EECS Laboratory Safety and Operations Manual

Total Page:16

File Type:pdf, Size:1020Kb

EECS Laboratory Safety and Operations Manual DocuSign Envelope ID: 0EEF4DD5-7559-4B10-9E25-A 4C58239C49 South Dakota State University Electrical Engineering and Comp uter Science Laboratory Safety and Operations Manual Prepared by Jason Sternhagen January 14, 2021 1 DocuSign Envelope ID: 0EEF4DD5-7559-4B10-9E25-A 4C58239C49 Signature Page I have read and approve of the Electrical Engineering and Computer Science Laboratory Safety and Operations Manual. _________________________________________________ ____________1/14/2021 | 11:38 PST Laboratory Manager: Mr. Jason Sternhagen Date _________________________________________________ 1/14/2021____________ | 10:31 PST Chemistry Lab PI: Dr. Yue Zhou Date _________________________________________________ ____________1/14/2021 | 10:29 PST Microgrid PI: Dr. Reinaldo Tonkoski Date 2 DocuSign Envelope ID: 0EEF4DD5-7559-4B10-9E25-A 4C58239C49 Contents 1 Introduction ............................................................................................................................. 9 1.1 Objectives ......................................................................................................................... 9 1.2 Laboratory Safety Training .............................................................................................. 9 1.3 Roles and Responsibilities ............................................................................................... 9 1.3.1 Laboratory Manager.................................................................................................. 9 1.3.2 Faculty/ Principal Investigator ................................................................................ 10 1.3.3 SDSU Environmental Health and Safety (EHS) ..................................................... 10 1.3.4 Laboratory Researcher/ Student .............................................................................. 10 2 Emergency Procedures ...........................................................................................................11 2.1 Introduction .....................................................................................................................11 2.2 Fire ................................................................................................................................. 12 2.3 Medical Emergencies ..................................................................................................... 12 2.4 Chemical Exposure ........................................................................................................ 12 2.4.1 Skin or Clothing ...................................................................................................... 12 2.4.2 Eyes ......................................................................................................................... 13 2.4.3 Hydrofluoric (HF) Acid .......................................................................................... 13 2.5 Electric Shock ................................................................................................................ 14 2.6 Toxic Gas Alarm ............................................................................................................. 14 2.6.1 Yellow Toxic Gas Alarm ......................................................................................... 15 2.6.2 Red Toxic Gas Alarm .............................................................................................. 15 2.7 Reporting Accidents, Injuries, and Near Misses ............................................................ 15 3 Chemical Hazard Identification ............................................................................................ 15 3.1 Introduction .................................................................................................................... 15 3.2 Laboratory Chemical/ Materials Labeling Requirements Policy ................................... 15 3.3 Material Safety Data Sheet (MSDS) .............................................................................. 16 3.4 Globally Harmonized System (GHS) ............................................................................. 17 3.4.1 Physical Hazards ..................................................................................................... 17 3.4.2 Health Hazards ........................................................................................................ 18 3.4.3 Environmental Hazards ........................................................................................... 19 3.5 Other Chemical Safety Resources .................................................................................. 19 3 DocuSign Envelope ID: 0EEF4DD5-7559-4B10-9E25-A 4C58239C49 4 Health Hazards of Chemicals ................................................................................................ 20 4.1 Introduction/ Basic Toxicology ...................................................................................... 20 4.2 Methods of Entry ............................................................................................................ 20 4.2.1 Skin and Eye Contact .............................................................................................. 20 4.2.2 Inhalation ................................................................................................................ 21 4.2.3 Ingestion .................................................................................................................. 21 4.2.4 Injection .................................................................................................................. 21 5 Controlling Chemical Exposure ............................................................................................ 21 5.1 Introduction .................................................................................................................... 21 5.2 Engineering Controls...................................................................................................... 21 5.2.1 Fume Hoods ............................................................................................................ 22 5.2.2 Glove Boxes ............................................................................................................ 22 5.3 Work Practices ................................................................................................................ 22 5.4 Administrative Controls ................................................................................................. 22 5.5 Personal Protective Equipment (PPE) ............................................................................ 22 5.5.1 Skin Protection ........................................................................................................ 22 5.5.2 Specific Glove Guidelines for Chemistry Laboratories .......................................... 22 5.5.3 Eye Protection ......................................................................................................... 23 5.5.4 Inhalation Protection ............................................................................................... 23 6 Suspected Chemical Exposure .............................................................................................. 23 6.1 Criteria for Suspected Exposure to Toxic Substances .................................................... 23 6.2 Exposure Assessment ..................................................................................................... 24 7 Safe Work Practices and Procedures ..................................................................................... 24 7.1 Introduction .................................................................................................................... 24 7.2 Standard Operating Procedures ...................................................................................... 25 7.3 Personal Behavior .......................................................................................................... 25 7.4 Unattended Experiments ................................................................................................ 25 7.5 Working Alone ............................................................................................................... 26 7.6 Fume Hoods ................................................................................................................... 26 7.7 Transporting Chemicals ................................................................................................. 26 7.8 Mixing Chemicals .......................................................................................................... 27 4 DocuSign Envelope ID: 0EEF4DD5-7559-4B10-9E25-A 4C58239C49 7.9 Chemical and Material Storage ...................................................................................... 27 7.9.1 Introduction ............................................................................................................. 27 7.9.2 Inventory ................................................................................................................. 28 7.9.3 Separation and Segregation of Chemicals .............................................................. 29 7.9.4 Incompatibility of Chemicals .................................................................................. 30 7.9.5 Flammable Liquids ................................................................................................. 30 7.9.6 Peroxide Forming Compounds and Reactives .......................................................
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Synthesis and Antitumor Evaluation of Novel Bis-Triaziquone Derivatives
    Molecules 2009, 14, 2306-2316; doi:10.3390/molecules14072306 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Synthesis and Antitumor Evaluation of Novel Bis-Triaziquone Derivatives Cheng Hua Huang 1,3, Hsien-Shou Kuo 2, Jia-Wen Liu 3 and Yuh-Ling Lin 3,* 1 Cathay General Hospital, 280 Renai Rd. Sec.4, Taipei, Taiwan 2 Department of Biochemistry, Taipei Medical University, 250 Wu-Hsin St. Taipei, Taiwan 3 College of Medicine, Fu-Jen Catholic University, 510 Chung Cheng Rd., Hsin-Chuang, Taipei Hsien 24205, Taiwan * Author to whom correspondence should be addressed; E-mail: [email protected] Received: 30 April 2009; in revised form: 19 June 2009 / Accepted: 23 June 2009 / Published: 29 June 2009 Abstract: Aziridine-containing compounds have been of interest as anticancer agents since late 1970s. The design, synthesis and study of triaziquone (TZQ) analogues with the aim of obtaining compounds with enhanced efficacy and reduced toxicity are an ongoing research effort in our group. A series of bis-type TZQ derivatives has been prepared and their cytotoxic activities were investigated. The cytotoxicity of these bis-type TZQ derivatives were tested on three cancer lines, including breast cancer (BC-M1), oral cancer (OEC-M1), larynx epidermal cancer (Hep2) and one normal skin fibroblast (SF). Most of these synthetic derivatives displayed significant cytotoxic activities against human carcinoma cell lines, but weak activities against SF. Among tested analogues the bis-type TZQ derivative 1a showed lethal effects on larynx epidermal carcinoma cells (Hep2), with an LC50 value of 2.02 M, and also weak cytotoxic activity against SF cells with an LC50 value over 10 M for 24 hr treatment.
    [Show full text]
  • California Proposition 65 Toxicity List
    STATE OF CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY OFFICE OF ENVIRONMENTAL HEALTH HAZARD ASSESSMENT SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT OF 1986 CHEMICALS KNOWN TO THE STATE TO CAUSE CANCER OR REPRODUCTIVE TOXICITY 4-Mar-05 The Safe Drinking Water and Toxic Enforcement Act of 1986 requires that the Governor revise and Chemical Type of Toxicity CAS No. Date Listed A-alpha-C (2-Amino-9H-pyrido[2,3-b]indole) cancer 26148685 1-Jan-90 Acetaldehyde cancer 75070 1-Apr-88 Acetamide cancer 60355 1-Jan-90 Acetazolamide developmental 59665 20-Aug-99 Acetochlor cancer 34256821 1-Jan-89 Acetohydroxamic acid developmental 546883 1-Apr-90 2-Acetylaminofluorene cancer 53963 1-Jul-87 Acifluorfen cancer 62476599 1-Jan-90 Acrylamide cancer 79061 1-Jan-90 Acrylonitrile cancer 107131 1-Jul-87 Actinomycin D cancer 50760 1-Oct-89 Actinomycin D developmental 50760 1-Oct-92 Adriamycin (Doxorubicin hydrochloride) cancer 23214928 1-Jul-87 AF-2;[2-(2-furyl)-3-(5-nitro-2-furyl)]acrylamide cancer 3688537 1-Jul-87 Aflatoxins cancer --- 1-Jan-88 Alachlor cancer 15972608 1-Jan-89 Alcoholic beverages, when associated with alcohol abuse cancer --- 1-Jul-88 Aldrin cancer 309002 1-Jul-88 All-trans retinoic acid developmental 302794 1-Jan-89 Allyl chloride Delisted October 29, 1999 cancer 107051 1-Jan-90 Alprazolam developmental 28981977 1-Jul-90 Altretamine developmental, male 645056 20-Aug-99 Amantadine hydrochloride developmental 665667 27-Feb-01 Amikacin sulfate developmental 39831555 1-Jul-90 2-Aminoanthraquinone cancer 117793 1-Oct-89 p -Aminoazobenzene cancer
    [Show full text]
  • COMBINED LIST of Particularly Hazardous Substances
    COMBINED LIST of Particularly Hazardous Substances revised 2/4/2021 IARC list 1 are Carcinogenic to humans list compiled by Hector Acuna, UCSB IARC list Group 2A Probably carcinogenic to humans IARC list Group 2B Possibly carcinogenic to humans If any of the chemicals listed below are used in your research then complete a Standard Operating Procedure (SOP) for the product as described in the Chemical Hygiene Plan. Prop 65 known to cause cancer or reproductive toxicity Material(s) not on the list does not preclude one from completing an SOP. Other extremely toxic chemicals KNOWN Carcinogens from National Toxicology Program (NTP) or other high hazards will require the development of an SOP. Red= added in 2020 or status change Reasonably Anticipated NTP EPA Haz list COMBINED LIST of Particularly Hazardous Substances CAS Source from where the material is listed. 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide Acutely Toxic Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- Acutely Toxic 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (Methyl-CCNU) Prop 65 KNOWN Carcinogens NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) IARC list Group 2A Reasonably Anticipated NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) (Lomustine) Prop 65 1-(o-Chlorophenyl)thiourea Acutely Toxic 1,1,1,2-Tetrachloroethane IARC list Group 2B 1,1,2,2-Tetrachloroethane Prop 65 IARC list Group 2B 1,1-Dichloro-2,2-bis(p -chloropheny)ethylene (DDE) Prop 65 1,1-Dichloroethane
    [Show full text]
  • The Chemotherapy of Malignant Disease -Practical and Experimental Considerations
    Postgrad Med J: first published as 10.1136/pgmj.41.475.268 on 1 May 1965. Downloaded from POSTGRAD. MED. J. (1965), 41,268 THE CHEMOTHERAPY OF MALIGNANT DISEASE -PRACTICAL AND EXPERIMENTAL CONSIDERATIONS JOHN MATTHIAS, M.D., M.R.C.P., F.F.A., R.C.S. Physician, The Royal Marsden Hospital, London, S.W.3. THE TERM chemotherapy was introduced by positively charged alkyl (CH2) radicles of Ehrlich to describe the specific and effective the agent. treatment of infectious disease by chemical (a) The nitrogen mustards: mustine (HN2 substances. It is currently also applied to the 'nitrogen mustard', mechlorethamine, treatment of malignant disease. Unfortunately mustargen), trimustine (Trillekamin no aspect of tumour metabolism has been HN3), chlorambucil (Leukeran, phenyl discovered which has allowed the development butyric mustard), melphalan (Alkeran, of drugs capable of acting specifically upon the phenyl alanine mustard), uramustine malignant cell, so that cytotoxic drugs also (Uracil mustard), cyclophosphamide affect normal cells to a greater or lesser degree. (Endoxan or Cytoxan), mannomustine The most susceptible or sensitive of the normal (DegranoO). tissues are those with the highest rates of cell (b) The ethylenamines: tretamine (trie- turnover and include the haemopoietic and thanomelamine, triethylene melamine, lympho-reticular tissues, the gastro-intestinal TEM), thiotepa (triethylene thiopho- the the testis and the hair epithelium, ovary, sphoramide), triaziquone (Trenimon).by copyright. follicles. (c) The epoxides: triethyleneglycoldigly- Cancer chemotherapy may be said to encom- cidyl ether (Epodyl). pass all treatments of a chemical nature (d) The sulphonic acid esters: busulphan administered to patients with the purpose of (Myleran), mannitol myleran. restricting tumour growth or destroying tumour 2.
    [Show full text]
  • Chemical Hygiene Plan Manual
    CHEMICAL HYGIENE PLAN AND HAZARDOUS MATERIALS SAFETY MANUAL FOR LABORATORIES This is the Chemical Hygiene Plan specific to the following areas: Laboratory name or room number(s): ___________________________________ Building: __________________________________________________________ Supervisor: _______________________________________________________ Department: _______________________________________________________ Telephone numbers 911 for Emergency and urgent consultation 48221 Police business line 46919 Fire Dept business line 46371 Radiological and Environmental Management Revisied on: Enter a revision date here. All laboratory chemical use areas must maintain a work-area specific Chemical Hygiene Plan which conforms to the requirements of the OSHA Laboraotry Standard 29 CFR 19190.1450. Purdue University laboratories may use this document as a starting point for creating their work area specific CHP. Minimally this cover page is to be edited for work area specificity (non-West Lafayette laboratories are to place their own emergency, fire, and police telephone numbers in the space above) AND appendix K must be completed. This instruction and information box should remain. This model CHP is version 2010A; updates are to be found at www.purdue.edu/rem This page intentionally blank. PURDUE CHEMICAL HYGIENE PLAN AWARENESS CERTIFICATION For CHP of: ______________________________ Professor, building, rooms The Occupational Safety and Health Administration (OSHA) requires that laboratory employees be made aware of the Chemical Hygiene Plan at their place of employment (29 CFR 1910.1450). The Purdue University Chemical Hygiene Plan and Hazardous Materials Safety Manual serves as the written Chemical Hygiene Plan (CHP) for laboratories using chemicals at Purdue University. The CHP is a regular, continuing effort, not a standby or short term activity. Departments, divisions, sections, or other work units engaged in laboratory work whose hazards are not sufficiently covered in this written manual must customize it by adding their own sections as appropriate (e.g.
    [Show full text]
  • Biochemical and Pathological Effects of Methylazoxymethanol Acetate, a Potent Carcinogen1
    [CANCER RESEARCH 30, 801-812, March 1970] Biochemical and Pathological Effects of Methylazoxymethanol Acetate, a Potent Carcinogen1 Morris S. Zedeck, Stephen S. Sternberg, Richard W. Poynter, and Jane McGowan Divisions of Pharmacology and Cytology, Sloan-Kettering Institute for Cancer Research, New York, New York 10021 SUMMARY vealed that the agent is cleaved by the intestinal flora which possess a 0-o-glucosidase, and that the free agly Methylazoxymethanol acetate is known to induce tu cone methylazoxymethanol is the active carcinogen (13- mors in rodents. Effects produced by a single nonlethal 15, 34). Matsumoto et al. (19) synthesized MAM acetate3 dose on nucleic acid and protein synthesis have been in (Chart 1), which is stable and not dependent upon vestigated in rat and mouse liver, small intestine, and ,0-glucosidase cleavage for activity. Single or only a few kidney, the 3 organs most susceptible to carcinogenesis. doses of cycasin, or of the aglycone methylazoxymetha The agent induced early inhibition of thymidine incor nol, are required to induce tumors in rats which are pri poration into DNA of rat tissues. Rat liver was most sen marily of the kidney, intestinal tract, and liver (11, 15). sitive to this effect and was the only organ to show marked Aqueous extracts of cycad nut have also been shown to inhibition of RNA and protein synthesis. In mice, liver induce tumors of liver and kidneys in mice (21). The was more sensitive than small intestine or kidney and ex present investigation was undertaken to study the acute hibited an inhibition of RNA and protein synthesis; there pathological and biochemical effects produced by MAM were no changes observed in small intestine or kidney.
    [Show full text]
  • Alar Five Years Later
    Alar Five Years Later by Kenneth Smith This special report was written for the American Council on Science and Health by Kenneth Smith, Editorial Writer of The Washington Times as a follow-up to the two previous reports: Alar One Year Later andAlar Three Years Later. ACSH gratefully acknowledges the comments and contributions of the following individuals who reviewed one or more editions of this report: F. J. Francis, Ph.D. University of Massachusetts Lois S. Gold, Ph.D. University of California, Berkeley Thomas H. Jukes, Ph.D. University of California, Berkeley Roger P. Maickel, Ph.D. Purdue University A. Alan Moghissi, Ph.D. Temple University Robert E. Olson, M.D., Ph.D. SUNY at Stony Brook Thomas W. Orme, Ph.D. American Council on Science and Health Edward G. Remmers, Sc.D. American Council on Science and Health Joseph Rosen, Ph.D. Rutgers University Fredrick J. Stare, M.D., Ph.D. Harvard School of Public Health Elizabeth M. Whelan, Sc.D., M.P.H. American Council on Science and Health “As a pediatric surgeon, as well as the nation’s former surgeon general, I care deeply about the health of children — and if Alar ever posed a health hazard, I would have said so then and would say so now. When used in the regulated, approved manner as Alar was before it was with- drawn in 1989, Alar-treated apple products posed no hazard to the health of children or adults.” — C. Everett Koop, M.D. Executive Summary In early 1989, this country suffered the public relations equivalent of a natural disaster, one that most scientists now believe should never have occurred.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,586,617 B1 Tabuchi Et Al
    USOO65866.17B1 (12) United States Patent (10) Patent No.: US 6,586,617 B1 Tabuchi et al. (45) Date of Patent: Jul. 1, 2003 (54) SULFONAMIDE DERIVATIVES JP 63-307851 12/1988 JP 1-156952 6/1989 (75) Inventors: Takanori Tabuchi, Tsukuba (JP); WO 96/36596 11/1996 WO 97/24135 7/1997 Tetsuhiro Yamamoto, Toride (JP); WO 97/31910 9/1997 Masaharu Nakayama, Tsukuba (JP) WO 98/45.255 10/1998 (73) Assignee: Sumitomo Chemical Takeda Agro WO 99/06037 2/1999 Company, Limited, Tokyo (JP) WO OO/50391 8/2000 OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 Derek R. Buckle et al., “Inhibition of Cyclic Nucleotide U.S.C. 154(b) by 0 days. Phosphodiesterase by Derivatives of 1,3-Bis(cyclopropyl methyl)xanthine”, J. Med. Chem., vol. 37, No. 4, pp. (21) Appl. No.: 09/958,953 476-485, 1994. (22) PCT Filed: Apr. 17, 2000 Francisca Lopes et al., “Acyloxymethyl as a Drug Protecting Group. Part 6: N-Acyloxymethyl- and N-Aminocarbony (86) PCT No.: PCT/JP00/02764 loxy)methylsulfonamides as Prodrugs of Agents Contain S371 (c)(1), ing a Secondary Sulfonamide Group”, Bioorganic & (2), (4) Date: Dec. 18, 2001 Medicinal Chemistry, vol. 8, No. 4, pp. 707-716, 2000. J.S. Sukla et al., “Studies on Some Newer Possible Biologi (87) PCT Pub. No.: WO00/65913 cally Active Agents: Part II. Synthesis of N-(-aminopropyl)-2-heterocyclic-p-arylidene aminoben PCT Pub. Date: Nov. 9, 2000 ZeneSulphonamides and N(-aminopropyl)-2-heterocyclic (30) Foreign Application Priority Data Sulphanalamides and their Antibacterial Activity, J.
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • Chemical Chemical Hazard and Compatibility Information
    Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine
    [Show full text]
  • Carbon Tetrachloride
    CARBON TETRACHLORIDE Data were last reviewed in IARC (1979) and the compound was classified in IARC Monographs Supplement 7 (1987a). 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 56-23-5 Chem. Abstr. Name: Tetrachloromethane IUPAC Systematic Name: Carbon tetrachloride Synonyms: Benzinoform; carbona 1.1.2 Structural and molecular formulae and relative molecular mass Cl Cl CCl Cl CCl4 Relative molecular mass: 153.82 1.1.3 Chemical and physical properties of the pure substance (a) Description: Colourless, clear, nonflammable, liquid with a characteristic odour (Budavari, 1996) (b) Boiling-point: 76.8°C (Lide, 1997) (c) Melting-point: –23°C (Lide, 1997) (d) Solubility: Very slightly soluble in water (0.05% by volume); miscible with benzene, chloroform, diethyl ether, carbon disulfide and ethanol (Budavari, 1996) (e) Vapour pressure: 12 kPa at 20°C; relative vapour density (air = 1), 5.3 at the boiling-point (American Conference of Governmental Industrial Hygienists, 1991) (f) Conversion factor: mg/m3 = 6.3 × ppm 1.2 Production and use Production in the United States in 1991 was reported to be approximately 143 thousand tonnes (United States International Trade Commission, 1993). Information –401– 402 IARC MONOGRAPHS VOLUME 71 available in 1995 indicated that carbon tetrachloride was produced in 24 countries (Che- mical Information Services, 1995). Carbon tetrachloride is used in the synthesis of chlorinated organic compounds, including chlorofluorocarbon refrigerants. It is also used as an agricultural fumigant and as a solvent in the production of semiconductors, in the processing of fats, oils and rubber and in laboratory applications (Lewis, 1993; Kauppinen et al., 1998).
    [Show full text]