Empowering the Local Voice in a Graphical Representation of New Zealand’S Biological Heritage (Flora & Fauna)

Total Page:16

File Type:pdf, Size:1020Kb

Empowering the Local Voice in a Graphical Representation of New Zealand’S Biological Heritage (Flora & Fauna) Empowering the Local Voice in a Graphical Representation of New Zealand’s Biological Heritage (Flora & Fauna) Miss Jodanne Aitken1, Mr Marcus Shadbolt1, Mr James Doherty2, Docter James Ataria1,3, Mrs Melanie Mark-Shadbolt3 1Lincoln University, Lincoln, New Zealand, 28 Bailey Cres, Kaingaroa Forest, New Zealand, 3Te Tira Whakamātaki (https://ttw.co.nz/index.php/home/), , Mātauranga Māori and Shaping Ecological Futures Symposium, Stewart Theatre 2, December 2, 2019, 3:15 PM - 5:15 PM Biography: I am in my third year of a Bachelor of Science majoring in Conservation and Ecology and an additional major in Environmental Management at Lincoln University. I aspire to be involved in an organization or group of people that work together to help research, protect, share and conserve the natural environment so that generations to come can experience its beauty. Abstract: The decline of iwi dialects and terms for localised fauna and flora also risks losing associated mātauranga for these species. This research project was co-created with a kaumatua (elder) from the Tuhoe-Tuawhenua region who was concerned at the loss of their own Māori names for flora and fauna in their region. The research was designed to demonstrate how we could retain and empower local bio-heritage terms via the creation of a static visual educational resource. This proof-of-concept resource is being created using the forest vegetation of the Tuhoe-Tuawhenua environs. The plants will be identified by their local Māori term and their corresponding scientific name. Depicting ecological accuracy in the artwork was a specific requirement of the kaumatua and created some unique challenges for the project team and artist. We will talk about the approaches used and will include samples of the finalised artwork. This project was funded by the New Zealand’s Biological Heritage National Science Challenge. Flammability of crown fuel mixtures is non-additive: Low flammability plants reduce fire residence time and total heat release Mr Md Azharul Alam1, Professor Charles Fleischmann2, Dr Sarah Wyse3, A/Prof Hannah Buckley4, Mr Jake Spinks2, Mr Patrick De La Mare2, Dr Jon Sullivan1, Professor George Perry5, Dr Timothy Curran1 1Department of Pest Management and Conservation, Lincoln University, Lincoln 7646, New Zealand, 2Civil & Natural Resources Engineering, University of Canterbury, Christchurch 8140, New Zealand, 3Bio-protection Research Centre, Lincoln University, Lincoln 7647, New Zealand, 4School of Science, Auckland University of Technology, Auckland 1142, New Zealand, 5School of Environment, University of Auckland, Auckland 1010, New Zealand Fire Symposium (I), Stewart Theatre 2, December 3, 2019, 11:00 AM - 12:30 PM Biography: Azharul Alam is a Ph.D. student in the Department of Pest Management and Conservation at Lincoln University, New Zealand. His research focused on plant flammability and fire ecology. Mainly, he is doing research to better understand plant flammability by making relationships between plant functional traits and flammability Quantifying the flammability of plant species is key to understanding the hazards and behavior of fire in the field, and numerous studies have been undertaken to determine the flammability of individual species. However, in nature, plants with varying flammability co-occur, and wildfires often burn through the canopy of mixed stands. Hence, experimental burning of mixed-species fuels is needed to understand fire behavior in the field where multiple species are burning in combination. In this study, we burned 70 cm shoot samples from two high-flammability and two low-flammability species, across all pairwise combinations, using oxygen depletion calorimetry. Using measurements of eight flammability parameters, we evaluated whether 1) the flammability of the two-species mixtures was different from the constituent individual species, and 2) the presence of low flammability plants influenced the flammability variables in the mixed-species burns. The overall flammability of the shoot level mixtures was non-additive, and driven by the most flammable species. While the parameters related to ignitibility and combustibility were unaffected by the presence of low flammability plants in the mixed fuel, the burning time and total heat released were significantly reduced by less flammable species. This study suggests that flammability differs in mixed-fuels than when burning their constituent species, and is usually driven by the specific flammability of a single species in the mixture. The reduction of burning time and total heat released by the presence of low flammability plants in the mixture highlights how low flammability plants could be used to reduce fire spread and impact. How can we motivate conservation volunteering? A case study of community pest control on Herald Island Hayley Alena1, Associate Professor James Russell1, Associate Professor Niki Harré1 1The University of Auckland, Auckland, New Zealand Invasive Species, Stewart Theatre 1, December 3, 2019, 11:00 AM - 12:30 PM Biography: Hayley has completed undergraduate and postgraduate studies at The University of Auckland. Her master's research focused on the social and psychological aspects of involvement in community pest control projects. Hayley is currently in her first year of a Ph.D. in ecology supervised by George Perry and Janet Wilmshurst. Along with the increasing awareness of human’s impacts on the natural environment, a focus on understanding factors influencing pro-environmental behaviour to mitigate this has increased. This case study applied social science and psychological methods to an issue in the natural sciences, of how to motivate conservation behaviour. This study focused on the inhabited Herald Island off the North Shore of Auckland. Herald Island is a 35-hectare island with a population of 700. The island’s environmental group hosts regular volunteer activities such as beach clean-ups, weeding and planting days. The group had started a new project called ‘Bring Back the Birds’, with the ambitious goal to be the first inhabited island to eradicate mammalian pests. Community-wide surveys showed that place attachment (the attachment an individual has to the place in which they live) predicted different levels of general involvement in the environmental group (regular volunteer, occasional volunteer, non-volunteer), but did not predict rat trapping. Rat trapping was instead predicted by owning a house and by living on the island for longer. Interviews with 15 residents who had taken on leadership roles for the rat trapping project showed their motivations generally could be characterised as environmental, social, community-driven and for personal gain. Surprisingly, social and community related motivations were more important than environmental motivations. These leadership roles were also predicted by strong attachments to the community of Herald Island (‘civic place attachment’). Recommendations for motivating community conservation and involvement in pest control will be discussed. Experimental mesocosm communities reveal no support for enemy release Dr. Warwick Allen1,2, Dr. Lauren Waller1,2, Dr. Jason Tylianakis1, Dr. Barbara Barratt3, Dr. Ian Dickie1 1University of Canterbury, , , 2Lincoln University, , , 3AgResearch, , Invasive Species Impacts Symposium II (plants, microorganisms, and insects), Stewart Theatre 1, December 3, 2019, 3:30 PM - 5:00 PM Biography: Warwick Allen is based at the University of Canterbury and is a postdoctoral fellow in the Bio- Protection Research Centre. He is interested in biological invasions, multitrophic species interactions, and biogeography. His postdoctoral research investigates how the structure of multitrophic species interaction networks can influence the success of invasive plants and arthropods, and how native communities respond to these invasions. The enemy release hypothesis is commonly invoked to explain the success of invasive exotic species, positing that invaders suffer less damage from enemies in their introduced range relative to co-occurring native species. However, support for this prediction has been mixed, with empirical tests mostly comprising pairwise native-invasive comparisons using a single enemy, and with little consideration given to indirect interactions (e.g., apparent competition). To address these limitations, we manipulated plant-herbivore interactions in 180 experimental mesocosm communities, designed from a pool of 39 plant and 20 arthropod herbivore species, that varied in provenance, phylogeny, and traits. We measured plant and herbivore biomass and quantified plant-herbivore interaction networks, that were then used to calculate each species’ potential to exert or suffer from apparent competition based on shared herbivores. We used these data to ask whether exotic and native plants differed in direct herbivory as well as their potential for apparent competition. Across all plant and herbivore species, we found no support for the enemy release hypothesis: compared to native plants, exotic species interacted with a greater diversity of herbivores, accumulated more herbivore biomass, suffered greater leaf chewing damage, and had a larger reduction in biomass due to herbivores. Moreover, exotic plants had higher potential to both exert and receive apparent competition effects than native species, driven by their higher herbivore loads and sharing of interaction partners. Our findings suggest that the enemy release hypothesis breaks down at the community level, with important implications
Recommended publications
  • Damnamenia Vernicosa
    Damnamenia vernicosa COMMON NAME Damnamenia SYNONYMS Celmisia vernicosa Hook.f. FAMILY Asteraceae AUTHORITY Damnamenia vernicosa (Hook f.) D.R.Given FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS Campbell Island. Photographer: David Norton Yes ENDEMIC FAMILY No STRUCTURAL CLASS Herbs - Dicotyledonous composites NVS CODE DAMVER CHROMOSOME NUMBER Campbell Island. Photographer: David Norton 2n = 108 CURRENT CONSERVATION STATUS 2012 | At Risk – Naturally Uncommon | Qualifiers: RR PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Naturally Uncommon 2004 | Range Restricted DISTRIBUTION Endemic. New Zealand: Auckland and Campbell Islands. HABITAT A species of mostly upland cushion bogs and Pleurophyllum Hook.f. dominated meadows. Also grows at low altitudes in exposed, inhospitable, sparsely vegetated sites. FEATURES Stoloniferous herb with thick woody multicipital basal stock. Living leaves densely imbricating and forming rosettes at tips of branchlets and sometimes at ends of leafy stolons. Leaves glossy as though varnished, glabrous; venation simple with lateral veins of sheath not extending into the lamina. Ptyxis plain. Inflorescence scapose and monocephalous. Receptacle obconic; phyllaries in several series, bearing eglandular uniseriate hairs only. Ray florets ligulate, female, white, occasionally pale rose especially near tips, limb and tube clad in scattered hairs. Disc florets tubular, pefect, purple or occasionally yellow, cyathiform above point of insertion of stamen filaments and usually cylindrical below, although occasionally gradually narrowing towards corolla base; corolla hairs eglandular biseriate and uniseriate; stamen tip usually obtuse or if acute then short, anther tails present but shorter than the basally narrowed filament collar; style arms short, terminal appendage broadly triangular and bearing long collecting hairs on back and margin. Pappus bristles unequal, in more than one series, plumose with long crowded teeth.
    [Show full text]
  • Project River Recovery Bibliography
    Project River Recovery bibliography 1991–July 2007 CANTERBURY SERIES 0208 Project River Recovery bibliography 1991 – JULY 2007 Project River Recovery Report 2007/02 Susan Anderson Department of Conservation, Private Bag, Twizel July 2007 Docdm-171819 - PRR Bibliography 2 INTRODUCTION Since its inception in 1991, Project River Recovery has undertaken or funded numerous research projects. The results of these investigations have been reported in various reports, theses, Department of Conservation publications, and scientific papers. Results of all significant research have been published, can be found through literature searches, and are widely available. Internal reports that do not warrant publication are held at the Twizel Te Manahuna Area Office and at the main Department of Conservation library in Wellington. All unpublished Project River Recovery reports produced since 1998 have been assigned report numbers. In addition to reports on original research, Project River Recovery has produced magazine articles and newspaper feature articles, various annual reports, progress reports, discussion documents, and plans. It has also commissioned some reports from consultants. This bibliography updates the bibliography compiled in 2000 (Sanders 2000) and lists all reports, theses, diplomas, Department of Conservation publications, and scientific papers that were produced or supported by Project River Recovery between 1991 and July 2007. It does not list brochures, posters, fact sheets, newsletters, abstracts for conference programmes, or minor magazine or newspaper articles. Docdm-171819 - PRR Bibliography 3 BIBLIOGRAPHY Adams, L.K. 1995: Reintroduction of juvenile black stilts to the wild. Unpublished MSc thesis, University of Canterbury, Christchurch. 108 p. Anderson, S.J. 2006: Proposal for black-fronted tern nest monitoring and predator trapping at the Ruataniwha Wetlands: 2006-2007 breeding season.
    [Show full text]
  • Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • An Update of Wallacels Zoogeographic Regions of the World
    REPORTS To examine the temporal profile of ChC produc- specification of a distinct, and probably the last, 3. G. A. Ascoli et al., Nat. Rev. Neurosci. 9, 557 (2008). tion and their correlation to laminar deployment, cohort in this lineage—the ChCs. 4. J. Szentágothai, M. A. Arbib, Neurosci. Res. Program Bull. 12, 305 (1974). we injected a single pulse of BrdU into pregnant A recent study demonstrated that progeni- CreER 5. P. Somogyi, Brain Res. 136, 345 (1977). Nkx2.1 ;Ai9 females at successive days be- tors below the ventral wall of the lateral ventricle 6. L. Sussel, O. Marin, S. Kimura, J. L. Rubenstein, tween E15 and P1 to label mitotic progenitors, (i.e., VGZ) of human infants give rise to a medial Development 126, 3359 (1999). each paired with a pulse of tamoxifen at E17 to migratory stream destined to the ventral mPFC 7. S. J. Butt et al., Neuron 59, 722 (2008). + 18 8. H. Taniguchi et al., Neuron 71, 995 (2011). label NKX2.1 cells (Fig. 3A). We first quanti- ( ). Despite species differences in the develop- 9. L. Madisen et al., Nat. Neurosci. 13, 133 (2010). fied the fraction of L2 ChCs (identified by mor- mental timing of corticogenesis, this study and 10. J. Szabadics et al., Science 311, 233 (2006). + phology) in mPFC that were also BrdU+. Although our findings raise the possibility that the NKX2.1 11. A. Woodruff, Q. Xu, S. A. Anderson, R. Yuste, Front. there was ChC production by E15, consistent progenitors in VGZ and their extended neurogenesis Neural Circuits 3, 15 (2009).
    [Show full text]
  • Identity of an Endangered Grasshopper (Acrididae: Brachaspis): Taxonomy, Molecules and Conservation
    Conservation Genetics 2: 233–243, 2001. 233 © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Identity of an endangered grasshopper (Acrididae: Brachaspis): Taxonomy, molecules and conservation Steven A. Trewick Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand; Present address: Department of Plant and Microbial Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand Received 15 April 2001; accepted 24 May 2001 Key words: conservation genetics, ESU, insect, mtDNA, MU, paraphyletic Abstract Brachaspis robustus is an endangered grasshopper endemic to South Island, New Zealand. It is both rare and localised; occupying low altitude floodplain terraces and braided riverbeds of the Mackenzie Basin. This is in stark contrast to the two other species in this genus (B. nivalis and B. collinus) which occupy montane habitats. Mito- chondrial and nuclear sequence data were employed to explore genetic diversity and phylogenetic relationships of populations of Brachaspis with a view to establishing the status of B. robustus. Molecular evidence indicates that Brachaspis probably radiated during the Pliocene and that divisions within the genus relate more to spatial distribution developed during the Pleistocene than to ecology. The mitochondrial (Cytochrome oxidase I) and nuclear (ITS) sequence data indicate that Brachaspis nivalis is divided into northern and southern populations. The northern clade is further subdivided geographically. The southern clade comprises alpine populations of B. nivalis and includes the lowland B. robustus. Additionally, it is observed that some morphological features previously thought to be specific to B. robustus also occur in members of the southern B. nivalis clade. It is suggested that the taxon B.
    [Show full text]
  • New Zealand's Threatened Species Strategy
    NEW ZEALAND’S THREATENED SPECIES STRATEGY DRAFT FOR CONSULTATION Toitū te marae a Tāne-Mahuta, Toitū te marae a Tangaroa, Toitū te tangata. If the land is well and the sea is well, the people will thrive. From the Minister ew Zealand’s unique While Predator Free 2050 is the single most significant and Nplants, birds, reptiles ambitious conservation programme in our history, it has to and other animal species be part of a broader range of work if we are to succeed. help us to define who we This draft Threatened Species Strategy is the are as a nation. Familiar Government’s plan to halt decline and restore healthy, emblems include our sustainable populations of native species. The Strategy flightless nocturnal kiwi looks at what steps are needed to restore those species and kākāpō, and the at risk of extinction, and what we should do to prevent silver fern proudly worn others from becoming threatened. by our sportspeople and etched on our war graves We are deliberately using the language of war because we and memorials. are up against invasive enemies that are hard to defeat. If we are to save the creatures we love, we have to eradicate They are our national the predators intent on eating them to extinction. taonga, living treasures found nowhere else on Earth – the unique creations of In response to beech tree seeding ‘mast’ years we have millions of years of geographical isolation. launched the successful Battle for our Birds – pest control on a landscape scale. We have declared a War on Weeds The wildlife on our islands of Aotearoa evolved in a with an annual list of the ‘Dirty Dozen’ to tackle invasive world without teeth, a paradise which for all its stunning plants that are suffocating vast areas of our bush.
    [Show full text]
  • List of References for Avian Distributional Database
    List of references for avian distributional database Aastrup,P. and Boertmann,D. (2009.) Biologiske beskyttelsesområder i nationalparkområdet, Nord- og Østgrønland. Faglig rapport fra DMU. Aarhus Universitet. Danmarks Miljøundersøgelser. Pp. 1-92. Accordi,I.A. and Barcellos,A. (2006). Composição da avifauna em oito áreas úmidas da Bacia Hidrográfica do Lago Guaíba, Rio Grande do Sul. Revista Brasileira de Ornitologia. 14:(2): 101-115. Accordi,I.A. (2002). New records of the Sickle-winged Nightjar, Eleothreptus anomalus (Caprimulgidae), from a Rio Grande do Sul, Brazil wetland. Ararajuba. 10:(2): 227-230. Acosta,J.C. and Murúa,F. (2001). Inventario de la avifauna del parque natural Ischigualasto, San Juan, Argentina. Nótulas Faunísticas. 3: 1-4. Adams,M.P., Cooper,J.H., and Collar,N.J. (2003). Extinct and endangered ('E&E') birds: a proposed list for collection catalogues. Bulletin of the British Ornithologists' Club. 123A: 338-354. Agnolin,F.L. (2009). Sobre en complejo Aratinga mitrata (Psittaciformes: Psittacidae) en el noroeste Argentino. Comentarios sistemáticos. Nótulas Faunísticas - Segunda Serie. 31: 1-5. Ahlström,P. and Mild,K. (2003.) Pipits & wagtails of Europe, Asia and North America. Identification and systematics. Christopher Helm. London, UK. Pp. 1-496. Akinpelu,A.I. (1994). Breeding seasons of three estrildid species in Ife-Ife, Nigeria. Malimbus. 16:(2): 94-99. Akinpelu,A.I. (1994). Moult and weight cycles in two species of Lonchura in Ife-Ife, Nigeria. Malimbus . 16:(2): 88-93. Aleixo,A. (1997). Composition of mixed-species bird flocks and abundance of flocking species in a semideciduous forest of southeastern Brazil. Ararajuba. 5:(1): 11-18.
    [Show full text]
  • The Ecology of Tussock Grasslands
    N. Z. E C 0 LOG I C A L SO C lET Y ~ 7 The Ecology of Tussock Grasslands Chairman: Prof. T. W. Walker . The Plants of Tussock Grassland Miss L. B. Moore One fifth of New Zealand carries tussock some other ferns). Amongst smaller grasses or bunch grass vegetation related to the so- only one (Danthonia exigua) is a real twitch. called steppesof the world (1). Tall-tussock Creepers root along the soil surface mostly grassland has long been distinguished from in damper spots (Hydrocotyle, Mentha, Ner- low-tussock grassland, but further subdivi- tera, Mazus, Cotula, Pratia spp.) but species sion awaits basic field work. Failing a classi- of Acaena and Raoulia of this growth form fication of vegetation types a plant capability extend into drier places. The Raoulias grow survey reviews the restricted range of slowly and live very long though some, e.g. growth forms present. the scabweedR. lutescens, are acutely sensi- Indigenous plants of the primitive grass- tive to shading. land are predominantly long-lived, ever- Root system and water requirements have green, mostly spot-bound, poor in seeding been little studied. Comparatively shallow and/or seedlings,'and with restricted regen- roots are recorded in Poa caespitosa which eration from either above-ground buds or is particularly successful in moist, shallow subterranean perennating organs. Many, soils with good granulation and aeration. like the tussock grasses,consist of loose-knit Danthonia flaveseens, Celmisia spectabilis, potentially independent parts that theoretic- and Festuca novlhe-zelandiaeall have longer ally need never reach senility; it is not at roots (2 metres or more), but while the all unusual for a tussock to live 20 years or Danthonia, with crown partly buried, is more.
    [Show full text]
  • Celmisia Parva
    Celmisia parva COMMON NAME Mountain daisy SYNONYMS None FAMILY Asteraceae AUTHORITY Celmisia parva Kirk FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes Mt Herbert, Herbert Range, Kahurangi, 1400m ENDEMIC GENUS elevation. Photographer: Rowan Hindmarsh- Walls No ENDEMIC FAMILY No STRUCTURAL CLASS Herbs - Dicotyledonous composites NVS CODE CELPAR Gunner Downs, Kahurangi, 1100m elevation. CHROMOSOME NUMBER Photographer: Rowan Hindmarsh-Walls 2n = 108 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened DISTRIBUTION Endemic. South Island: westerly from North-West Nelson to about the Paparoa Range HABITAT Lowland to subalpine. Inhabiting poorly drained ground in shrubland, pakihi, grassland, herbfield, and around rock outcrops FEATURES Small branching herb hugging ground in small patches; leaves spreading, rosulate at tips of branchlets. Lamina submembranous, ± 10-30 × 3-10 mm; linear- to oblong-lanceolate to narrow-oblong; upper surface glabrous or nearly so, midrib and usually main veins evident; lower surface densely clad in appressed soft to satiny white hairs, midrib usually distinct; apex subacute, apiculate; margins slightly recurved, minutely distantly denticulate, cuneately narrowed to slender petiole up to 20 mm long; sheath membranous, ± = lamina. Scape almost filiform, glabrous or with a few spreading hairs, ± 40-100 mm long; bracts almost filiform, with widened bases, few (sometimes absent), lowermost up to c. 10 mm long. Capitula ± 10-15 mm diameter; involucral bracts linear-subulate, acute to acuminate, apiculate, scarious, midrib distinct. Rays-florets up to c. 8 mm. long, white, linear, teeth very narrow-triangular; disk-florets 4-5 mm long, ± glandular at base, teeth triangular. Achenes narrow-cylindric, 1-2 mm long, glabrous or nearly so (in some forms with stiff hairs on obscure ribs).
    [Show full text]
  • Interactive Effects of Climate Change and Species Composition on Alpine Biodiversity and Ecosystem Dynamics
    Interactive effects of climate change and plant invasion on alpine biodiversity and ecosystem dynamics Justyna Giejsztowt M.Sc., 2013 University of Poitiers, France; Christian-Albrechts University, Germany B. Sc., 2010 University of Canterbury, New Zealand A thesis submitted to Victoria University of Wellington in partial fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological Sciences Victoria University of Wellington Te Herenga Waka 2019 i ii This thesis was conducted under the supervision of Dr Julie R. Deslippe (primary supervisor) Victoria University of Wellington Wellington, New Zealand And Dr Aimée T. Classen (secondary supervisor) University of Vermont Burlington, United States of America iii iv “May your mountains rise into and above the clouds.” -Edward Abbey v vi Abstract Drivers of global change have direct impacts on the structure of communities and functioning of ecosystems, and interactions between drivers may buffer or exacerbate these direct effects. Interactions among drivers can lead to complex non-linear outcomes for ecosystems, communities and species, but are infrequently quantified. Through a combination of experimental, observational and modelling approaches, I address critical gaps in our understanding of the interactive effects of climate change and plant invasion, using Tongariro National Park (TNP; New Zealand) as a model. TNP is an alpine ecosystem of cultural significance which hosts a unique flora with high rates of endemism. TNP is invaded by the perennial shrub Calluna vulgaris (L.) Hull. My objectives were to: 1) determine whether species- specific phenological shifts have the potential to alter the reproductive capacity of native plants in landscapes affected by invasion; 2) determine whether the effect of invasion intensity on the Species Area Relationship (SAR) of native alpine plant species is influenced by environmental stress; 3) develop a novel modelling framework that would account for density-dependent competitive interactions between native species and C.
    [Show full text]
  • The European Alpine Seed Conservation and Research Network
    The International Newsletter of the Millennium Seed Bank Partnership August 2016 – January 2017 kew.org/msbp/samara ISSN 1475-8245 Issue: 30 View of Val Dosdé with Myosotis alpestris The European Alpine Seed Conservation and Research Network ELINOR BREMAN AND JONAS V. MUELLER (RBG Kew, UK), CHRISTIAN BERG AND PATRICK SCHWAGER (Karl-Franzens-Universitat Graz, Austria), BRIGITTA ERSCHBAMER, KONRAD PAGITZ AND VERA MARGREITER (Institute of Botany; University of Innsbruck, Austria), NOÉMIE FORT (CBNA, France), ANDREA MONDONI, THOMAS ABELI, FRANCESCO PORRO AND GRAZIANO ROSSI (Dipartimento di Scienze della Terra e dell’Ambiente; Universita degli studi di Pavia, Italy), CATHERINE LAMBELET-HAUETER, JACQUELINE DÉTRAZ- Photo: Dr Andrea Mondoni Andrea Dr Photo: MÉROZ AND FLORIAN MOMBRIAL (Conservatoire et Jardin Botaniques de la Ville de Genève, Switzerland). The European Alps are home to nearly 4,500 taxa of vascular plants, and have been recognised as one of 24 centres of plant diversity in Europe. While species richness decreases with increasing elevation, the proportion of endemic species increases – of the 501 endemic taxa in the European Alps, 431 occur in subalpine to nival belts. he varied geology of the pre and they are converting to shrub land and forest awareness of its increasing vulnerability. inner Alps, extreme temperature with reduced species diversity. Conversely, The Alpine Seed Conservation and Research T fluctuations at altitude, exposure to over-grazing in some areas (notably by Network currently brings together five plant high levels of UV radiation and short growing sheep) is leading to eutrophication and a science institutions across the Alps, housed season mean that the majority of alpine loss of species adapted to low nutrient at leading universities and botanic gardens: species are highly adapted to their harsh levels.
    [Show full text]