; Revised: 12 March 2020; Accepted: 20 March 2020; Published online: 25 March 2020 _________________________________________________________________________________________________________________________ Abstract: The presented research aimed to perform geophysical modelling (gravity and geoid) and to evaluate the spatio-temporal variation of the marine geological data (distribution and depth of earthquakes) using combination of the Generic Mapping Tools (GMT) and available sources from the International Seismological Centre (ISC-EHB) that produce data on earthquakes as part of seismic survey and regional research projects. The target study area is a Philippine Sea basin (PSB) with two focused marginal areas: Philippine Trench and Mariana Trench, two hadal trenches located in the places of the tectonic plates subduction. Marine free-air gravity anomaly in the PSP shows higher values (>80 mGal) of the gravity fields structure at the volcanic areas and Philippine archipelago. Current study presented comparative geophysical analysis, and mapping free-air gravity and geoid in the Philippine Sea basin area. As a result of this study, the average level of earthquakes located in the Philippine Trench and Mariana Trench areas were compared, and those located in the Philippine archipelago are determined to be in the souther-western part (area of west Mindanao, south-west Visayas islands), while Luzon Islands shown shallower located earthquakes.
    [Show full text]
  • Philippine Sea Plate Inception, Evolution, and Consumption with Special Emphasis on the Early Stages of Izu-Bonin-Mariana Subduction Lallemand
    Progress in Earth and Planetary Science Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction Lallemand Lallemand Progress in Earth and Planetary Science (2016) 3:15 DOI 10.1186/s40645-016-0085-6 Lallemand Progress in Earth and Planetary Science (2016) 3:15 Progress in Earth and DOI 10.1186/s40645-016-0085-6 Planetary Science REVIEW Open Access Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction Serge Lallemand1,2 Abstract We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60–55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ∼54–48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called “fore-arc basalts” (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ∼52–50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere.
    [Show full text]
  • Tectonic Setting Seismic Hazard Epicentral Region Depth Profile
    U.S. DEPARTMENT OF THE INTERIOR EARTHQUAKE SUMMARY MAP XXX U.S. GEOLOGICAL SURVEY Prepared in cooperation with the Global Seismographic Network e g M6.7 Sumbawa, Indoned sia, Earthquake of 8 November 2009 i R u a l a P - Tectonic Setting u Epicentral Region V I E T N A M P h i l i p p i n e h 100° 110° F a u l t 120° 130° s 110° 112° 114° 116° 118° 120° 122° 124° 126° 128° C A M B O D I A u S u m a t r a y P Palu K Balikpapan H Kalimantan 2000 1963 1923 P H I L I P P I N E S I L P h i l i p p i n e I A N D A M A N P Barat Kalimantan Timur Sumbawa Region P B a s i n Sulawesi Tengah Gulf I 1998 S E A N 10° 10° of S O U T H E 08 November 2009 8:41:44 UTC Thailand T 2° 2° C H I N A R Palangkaraya 1965 N E Kalimantan Tengah A N W H 1919 S E A A G C 8.315° S., 118.697° E. L U A O H P R Kalimantan Depth 18.3 km T Selatan M19w38 = 6.7 (1U94S8GS) SUNDA PLATE Sulawesi Bandjermasin Maluku Selatan B R U N E I 15 km (10 miles) 1N9N50W of Raba, Sumbawa, Indonesia M 310 km (1A9m0b moniles) ENE of Mataram, Lombok, Indonesia A C e l e b e s L Kendari 2001 A B a s i n 330 km (205 miles) W of Ende, Flores, Indonesia Y S u m a t r a F a u l t 4° 4° S A I N D O N E S I A 2004 I 1335 km (830 miles) E of JAKARTA, Java, Indonesia I S A Y A L A M S I N G A P O R E S u 0° m Borneo 0° Makassar 2006 1914 a MOLUCCA 2005 tr a SEA Enggano I N D O N E S IPLATEA BIRD'S HEAD A' 1797 PLATE 6° 6° 1950 1927 AUSTRALIA J a v a 1969 PLATE J A VA S E A 1998 Semarang 1934 1833 1996 1964 1995 BANDA SEA MAOKE Jawa 1966 Greater Sunda Islands B A N D A S E A 1990 1982 I PLATE PLATE
    [Show full text]
  • Original Pdf Version
    Rhiana Elizabeth Henry Tectonic History Hildebrand Project 1A December 9th, 2016 North America subducted under Rubia Are there modern analogs for Hildebrand’s model of North America subducting under Rubia? In the Geological Society of America Special Papers “Did Westward Subduction Cause Cretaceous–Tertiary Orogeny in the North American Cordillera?” and “Mesozoic Assembly of the North American Cordillera” by Robert S. Hildebrand, the author argues that the North American continent experienced westward subduction under what he calls a “ribbon continent” known as Rubia around ~124Ma. This ribbon continent is composed of multiple terranes both known to be exotic to North America, and terranes that were previously thought to be part of North America. As the seaway between Rubia and North America closed, Hildebrand postulates that North America was dragged underneath with the oceanic crust. This continental material combined with the fluids from the margin caused great amounts of magmatism in the North American Cordillera. Eventually the continental crust broke due to upward buoyancy. This caused slab failure around 75-60 Ma, followed by a reversal of subduction polarity around 53 Ma, with eastward subduction through the mid- Tertiary (Fig. 1). As a way of checking to see if this hypothesis is plausible, I investigated modern geologic settings that are undergoing similar tectonic events. Although these regions are Figure 1: Hildebrand’s model of subduction of not perfect analogies, they share enough North America and Rubia. From Hildebrand, 2009. 1 Rhiana Elizabeth Henry Tectonic History Hildebrand Project 1A December 9th, 2016 tectonic features that Hildebrand’s model appears somewhat less outlandish.
    [Show full text]
  • Plate Tectonics and the Cycling of Earth Materials
    Plate Tectonics and the cycling of Earth materials Plate tectonics drives the rock cycle: the movement of rocks (and the minerals that comprise them, and the chemical elements that comprise them) from one reservoir to another Arrows are pathways, or fluxes, the I,M.S rocks are processes that “reservoirs” - places move material from one reservoir where material is temporarily stored to another We need to be able to identify these three types of rocks. Why? They convey information about the geologic history of a region. What types of environments are characterized by the processes that produce igneous rocks? What types of environments are preserved by the accumulation of sediment? What types of environments are characterized by the tremendous heat and pressure that produces metamorphic rocks? How the rock cycle integrates into plate tectonics. In order to understand the concept that plate tectonics drives the rock cycle, we need to understand what the theory of plate tectonics says about how the earth works The major plates in today’s Earth (there have been different plates in the Earth’s past!) What is a “plate”? The “plate” of plate tectonics is short for “lithospheric plate” - - the outermost shell of the Earth that behaves as a rigid substance. What does it mean to behave as a rigid substance? The lithosphere is ~150 km thick. It consists of the crust + the uppermost mantle. Below the lithosphere the asthenosphere behaves as a ductile layer: one that flows when stressed It means that when the substance undergoes stress, it breaks (a non-rigid, or ductile, substance flows when stressed; for example, ice flows; what we call a glacier) Since the plates are rigid, brittle 150km thick slabs of the earth, there is a lot of “action”at the edges where they abut other plates We recognize 3 types of plate boundaries, or edges.
    [Show full text]
  • Philippine Island Arc System Tectonic Features Inferred from Magnetic Data Analysis
    Terr. Atmos. Ocean. Sci., Vol. 26, No. 6, 679-686, December 2015 doi: 10.3319/TAO.2015.05.11.04(TC) Philippine Island Arc System Tectonic Features Inferred from Magnetic Data Analysis Wen-Bin Doo1, *, Shu-Kun Hsu1, 2, and Leo Armada 2 1 Center for Environmental Studies, National Central University, Taoyuan City, Taiwan, R.O.C. 2 Department of Earth Sciences, National Central University, Taoyuan City, Taiwan, R.O.C. Received 18 February 2013, revised 22 November 2013, accepted 11 May 2015 ABSTRACT Running along the middle of the Philippine archipelago from south to north, the Philippine fault zone is one of the world’s major strike-slip faults. Intense volcanism in the archipelago is attributed to the ongoing subduction along the trench systems surrounding it. This study interprets the magnetic data covering the Philippine fault zone and the bounding archi- pelago subduction systems to understand the structural characteristics of the study area. Magnetic data analysis suggests that the Philippine fault is roughly distributed along the boundary of high/low magnetization and separates the different amplitude features of the first order analytic signal. Visayas province is a specific area bounded by the other parts of the Philippine ar- chipelago. Further differentiating the tectonic units, the proto-Southeast Bohol Trench should be the main tectonic boundary between Visayas and Mindanao. A clear NE - SW boundary separates Luzon from Visayas as shown by the variant depths to the top of the magnetic basement. This boundary could suggest the different tectonic characteristics of the two regions. Key words: Philippine fault, Philippine archipelago, Magnetic data, Tectonic Citation: Doo, W.
    [Show full text]
  • Tectonic Setting & Generalized Geologic Maps of Washington And
    on the Lea rs din e g ch E a . d e . g T e Tectonic Setting & Generalized Geologic Maps of Washington and Oregon The TO TLE Pict Earthquakes ure Frank D. Granshaw and Jenda Johnson, 2009 Volcanoes Tsunamis Geology1 Physical Geography Legend for Geography Relief map of Washington and Oregon showing Map colors correspond to vegetation Generalized geologic map of the Pacific Northwest. major cities, volcanoes, lakes and waterways. and surface types: (Circled numbers are the same as on Physical Geography legend) Greens—dense vegetation 1 Browns—grasslands and desert 1 A A Light gray to white—unvegetated alpine regions in the Cascade Range 2 2 Cities A Bellingham, WA N La Grande, OR B Seattle, WA O Baker, OR B I C Tacoma, WA P Ontario, OR B I D Olympia, WA B Bend, OR E Aberdeen, WA R Klamath Falls, OR C H C F Ellensberg, WA S Medford, OR E D 3 F G Yakima, WA T Coos Bay, OR D 3 H Wenatchee, WA U Newport, OR I Spokane, WA V Astoria ,OR G J Walla Walla, WA W Portland, OR G K Pasco, WA X Salem, OR K 4 4 5 L The Dalles, OR Y Eugene, OR 5 V V M Pendleton, OR J J Cascade Volcanoes M M L L W W 1 Mount Baker 6 Mount Hood 6 6 2 Glacier Peak 7 Mount Jeerson N N 3 Mount Rainier 8 Three Sisters 4 Mount St. Helens 9 Newberry Volcano X X 5 Mount Adams 10 Crater Lake O 7 7 Legend for Geology U U Igneous Rock 8 8 Q Q Y Y P Volcanic (Less than 1.6 million years) Volcanic (More than 1.6 million years) 9 9 Volcanic (Mostly 16.5- to 6-million- year-old flood basalts) T T Intrusive rock 10 Sedimentary and Metamorphic Rock 10 Unconsolidated sediment Sedimentary rock S Sedimentary & metamorphic rock R S R Metamorphic rock Physiographic Provinces2 Tectonics3 Map of major physiographic provinces in the Pacic Northwest.
    [Show full text]
  • Java and Sumatra Segments of the Sunda Trench: Geomorphology and Geophysical Settings Analysed and Visualized by GMT Polina Lemenkova
    Java and Sumatra Segments of the Sunda Trench: Geomorphology and Geophysical Settings Analysed and Visualized by GMT Polina Lemenkova To cite this version: Polina Lemenkova. Java and Sumatra Segments of the Sunda Trench: Geomorphology and Geophys- ical Settings Analysed and Visualized by GMT. Glasnik Srpskog Geografskog Drustva, 2021, 100 (2), pp.1-23. 10.2298/GSGD2002001L. hal-03093633 HAL Id: hal-03093633 https://hal.archives-ouvertes.fr/hal-03093633 Submitted on 4 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ГЛАСНИК Српског географског друштва 100(2) 1 – 23 BULLETIN OF THE SERBIAN GEOGRAPHICAL SOCIETY 2020 ------------------------------------------------------------------------------ --------------------------------------- Original scientific paper UDC 551.4(267) https://doi.org/10.2298/GSGD2002001L Received: October 07, 2020 Corrected: November 27, 2020 Accepted: December 09, 2020 Polina Lemenkova1* * Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Department of Natural Disasters, Anthropogenic Hazards and Seismicity of the Earth, Laboratory of Regional Geophysics and Natural Disasters, Moscow, Russian Federation JAVA AND SUMATRA SEGMENTS OF THE SUNDA TRENCH: GEOMORPHOLOGY AND GEOPHYSICAL SETTINGS ANALYSED AND VISUALIZED BY GMT Abstract: The paper discusses the geomorphology of the Sunda Trench, an oceanic trench located in the eastern Indian Ocean along the Sumatra and Java Islands of the Indonesian archipelago.
    [Show full text]