The Gogebic Iron Range—A Sample of the Northern Margin of the Penokean Fold and Thrust Belt

Total Page:16

File Type:pdf, Size:1020Kb

The Gogebic Iron Range—A Sample of the Northern Margin of the Penokean Fold and Thrust Belt The Gogebic Iron Range—A Sample of the Northern Margin of the Penokean Fold and Thrust Belt Professional Paper 1730 U.S. Department of the Interior U.S. Geological Survey Cover: Ironwood Iron-Formation from Vicar Mine near Wakefield, Mich. This section shows red granular jasper interbedded with specular hematite and magnetite. Scale is approximately 1:1. The Gogebic Iron Range—A Sample of the Northern Margin of the Penokean Fold and Thrust Belt By William F. Cannon, Gene L. LaBerge, John S. Klasner, and Klaus J. Schulz Professional Paper 1730 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Cannon, W.F., LaBerge, G.L., Klasner, J.S., and Schulz, K.J. 2007, The Gogebic iron range—a sample of the northern margin of the Penokean fold and thrust belt: U.S. Geological Survey Professional Paper 1730, 44 p. Library of Congress Cataloging-in-Publication Data The Gogebic iron range : a sample of the northern margin of the Penokean fold and thrust belt / by William F. Cannon . [et al.]. p. cm. -- (Professional paper ; 1730) Includes bibliographical references. ISBN-13 : 978-1-4113-1917-2 1. Geology, Stratigraphic--Proterozoic. 2. Geology--Gogebic Range Region (Mich. and Wis.) 3. Folds (Geology)--Gogebic Range Region (Mich. and Wis.) 4. Orogenic belts--Gogebic Range Region (Mich. and Wis.) I. Cannon, William F. QE653.5.G65 2007 557.74--dc22 2007029280 iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................2 General Geology.............................................................................................................................................4 Neoarchean Rocks ...............................................................................................................................4 Paleoproterozoic Rocks .......................................................................................................................4 Chocolay Group ............................................................................................................................6 Sunday Quartzite .................................................................................................................6 Bad River Dolomite .............................................................................................................6 Menominee Group .......................................................................................................................8 Palms Formation .................................................................................................................8 Ironwood Iron-Formation ..................................................................................................8 Relation between the Ironwood Iron-Formation and the Emperor Volcanic Complex ...........................................................................9 Stratigraphic Relations in the Menominee Group and Emperor Volcanic Complex ................................................................................10 Baraga Group .............................................................................................................................11 Copps Formation ...............................................................................................................12 Tyler Formation ..................................................................................................................12 Pabst Member ...................................................................................................................12 Age and Correlation of the Marquette Range Supergroup ................................................13 Stratigraphic Correlations within the Marquette Range Supergroup .....................13 Absolute Age of the Marquette Range Supergroup ...................................................14 Paleoproterozoic Intrusive Rocks ...........................................................................................15 Mesoproterozoic Rocks .....................................................................................................................19 Structural Geology .......................................................................................................................................19 Mesoproterozoic Structures .............................................................................................................19 Atkins Lake-Marenisco Fault ...................................................................................................21 Paleoproterozoic Structures .............................................................................................................22 Central Gogebic Iron Range .....................................................................................................23 Eastern Gogebic Iron Range ....................................................................................................24 Extensional Phase ............................................................................................................24 Contractional Phase .........................................................................................................25 Summary of Eastern Gogebic Iron Range Structure ..................................................27 Western Gogebic Iron Range ..................................................................................................27 Economic Geology .......................................................................................................................................31 Natural Iron Ores ................................................................................................................................31 Taconite ................................................................................................................................................33 Synopsis ........................................................................................................................................................34 Sedimentation of the Marquette Range Supergroup ...................................................................34 Environmental Setting of Deposition ......................................................................................34 Chocolay Group .................................................................................................................34 Menominee Group ............................................................................................................34 Baraga Group ....................................................................................................................35 iv Tectonic Setting of Deposition .................................................................................................35 Chocolay Group .................................................................................................................35 Menominee Group ............................................................................................................35 Baraga Group ....................................................................................................................36 Volcanism ...........................................................................................................................36 Penokean Deformation ......................................................................................................................38 Acknowledgments .......................................................................................................................................40 References Cited..........................................................................................................................................40 Plates (In pocket) 1. Geologic maps of the Gogebic iron range. Figures 1. Generalized geologic map of the upper Great Lakes region, U.S. and Canada .................3 2. Schematic stratigraphic section along approximately 150 km of the Gogebic iron range .......................................................................................................................................5 3. Geologic map of part of the eastern Gogebic Range .............................................................7 3–4. Photographs showing 4. Stromatolites in Bad River Dolomite.................................................................................8 5. Examples of typical rocks types of the Emperor Volcanic Complex. .......................10
Recommended publications
  • National Forests in Michigan
    OriqiMI from Digitized by Go gle UNIVERSITY OF MICHIGAN NATIONAL FORESTS IN MICHIGAN UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE NORTH CENTRAL REGION • MILWAUKEE, WIS. ON THE COVER. —Great Conglomerate Falls on the Black River. p-3e«M ERRATA Page Line 5 3 97,000,000 should be 45,000,000. 7 4 Porcupine should not be listed vvilh fur bearers. 17 7 Si.o'jld read "the red pine by its ClUoLC"G Cf t»Vj". 44 2-3 Should read "4 rniies east of Munising". UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1941 sEr^ •*«$• . AU TRAIN FALLS ON THE HIAWATHA NATIONAL FOREST. Drama of Michigan Forests DRAMA of the forests of Michigan has been written in several acts THEeach with its colorful pageantry. The action has concerned the magni ficent woodlands of the redman, the rapid depletion of those forests in the last century, and their slow but sure rebuilding in the present. The elusive "northwest passage" to China, Indian furs and Indian souls, iron and land and copper brought the white men to Michigan. In 1621, only 1 year after the Pilgrims landed at Plymouth Rock, young Etienne Brule, protege of Champlain, reached Lake Superior and was disappointed to find its waters fresh. Thirteen years later, Jean Nicolet, another protege of the French governor of Canada, entered the unknown Lake Michigan through the Straits of Mackinac. Though he never found the longed-for route to the Orient, Nicolet did initiate the French fur trade with the Indians in this territory. Heroic followers of Brule and Nicolet were the Jesuit fathers Jogues and Raymbault, who preached to the Ojibwas in 1641 at Sault Ste.
    [Show full text]
  • Tectonic Imbrication and Foredeep Development in the Penokean
    Tectonic Imbrication and Foredeep Development in the Penokean Orogen, East-Central Minnesota An Interpretation Based on Regional Geophysics and the Results of Test-Drilling The Penokean Orogeny in Minnesota and Upper Michigan A Comparison of Structural Geology U.S. GEOLOGICAL SURVEY BULLETIN 1904-C, D AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur­ rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur­ vey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month­ ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in­ Books of the U.S.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Gogebic Range Escapes Heavy Snowstorm
    Snow possible High: 15 | Low: -2 | Details, page 2 Passion for excellence. Compassion for people. aspirusgrandview.org GV-013a DAILY GLOBE yourdailyglobe.com Thursday, December 5, 2013 75 cents Gogebic Range M O U N T Z I O N School escapes heavy consolidation snowstorm efforts continue The three-day snowstorm n W-M, Bessemer that pounded much of Minnesota residents gather hadn’t arrived on the Gogebic signatures for Range in full force as of Wednes- day afternoon. petition Although Hurley and Iron- wood school officials called off By KATIE PERTTUNEN classes at 1 p.m. on Wednesday, [email protected] the snow stopped in Ironwood BESSEMER — Petitioners around the same time and it was have until Jan. 23 to collect 112 lightly raining after that in 30- signatures from Wakefield- degree temperatures. Marenisco School District resi- The National Weather Service dents, and 140 signatures from in Duluth said as of 2 p.m. Bessemer School District resi- Wednesday, 39 inches of snow dents, Gerry Pelissero, Gogebic had fallen in Two Harbors, County Clerk said. Minn. That was the total since Proposed language for the Monday. ballot circulating on petitions Duluth had received around reads “Shall the territory of the 18 inches. following school districts; Besse- Meanwhile, Gile, Wis., had mer and Wakefield-Marenisco, received only 6.5 inches. form one school district?” Pelis- Superior recorded 12 inches sero said. and Ashland 9 inches. Pelissero said he drafted the A winter weather advisory for language due to a request from the Ironwood area remained in Michael Korpela, an attorney.
    [Show full text]
  • Detrital Zircon Provenance and Lithofacies Associations Of
    geosciences Article Detrital Zircon Provenance and Lithofacies Associations of Montmorillonitic Sands in the Maastrichtian Ripley Formation: Implications for Mississippi Embayment Paleodrainage Patterns and Paleogeography Jennifer N. Gifford 1,*, Elizabeth J. Vitale 1, Brian F. Platt 1 , David H. Malone 2 and Inoka H. Widanagamage 1 1 Department of Geology and Geological Engineering, University of Mississippi, Oxford, MS 38677, USA; [email protected] (E.J.V.); [email protected] (B.F.P.); [email protected] (I.H.W.) 2 Department of Geography, Geology, and the Environment, Illinois State University, Normal, IL 61790, USA; [email protected] * Correspondence: jngiff[email protected]; Tel.: +1-(662)-915-2079 Received: 17 January 2020; Accepted: 15 February 2020; Published: 22 February 2020 Abstract: We provide new detrital zircon evidence to support a Maastrichtian age for the establishment of the present-day Mississippi River drainage system. Fieldwork conducted in Pontotoc County,Mississippi, targeted two sites containing montmorillonitic sand in the Maastrichtian Ripley Formation. U-Pb detrital zircon (DZ) ages from these sands (n = 649) ranged from Mesoarchean (~2870 Ma) to Pennsylvanian (~305 Ma) and contained ~91% Appalachian-derived grains, including Appalachian–Ouachita, Gondwanan Terranes, and Grenville source terranes. Other minor source regions include the Mid-Continent Granite–Rhyolite Province, Yavapai–Mazatzal, Trans-Hudson/Penokean, and Superior. This indicates that sediment sourced from the Appalachian Foreland Basin (with very minor input from a northern or northwestern source) was being routed through the Mississippi Embayment (MSE) in the Maastrichtian. We recognize six lithofacies in the field areas interpreted as barrier island to shelf environments. Statistically significant differences between DZ populations and clay mineralogy from both sites indicate that two distinct fluvial systems emptied into a shared back-barrier setting, which experienced volcanic ash input.
    [Show full text]
  • The Geology of the Middle Precambrian Rove Formation in Northeastern Minnesota
    MINNESOTA GEOLOGICAL SURVEY 5 P -7 Special Publication Series The Geology of the Middle Precambrian Rove Formation in northeastern Minnesota G. B. Morey UNIVERSITY OF MINNESOTA MINNEAPOLIS • 1969 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I THE GEOLOGY OF THE MIDDLE PRECAMBRIAN ROVE FORMATION IN NORTHEASTERN MINNESOTA by G. B. Morey CONTENTS Page Abstract ........................................... 1 Introduction. 3 Location and scope of study. 3 Acknowledgements .. 3 Regional geology . 5 Structural geology . 8 Rock nomenclature . 8 Stratigraphy . .. 11 Introduction . .. 11 Nomenclature and correlation. .. 11 Type section . .. 11 Thickness . .. .. 14 Lower argillite unit. .. 16 Definition, distribution, and thickness. .. 16 Lithologic character . .. 16 Limestones. .. 17 Concretions. .. 17 Transition unit . .. 17 Definition, distribution, and thickness. .. 17 Lithologic character . .. 19 Thin-bedded graywacke unit . .. 19 Definition, distribution, and thickness. .. 19 Lithologic character. .. 20 Concretions ... .. 20 Sedimentary structures. .. 22 Internal bedding structures. .. 22 Structureless bedding . .. 23 Laminated bedding . .. 23 Graded bedding. .. 23 Cross-bedding . .. 25 Convolute bedding. .. 26 Internal bedding sequences . .. 26 Post-deposition soft sediment deformation structures. .. 27 Bed pull-aparts . .. 27 Clastic dikes . .. 27 Load pockets .. .. 28 Flame structures . .. 28 Overfolds . .. 28 Microfaults. .. 28 Ripple marks .................................. 28 Sole marks . .. 28 Groove casts . .. 30 Flute casts .
    [Show full text]
  • Northshore Mining Fact Sheet
    CLEVELAND-CLIFFS INC. NORTHSHORE MINING FACT SHEET Northshore Mining (NSM), which originally operated as Reserve Mining Company, was the first taconite processing facility in North America when it opened in 1956. It was purchased by Cyprus Minerals in 1989, and Cleveland-Cliffs became the sole owner of the property in 1994. Northshore Mining’s Peter Mitchell Mine is located in Babbitt and the taconite is transported 47 miles by rail to the processing facility in Silver Bay, near Lake Superior. Northshore operations consist of an open pit truck Operational Statistics and shovel mine where two stages of crushing occur before the ore is transported along a wholly owned rail • Type of Ore: Magnetite line to the plant site in Silver Bay. At the plant site, two additional stages of crushing occur before the ore is • 2018 Pellet Production: 5.6 million gross tons sent to the concentrator. The concentrator utilizes rod mills, ball mills and magnetic separation to produce a • Annual Rated Capacity (includes concentrate): magnetite concentrate, which is delivered to the pellet 6.0 million tons plant located on-site. The plant site has its own ship loading port located on Lake Superior. In 2018, Cliffs began a capital upgrade to produce Annual Economic Impact low silica DR-grade pellets on a commercial scale. Throughout the construction project, management has • Workforce: 529 employees maintained production of its standard iron ore pellets for its blast furnace customers. The upgrade project is • Payroll (including benefits) $85 million expected to be completed in mid-2019. While overall production capacity at the processing facility will remain • Local services/supplies purchased: $200 million the same, Northshore will be able to produce up to 3.5 • Minnesota, local & taconite taxes: $16 million million long tons of DR-grade pellets.
    [Show full text]
  • Cleveland-Cliffs Inc Cleveland-Cliffs 1100 Superior Avenue 2004 Annual Report Cleveland, OH 44114-2589 Cleveland-Cliffs Inc Cleveland-Cliffs
    Cleveland-Cliffs Inc Cleveland-Cliffs 1100 Superior Avenue 2004 Annual Report Cleveland, OH 44114-2589 www.cleveland-cliffs.com Cleveland-Cliffs Inc • 2004 Annual Report Company Profile Cleveland-Cliffs Inc DIRECTORS Cleveland-Cliffs Inc, headquartered in Cleveland, Ohio, is the largest producer of iron OFFICERS Director ore pellets in North America and sells the majority of its pellets to integrated steel Years With Since Company companies in the United States and Canada. The Company operates six iron 1997 John S. Brinzo (6) ore mines located in Michigan, Minnesota and Eastern Canada. 35 John S. Brinzo, 63 Chairman, President and Chief Executive Offi cer Chairman, President and Chief Executive Offi cer of the Company 1996 Ronald C. Cambre (2,4,6) Cliffs is in its 158th year of service to the steel industry. 4 David H. Gunning, 62 Former Chairman and Chief Executive Offi cer Vice Chairman Newmont Mining Corporation International mining company 32 William R. Calfee, 58 Executive Vice President-Commercial 1999 Ranko Cucuz (2,4,5) Former Chairman and Chief Executive Offi cer 23 Donald J. Gallagher, 52 Hayes Lemmerz International, Inc. Senior Vice President, International supplier of wheels to the auto industry Chief Financial Offi cer and Treasurer 2001 David H. Gunning (6) 4 Randy L. Kummer, 48 Vice Chairman of the Company CORE VALUES Senior Vice President-Human Resources 1986 James D. Ireland, III (1,3,5,6) 32 James A. Trethewey, 60 Managing Director Senior Vice President-Business Development Capital One Partners, Inc. Private equity investment fi rm SAFE PRODUCTION record production with: lack of injuries...good housekeeping and 25 Dana W.
    [Show full text]
  • 2013 Minnesota Mining Tax Guide
    Mining Tax Guide SS J. A. Campbell in Taconite Harbor, ca. 1957-1964 (2005.0038.3318), Minnesota State Representative Fred A. Cina Papers, Iron Range Research Center, Chisholm, MN November 2013 2013 Distribution of Taconite Production Tax (2012 Production Year) Total Taconite Production Tax $102,633,021* Production tax is $2.465 per taxable ton. The average taxable tonnage was 38,310,339 tons. * Includes $8,428,275 from the State General Fund (22.0 cpt) cpt = cents per taxable ton Property tax Cities and townships School districts Counties IRRRB Other relief and misc. $13,893,864 $15,799,889 $14,270,998 $29,729,364 $16,493,071 $12,445,835 32.5 cpt 36.3 cpt 41.2 cpt 37.2 cpt 43.1 cpt 77.6 cpt City and Township Taconite School Regular IRRRB Fund** Taconite Economic Mining & Conc $0.0343 Fund** County Fund** Taconite Property $3,636,468 Development Fund Fund** $1,566,247 $9,000,065 Tax Relief $1,666,971 9.5 cpt $12,231,412 $2,066,752 4.1 cpt*** 23.5 cpt 31.9 cpt 5.4 cpt 4.4 cpt Regular School County Road and IRRRB $.1572 Fund** Bridge Fund** Fixed Fund Range Association Township Fund $6,908,326 $4,486,556 Public Works $1,252,520 of Municipalities & $1,223,128 18.0 cpt*** 11.7 cpt Projects 3.2 cpt Schools** 3.2 cpt $14,826,100 $137,802 Taconite Taconite 38.7 cpt Iron Range Higher Education Acct. 0.4 cpt Taconite railroad railroad $1,915,517 5.0 cpt Municipal Aid** $1,106,935 $784,377 2.0 cpt $6,355,475 2.9 cpt *** Producer Grant Hockey 16.6 cpt & Loan Fund Hall of Fame Building $3,176,600 $76,621 Maintenance Fund 8.3 cpt 0.2 cpt Taconite railroad $1,506,072 $591,142 3.9 cpt IRR Educational 1.5 cpt Revenue Bonds Taconite $1,411,925 Referendum** 3.7 cpt Mining effects** $3,091,236 $1,758,238 8.1 cpt Taconite Env.
    [Show full text]
  • Glimpses of Early Dickinson County
    GLIMPSES OF EARLY DICKINSON COUNTY by William J. Cummings March, 2004 Evolution of Michigan from Northwest Territory to Statehood From 1787 to 1800 the lands now comprising Michigan were a part of the Northwest Territory. From 1800 to 1803 half of what is now the Lower Peninsula of Michigan and all of the Upper Peninsula were part of Indiana Territory. From 1803 to 1805 what is now Michigan was again part of the Northwest Territory which was smaller due to Ohio achieving statehood on March 1, 1803. From 1805 to 1836 Michigan Territory consisted of the Lower Peninsula and a small portion of the eastern Upper Peninsula. In 1836 the lands comprising the remainder of the Upper Peninsula were given to Michigan in exchange for the Toledo Strip. Michigan Territory Map, 1822 This map of Michigan Territory appeared in A Complete Historical, Chronological and Geographical American Atlas published by H.S. Carey and I. Lea in Philadelphia in 1822. Note the lack of detail in the northern Lower Peninsula and the Upper Peninsula which were largely unexplored and inhabited by Native Americans at this time. Wiskonsan and Iowa, 1838 Michigan and Wiskonsan, 1840 EXTRA! EXTRA! READ ALL ABOUT IT! VULCAN – A number of Indians – men, women and children – came into town Wednesday last from Bad Water [sic] for the purpose of selling berries, furs, etc., having with them a lot of regular Indian ponies. They make a novel picture as they go along one after the other, looking more like Indians we read about than those usually seen in civilization, and are always looked upon in wonderment by strangers, though it has long since lost its novelty to the residents here.
    [Show full text]
  • ! 1! ! ! FINAL REPORT to the LEGISLATURE MINNESOTA TACONITE WORKERS HEALTH STUDY DATE: November 24, 2014 TO: FROM: COPIES
    ! ! FINAL REPORT TO THE LEGISLATURE MINNESOTA TACONITE WORKERS HEALTH STUDY DATE: November 24, 2014 TO: Sen. David Tomassoni, chair Senate Jobs and Economic Growth Committee 317 Capitol Sen. Tony Lourey, chair Senate Health and Human Services Finance Division 120 Capitol Sen. Kathy Sheran, chair Senate Health, Human Services and Housing Committee 120 Capitol Rep. Tim Mahoney, chair House Jobs and Economic Development Finance & Policy Committee 591 State Office Building Rep. Sheldon Johnson, chair House Labor, Workplace and Regulated Industries 549 State Office Building Rep. Tom Huntley, chair Health and Human Services Finance Committee 585 State Office Building Rep. Tina Liebling, chair House Health and Human Services Policy Committee 367 State Office Building FROM: John R. Finnegan, Jr., dean and professor (E-mail: [email protected]; Phone: 612 625 1179) Jeffrey Mandel, associate professor, principal investigator (E-mail: [email protected]; Phone: 612 626 9308) COPIES: Iron Range Legislative Delegation Rep. David Dill Rep. Mary Murphy Sen. Tom Bakk Rep. John Persell Rep. Tom Anzelc Sen. Tom Saxhaug Rep. Carly Melin Rep. Jason Metsa 1! ! ! November 24, 2014 Dear Legislators: We are pleased to present the final report on our research regarding the health status of taconite workers. This report covers the assessments made by the University of Minnesota School of Public Health (SPH). The Natural Resources Research Institute will be submitting a separate report on the environmental characterization work that they have been doing. This report contains the SPH’s efforts in occupational exposure, mortality and cancer incidence, case-control studies and the respiratory health survey of taconite workers and spouses.
    [Show full text]
  • 2013 Ontonagon, Presque Isle, Black, and Montreal River Watersheds
    MI/DEQ/WRD-13/014MI/DEQ/WRD-15/024 MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY WATER RESOURCES DIVISION JULY 2015 STAFF REPORT A BIOLOGICAL SURVEY OF THE ONTONAGON, PRESQUE ISLE, BLACK, AND MONTREAL RIVERS WATERSHEDS AND OTHER SELECTED WATERSHEDS IN GOGEBIC, HOUGHTON, IRON, AND ONTONAGON COUNTIES, MICHIGAN JULY-AUGUST 2013 INTRODUCTION Staff of the Michigan Department of Environmental Quality (MDEQ), Surface Water Assessment Section (SWAS), conducted biological, chemical, and physical habitat surveys during the summer of 2013 throughout the Ontonagon (Hydrologic Unit Code [HUC] 04020102), Presque Isle (HUC 04020101), Black (HUC 04020101), and Montreal (HUC 04010302) (OPBM) Rivers watersheds. Additionally, some streams located in smaller western Lake Superior coastal watersheds were surveyed (Figure 1). The goals of this monitoring were to: (1) assess the current status and condition of individual water bodies and determine whether Michigan Water Quality Standards (WQS) are being met; (2) evaluate biological integrity temporal trends; (3) satisfy monitoring requests submitted by external and internal customers; and (4) identify potential nonpoint source (NPS) pollution problems. These surveys qualitatively characterized the biotic integrity of macroinvertebrate communities with respect to existing habitat conditions at randomly selected sites throughout the OPBM watersheds region. The results of the surveys are used by the SWAS’s Status and Trends Program to estimate the amount of these watersheds that is supporting the other indigenous aquatic life and wildlife designated use component of R 323.1100(1)(e) of the Part 4 rules, WQS, promulgated under Part 31, Water Resources Protection, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended. BACKGROUND AND HISTORICAL SAMPLING EFFORTS The OPBM watersheds are located in the extreme west end of Michigan’s Upper Peninsula.
    [Show full text]