Turing's Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Turing's Thesis Turing’s Thesis Solomon Feferman n the sole extended break from his life and var- ing in this way we can associate a sys- ied career in England, Alan Turing spent the tem of logic with any constructive or- years 1936–1938 doing graduate work at dinal. It may be asked whether such a Princeton University under the direction of sequence of logics of this kind is com- IAlonzo Church, the doyen of American logi- plete in the sense that to any problem cians. Those two years sufficed for him to complete A there corresponds an ordinal α such a thesis and obtain the Ph.D. The results of the the- that A is solvable by means of the logic sis were published in 1939 under the title “Systems Lα. of logic based on ordinals” [23]. That was the first Using an ingenious argument in pursuit of this systematic attempt to deal with the natural idea of aim, Turing obtained a striking yet equivocal par- overcoming the Gödelian incompleteness of formal tial completeness result that clearly called for fur- systems by iterating the adjunction of statements— ther investigation. But he did not continue that such as the consistency of the system—that “ought himself, and it would be some twenty years before to” have been accepted but were not derivable; in the line of research he inaugurated would be re- fact these kinds of iterations can be extended into newed by others. The paper itself received little at- the transfinite. As Turing put it beautifully in his tention in the interim, though it contained a num- introduction to [23]: ber of original and stimulating ideas and though Turing’s name had by then been well established The well-known theorem of Gödel through his earlier work on the concept of effec- (1931) shows that every system of logic tive computability. is in a certain sense incomplete, but at Here, in brief, is the story of what led Turing to the same time it indicates means Church, what was in his thesis, and what came whereby from a system L of logic a after, both for him and for the subject.1 more complete system L may be ob- tained. By repeating the process we get From Cambridge to Princeton a sequence L, L1 = L ,L2 = L1 … each As an undergraduate at King’s College, Cambridge, more complete than the preceding. A from 1931 to 1934, Turing was attracted to many logic Lω may then be constructed in parts of mathematics, including mathematical logic. which the provable theorems are the totality of theorems provable with the 1I have written about this at somewhat greater length in help of the logics L, L1,L2 , … Proceed- [10]; that material has also been incorporated as an in- troductory note to Turing’s 1939 paper in the volume, Solomon Feferman is emeritus professor of mathematics Mathematical Logic [25] of his collected works. In its bio- and philosophy at Stanford University. His email address graphical part I drew to a considerable extent on Andrew is [email protected]. Hodges’ superb biography, Alan Turing: The Enigma [16]. 1200 NOTICES OF THE AMS VOLUME 53, NUMBER 10 In 1935 Turing was elected a fellow of King’s Col- inference; since the functions to be defined can lege on the basis of a dissertation in probability the- occur on both sides of the equations, this consti- ory, On the Gaussian error function, which con- tutes a general form of recursion. Gödel explained tained his independent rediscovery of the central this in lectures on the incompleteness results dur- limit theorem. Earlier in that year he began to focus ing his visit to the Princeton Institute for Advanced on problems in logic through his attendance in a Study in 1934, lectures that were attended by course on that subject by the topologist M. H. A. Church and his students Stephen C. Kleene and (Max) Newman. One of the problems from New- J. Barkley Rosser. But Gödel regarded general re- man’s course that captured Turing’s attention was cursiveness only as a “heuristic principle” and was the Entscheidungsproblem, the question whether not himself willing to commit to that proposed there exists an effective method to decide, given analysis. Meanwhile Church had been exploring a any well-formed formula of the pure first-order different answer to the same question in terms of predicate calculus, whether or not it is valid in all his λ-calculus—a fragment of a quite general for- possible interpretations (equivalently, whether or malism for the foundation of mathematics, whose not its negation is satisfiable in some interpreta- fundamental notion is that of arbitrary functions tion). This had been solved in the affirmative for rather than arbitrary sets. The “λ” comes from certain special classes of formulas, but the general Church’s formalism according to which if t[x] is an problem was still open when Turing began grap- expression with one or more occurrences of a vari- pling with it. He became convinced that the answer able x, then λx.t[x] is supposed to denote a func- must be negative, but that in order to demonstrate tion f whose value f (s) for each s is the result, 3 the impossibility of a decision procedure, he would t[s/x], of substituting s for x throughout t. In the have to give an exact mathematical explanation of λ-calculus, function application of one expression what it means to be computable by a strictly me- t to another s as argument is written in the form chanical process. He arrived at such an analysis by ts. Combining these, we have the basic evaluation = mid-April 1936 via the idea of what has come to axiom: (λx.t[x])s t[s/x]. be called a Turing machine, namely an idealized Using a representation of the natural numbers computational device following a finite table of in- in the λ-calculus, a function f is said to be structions (in essence, a program) in discrete ef- λ-definable if there is an expression t such that for fective steps without limitation on time or space each pair of numerals n and m, tn evaluates out = that might be needed for a computation. Further- to m if and only if f (n) m. In conversations with more, he showed that even with such unlimited ca- Gödel, Church proposed λ-definability as the pacities, the answer to the general Entscheidungs- precise explanation of effective computability problem must be negative. Turing quickly prepared (“Church’s Thesis”), but in Gödel’s view that was a draft of his work entitled “On computable num- “thoroughly unsatisfactory”. It was only through a chain of equivalences that ended up with Turing’s bers, with an application to the Entscheidungs- analysis that Gödel later came to accept it, albeit problem”; Newman was at first skeptical of Turing’s indirectly. The first link in the chain was forged with analysis but then became convinced and encour- the proof by Church and Kleene that λ-definabil- aged its publication. ity is equivalent to general recursiveness. Thus Neither Newman nor Turing were aware at that when Church finally announced his “Thesis” in point that there were already two other proposals published form in 1936 [1], it was in terms of the under serious consideration for analyzing the gen- latter. In that paper, Church applied his thesis to eral concept of effective computability: one by demonstrate the effective unsolvability of various Gödel called general recursiveness, building on an mathematical and logical problems, including the idea of Herbrand, and the other by Church, in terms decision problem for sufficiently strong formal of what he called the λ-calculus.2 In answer to the systems. And then in his follow-up paper [2] sub- question, “Which functions of natural numbers are mitted April 15, 1936—just around the time Tur- effectively computable?”, the Herbrand-Gödel ap- ing was showing Newman his draft—Church proved proach was formulated in terms of finite systems the unsolvability of the Entscheidungsproblem for of equations from which the values of the functions logic. When news of this work reached Cambridge are to be deduced using some elementary rules of a month later, the initial reaction was great disap- pointment at being scooped, but it was agreed that 2The development of ideas about computability in this period by Herbrand, Gödel, Church, Turing, and Post has Turing’s analysis was sufficiently different to still been much written about and can only be touched on warrant publication. After submitting it for publi- here. For more detail I recommend the article by Kleene cation toward the end of May 1936, Turing tacked [17] and the articles by Hodges, Kleene, Gandy, and Davis in Part I of Herken’s collection [15], among others. One 3One must avoid the “collision” of free and bound vari- of the many good online sources with further links is ables in the process, i.e., no free variable z of s must end at http://plato.stanford.edu/entries/church- up within the scope of a “λz”; this can be done by renaming turing/, by B. J. Copeland. bound variables as necessary. NOVEMBER 2006 NOTICES OF THE AMS 1201 on an appendix in August of that year in which he visited 1935–36, but did not visit the States again sketched the proof of equivalence of computabil- until after the war. Kleene and Rosser had received ity by a machine in his sense with that of λ- their Ph.D.’s by the time Turing arrived and had left definability, thus forging the second link in the to take positions elsewhere.
Recommended publications
  • “The Church-Turing “Thesis” As a Special Corollary of Gödel's
    “The Church-Turing “Thesis” as a Special Corollary of Gödel’s Completeness Theorem,” in Computability: Turing, Gödel, Church, and Beyond, B. J. Copeland, C. Posy, and O. Shagrir (eds.), MIT Press (Cambridge), 2013, pp. 77-104. Saul A. Kripke This is the published version of the book chapter indicated above, which can be obtained from the publisher at https://mitpress.mit.edu/books/computability. It is reproduced here by permission of the publisher who holds the copyright. © The MIT Press The Church-Turing “ Thesis ” as a Special Corollary of G ö del ’ s 4 Completeness Theorem 1 Saul A. Kripke Traditionally, many writers, following Kleene (1952) , thought of the Church-Turing thesis as unprovable by its nature but having various strong arguments in its favor, including Turing ’ s analysis of human computation. More recently, the beauty, power, and obvious fundamental importance of this analysis — what Turing (1936) calls “ argument I ” — has led some writers to give an almost exclusive emphasis on this argument as the unique justification for the Church-Turing thesis. In this chapter I advocate an alternative justification, essentially presupposed by Turing himself in what he calls “ argument II. ” The idea is that computation is a special form of math- ematical deduction. Assuming the steps of the deduction can be stated in a first- order language, the Church-Turing thesis follows as a special case of G ö del ’ s completeness theorem (first-order algorithm theorem). I propose this idea as an alternative foundation for the Church-Turing thesis, both for human and machine computation. Clearly the relevant assumptions are justified for computations pres- ently known.
    [Show full text]
  • Unfolding of Systems of Inductive Definitions
    UNFOLDINGOFSYSTEMSOFINDUCTIVE DEFINITIONS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MATHEMATICS AND THE COMMITTEE OF GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FORTHEDEGREEOF DOCTOROFPHILOSOPHY Ulrik Torben Buchholtz December 2013 © 2013 by Ulrik Torben Buchholtz. All Rights Reserved This work is licensed under the Creative Commons Attribution 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/us/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. This dissertation is online at: http://purl.stanford.edu/kg627pm6592 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Solomon Feferman, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Grigori Mints, Co-Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Thomas Strahm Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost for Graduate Education An original signed hard copy of the signature page is on file in University Archives. iii iv ABSTRACT This thesis is a contribution to Solomon Feferman’s Unfolding Program which aims to provide a general method of capturing the operations on individuals and predicates (and the principles governing them) that are implicit in a formal axiomatic system based on open-ended schemata.
    [Show full text]
  • Notices of the American Mathematical Society
    June 18 and 19)- Page 341 Vl 0 ~ Mathematical Society Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet­ ing. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meeting announcement and the list of organizers of special sessions. MEETING ABSTRACT NUMBER DATE PLACE DEADLINE
    [Show full text]
  • Truth Definitions and Consistency Proofs
    TRUTH DEFINITIONS AND CONSISTENCY PROOFS BY HAO WANG 1. Introduction. From investigations by Carnap, Tarski, and others, we know that given a system S, we can construct in some stronger system S' a criterion of soundness (or validity) for 5 according to which all the theorems of 5 are sound. In this way we obtain in S' a consistency proof for 5. The consistency proof so obtained, which in no case with fairly strong systems could by any stretch of imagination be called constructive, is not of much interest for the purpose of understanding more clearly whether the system S is reliable or whether and why it leads to no contradictions. However, it can be of use in studying the interconnection and relative strength of different systems. For example, if a consistency proof for 5 can be formalized in S', then, according to Gödel's theorem that such a proof cannot be formalized in 5 itself, parts of the argument must be such that they can be formalized in S' but not in S. Since S can be a very strong system, there arises the ques- tion as to what these arguments could be like. For illustration, the exact form of such arguments will be examined with respect to certain special systems, by applying Tarski's "theory of truth" which provides us with a general method for proving the consistency of a given system 5 in some stronger system S'. It should be clear that the considerations to be presented in this paper apply to other systems which are stronger than or as strong as the special systems we use below.
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • First-Order Logic
    Chapter 5 First-Order Logic 5.1 INTRODUCTION In propositional logic, it is not possible to express assertions about elements of a structure. The weak expressive power of propositional logic accounts for its relative mathematical simplicity, but it is a very severe limitation, and it is desirable to have more expressive logics. First-order logic is a considerably richer logic than propositional logic, but yet enjoys many nice mathemati- cal properties. In particular, there are finitary proof systems complete with respect to the semantics. In first-order logic, assertions about elements of structures can be ex- pressed. Technically, this is achieved by allowing the propositional symbols to have arguments ranging over elements of structures. For convenience, we also allow symbols denoting functions and constants. Our study of first-order logic will parallel the study of propositional logic conducted in Chapter 3. First, the syntax of first-order logic will be defined. The syntax is given by an inductive definition. Next, the semantics of first- order logic will be given. For this, it will be necessary to define the notion of a structure, which is essentially the concept of an algebra defined in Section 2.4, and the notion of satisfaction. Given a structure M and a formula A, for any assignment s of values in M to the variables (in A), we shall define the satisfaction relation |=, so that M |= A[s] 146 5.2 FIRST-ORDER LANGUAGES 147 expresses the fact that the assignment s satisfies the formula A in M. The satisfaction relation |= is defined recursively on the set of formulae.
    [Show full text]
  • Proof Theory Synthese Library
    PROOF THEORY SYNTHESE LIBRARY STUDIES IN EPISTEMOLOGY, LOGIC, METHODOLOGY, AND PHILOSOPHY OF SCIENCE Managing Editor: JAAKKO HINTIKKA, Boston University Editors: DIRK VAN DALEN, University of Utrecht, The Netherlands DONALD DAVIDSON, University of California, Berkeley THEO A.F. KUIPERS, University of Groningen, The Netherlands PATRICK SUPPES, Stanford University, California JAN WOLENSKI, iagiellonian University, Krakow, Poland VOLUME 292 PROOF THEORY History and Philosophical Significance Edited by VINCENT F. HENDRICKS University of Copenhagen. Denmark STIG ANDUR PEDERSEN and KLAUS FROVIN J0RGENSEN University of Roskilde, Denmark SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. A c.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-5553-8 ISBN 978-94-017-2796-9 (eBook) DOI 10.1007/978-94-017-2796-9 Printed on acid-free paper All Rights Reserved © 2000 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2000 Softcover reprint of the hardcover 1st edition 2000 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. CONTENTS Preface ................................................................. ix Contributing Authors ................................................. , xi HENDRICKS, PEDERSEN AND J0RGENSEN / Introduction .......... 1 PART 1. REVIEW OF PROOF THEORY SOLOMON FEFERMAN / Highlights in Proof Theory ................ , 11 1. Review of Hilbert's Program and Finitary Proof Theory ......... , 11 2. Results of Finitary Proof Theory via Gentzen's L-Calculi ......... 14 3. Shifting Paradigms .............................................. 21 4. Countably Infinitary Methods (Getting the Most Out of Logic) ..
    [Show full text]
  • The History of Logic
    c Peter King & Stewart Shapiro, The Oxford Companion to Philosophy (OUP 1995), 496–500. THE HISTORY OF LOGIC Aristotle was the first thinker to devise a logical system. He drew upon the emphasis on universal definition found in Socrates, the use of reductio ad absurdum in Zeno of Elea, claims about propositional structure and nega- tion in Parmenides and Plato, and the body of argumentative techniques found in legal reasoning and geometrical proof. Yet the theory presented in Aristotle’s five treatises known as the Organon—the Categories, the De interpretatione, the Prior Analytics, the Posterior Analytics, and the Sophistical Refutations—goes far beyond any of these. Aristotle holds that a proposition is a complex involving two terms, a subject and a predicate, each of which is represented grammatically with a noun. The logical form of a proposition is determined by its quantity (uni- versal or particular) and by its quality (affirmative or negative). Aristotle investigates the relation between two propositions containing the same terms in his theories of opposition and conversion. The former describes relations of contradictoriness and contrariety, the latter equipollences and entailments. The analysis of logical form, opposition, and conversion are combined in syllogistic, Aristotle’s greatest invention in logic. A syllogism consists of three propositions. The first two, the premisses, share exactly one term, and they logically entail the third proposition, the conclusion, which contains the two non-shared terms of the premisses. The term common to the two premisses may occur as subject in one and predicate in the other (called the ‘first figure’), predicate in both (‘second figure’), or subject in both (‘third figure’).
    [Show full text]
  • Critique of the Church-Turing Theorem
    CRITIQUE OF THE CHURCH-TURING THEOREM TIMM LAMPERT Humboldt University Berlin, Unter den Linden 6, D-10099 Berlin e-mail address: lampertt@staff.hu-berlin.de Abstract. This paper first criticizes Church's and Turing's proofs of the undecidability of FOL. It identifies assumptions of Church's and Turing's proofs to be rejected, justifies their rejection and argues for a new discussion of the decision problem. Contents 1. Introduction 1 2. Critique of Church's Proof 2 2.1. Church's Proof 2 2.2. Consistency of Q 6 2.3. Church's Thesis 7 2.4. The Problem of Translation 9 3. Critique of Turing's Proof 19 References 22 1. Introduction First-order logic without names, functions or identity (FOL) is the simplest first-order language to which the Church-Turing theorem applies. I have implemented a decision procedure, the FOL-Decider, that is designed to refute this theorem. The implemented decision procedure requires the application of nothing but well-known rules of FOL. No assumption is made that extends beyond equivalence transformation within FOL. In this respect, the decision procedure is independent of any controversy regarding foundational matters. However, this paper explains why it is reasonable to work out such a decision procedure despite the fact that the Church-Turing theorem is widely acknowledged. It provides a cri- tique of modern versions of Church's and Turing's proofs. I identify the assumption of each proof that I question, and I explain why I question it. I also identify many assumptions that I do not question to clarify where exactly my reasoning deviates and to show that my critique is not born from philosophical scepticism.
    [Show full text]
  • Axiomatic Foundations of Mathematics Ryan Melton Dr
    Axiomatic Foundations of Mathematics Ryan Melton Dr. Clint Richardson, Faculty Advisor Stephen F. Austin State University As Bertrand Russell once said, Gödel's Method Pure mathematics is the subject in which we Consider the expression First, Gödel assigned a unique natural number to do not know what we are talking about, or each of the logical symbols and numbers. 2 + 3 = 5 whether what we are saying is true. Russell’s statement begs from us one major This expression is mathematical; it belongs to the field For example: if the symbol '0' corresponds to we call arithmetic and is composed of basic arithmetic question: the natural number 1, '+' to 2, and '=' to 3, then symbols. '0 = 0' '0 + 0 = 0' What is Mathematics founded on? On the other hand, the sentence and '2 + 3 = 5' is an arithmetical formula. 1 3 1 1 2 1 3 1 so each expression corresponds to a sequence. Axioms and Axiom Systems is metamathematical; it is constructed outside of mathematics and labels the expression above as a Then, for this new sequence x1x2x3…xn of formula in arithmetic. An axiom is a belief taken without proof, and positive integers, we associate a Gödel number thus an axiom system is a set of beliefs as follows: x1 x2 x3 xn taken without proof. enc( x1x2x3...xn ) = 2 3 5 ... pn Since Principia Mathematica was such a bold where the encoding is the product of n factors, Consistent? Complete? leap in the right direction--although proving each of which is found by raising the j-th prime nothing about consistency--several attempts at to the xj power.
    [Show full text]
  • Consistency, Contradiction and Negation. Logic, Epistemology, and the Unity of Science Series
    BOOK REVIEW: CARNIELLI, W., CONIGLIO, M. Paraconsistent Logic: Consistency, Contradiction and Negation. Logic, Epistemology, and the Unity of Science Series. (New York: Springer, 2016. ISSN: 2214-9775.) Henrique Antunes Vincenzo Ciccarelli State University of Campinas State University of Campinas Department of Philosophy Department of Philosophy Campinas, SP Campinas, SP Brazil Brazil [email protected] [email protected] Article info CDD: 160 Received: 01.12.2017; Accepted: 30.12.2017 DOI: http://dx.doi.org/10.1590/0100-6045.2018.V41N2.HV Keywords: Paraconsistent Logic LFIs ABSTRACT Review of the book 'Paraconsistent Logic: Consistency, Contradiction and Negation' (2016), by Walter Carnielli and Marcelo Coniglio The principle of explosion (also known as ex contradictione sequitur quodlibet) states that a pair of contradictory formulas entails any formula whatsoever of the relevant language and, accordingly, any theory regimented on the basis of a logic for which this principle holds (such as classical and intuitionistic logic) will turn out to be trivial if it contains a pair of theorems of the form A and ¬A (where ¬ is a negation operator). A logic is paraconsistent if it rejects the principle of explosion, allowing thus for the possibility of contradictory and yet non-trivial theories. Among the several paraconsistent logics that have been proposed in the literature, there is a particular family of (propositional and quantified) systems known as Logics of Formal Inconsistency (LFIs), developed and thoroughly studied Manuscrito – Rev. Int. Fil. Campinas, v. 41, n. 2, pp. 111-122, abr.-jun. 2018. Henrique Antunes & Vincenzo Ciccarelli 112 within the Brazilian tradition on paraconsistency. A distinguishing feature of the LFIs is that although they reject the general validity of the principle of explosion, as all other paraconsistent logics do, they admit a a restrcited version of it known as principle of gentle explosion.
    [Show full text]
  • Warren Goldfarb, Notes on Metamathematics
    Notes on Metamathematics Warren Goldfarb W.B. Pearson Professor of Modern Mathematics and Mathematical Logic Department of Philosophy Harvard University DRAFT: January 1, 2018 In Memory of Burton Dreben (1927{1999), whose spirited teaching on G¨odeliantopics provided the original inspiration for these Notes. Contents 1 Axiomatics 1 1.1 Formal languages . 1 1.2 Axioms and rules of inference . 5 1.3 Natural numbers: the successor function . 9 1.4 General notions . 13 1.5 Peano Arithmetic. 15 1.6 Basic laws of arithmetic . 18 2 G¨odel'sProof 23 2.1 G¨odelnumbering . 23 2.2 Primitive recursive functions and relations . 25 2.3 Arithmetization of syntax . 30 2.4 Numeralwise representability . 35 2.5 Proof of incompleteness . 37 2.6 `I am not derivable' . 40 3 Formalized Metamathematics 43 3.1 The Fixed Point Lemma . 43 3.2 G¨odel'sSecond Incompleteness Theorem . 47 3.3 The First Incompleteness Theorem Sharpened . 52 3.4 L¨ob'sTheorem . 55 4 Formalizing Primitive Recursion 59 4.1 ∆0,Σ1, and Π1 formulas . 59 4.2 Σ1-completeness and Σ1-soundness . 61 4.3 Proof of Representability . 63 3 5 Formalized Semantics 69 5.1 Tarski's Theorem . 69 5.2 Defining truth for LPA .......................... 72 5.3 Uses of the truth-definition . 74 5.4 Second-order Arithmetic . 76 5.5 Partial truth predicates . 79 5.6 Truth for other languages . 81 6 Computability 85 6.1 Computability . 85 6.2 Recursive and partial recursive functions . 87 6.3 The Normal Form Theorem and the Halting Problem . 91 6.4 Turing Machines .
    [Show full text]