Ctenophora of Australia Lisa-Ann GERSHWIN South Australian Museum, North Terrace, Adelaide, South Australia 5000 (Honorary)

Total Page:16

File Type:pdf, Size:1020Kb

Ctenophora of Australia Lisa-Ann GERSHWIN South Australian Museum, North Terrace, Adelaide, South Australia 5000 (Honorary) VOLUME 54 Part 3 MEMOIRS OF THE QUEENSLAND MUSEUM BRISBANE 30 DECEMBER 2010 © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Editor in Chief. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qm.qld.gov.au/organisation/publications/memoirs/guidetoauthors.pdf A Queensland Government Project Typeset at the Queensland Museum Ctenophora of Australia Lisa-ann GERSHWIN South Australian Museum, North Terrace, Adelaide, South Australia 5000 (Honorary). Email: [email protected] Wolfgang ZEIDLER South Australian Museum, North Terrace, Adelaide, South Australia 5000. Email: [email protected] Peter J.F. DAVIE Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101 Citation: Gershwin, L., Zeidler, W. & Davie, P.J.F. 2010 12 30. Ctenophora of Australia. In, Davie, P.J.F. & Phillips, J.A. (Eds), Proceedings of the Thirteenth International Marine Biological Workshop, the Marine Fauna and Flora of Moreton Bay, Queensland. Memoirs of the Queensland Museum 54(3): 1–45. Brisbane. ISSN 0079–8835. ABSTRACT An overview of the Ctenophora of Australia is presented based on limited collecting efforts, together with the description of seven species new to science. Euplokamis evansae sp. nov. (Cydippida: Euplokamididae), has only been found in Tasmanian waters; it is distinguished from its congeners in the comb rows being about 4/5 of the body length, the tentacle bulbs being long and close to the stomach, and having extremely long polar plates. Pukia falcata gen. nov., sp. nov. (Cydippida: Pukiidae fam. nov.), is found across the tropical and subtropical north of Australia from Port Hedland, Western Australia, to the Moreton Bay region of southeastern Queensland; it has beehive-coiled tentilla, similar to those of the Euplokamididae, but differs from all other cydippids in having crescentic-shaped tentacle bulbs. Bolinopsis ashleyi sp. nov. (Lobata: Bolinopsidae), from Moreton Bay, differs from its large-lobed congeners in its striking pattern of broad red streaks along the ctene rows. Leucothea filmersankeyi sp. nov. (Lobata: Leucotheidae), from northwestern Tasmania, differs from other species in its genus in having narrow, blind tentacular pits; long slender papillae; and a pale orange tint to the body core. Ocyropsis vance sp. nov. (Lobata: Ocyrop - sidae), from southeastern Tasmania, is distinguished from other ocyropsids with a deeply - indented hourglass-shaped stomach in lacking tentacle bulbs and spots. Finally, three new forms of benthic ctenophores are reported from the Great Barrier Reef: Coeloplana mellosa sp. nov. (Platyctenida: Coeloplanidae) is found on the soft coral Sarcophyton sp., and differs from its congeners in a unique combination of pigmentation pattern, papillae number and distribution, and statocyst palp morphology; Coeloplana reichelti sp. nov., a larger form found on algae and seagrasses, differs from others in the number and form of papillae, colour pattern, and distribution; the last, a minute form found on the Crown-of-thorns starfish, Acanthaster planci, must await additional material for proper description. The distribution of Neis cordigera is broadened to include South Australia and Western Australia, and a redes - cription of the species is provided. The potential fisheries impacts by a form of Bolinopsis in Spencer Gulf, South Australia, are discussed. An annotated classification and a key for the ctenophores of Australia are given. q Ctenophora, Ctenophores, comb jellyfish, Cydippida, Platyctenida, Lobata, Cestida, Beroida, new family, new genus, new species, new records. Gelatinous zooplankton species are not typi - sen ted in nearly all marine pelagic zones, they cally well known, and this is especially true for are often difficult to capture and imposs ible (or members of the Ctenophora. Though well repre- nearly so) to preserve. Furthermore, their taxon- Memoirs of the Queensland Museum — Nature 2010 54(3) www.qm.qld.gov.au 1 Gershwin, Zeidler & Davie omy is poorly resolved, making identification cases comparative type material was non- often difficult and inconclusive. exis tent. Field-collected specimens were either Australian ctenophores are no exception and captured individually in plastic bags or glass are, in fact, even more poorly known than those jars while snorkeling, dipped individually from of many other regions. Ironically, von Lenden - jetties with a 500 µm mesh, 0.5 m-wide plankton feld (1885a) stated that the Australian cteno- net, or else ‘trawled’ with the net from a fixed phores ‘really appear to be rare.’ And while few loca tion relying on existing current for flow. species are reported, most are certainly not rare! Difficulties in preservation and inherent prob - In our experience, a small cydippid that is lems with shrinkage are a fundamental problem described as new herein and placed into a new in ctenophore taxonomy. Thus, whenever possible, family, is one of the commonest members of the live specimens were observed, photographed, Australian coastal gelatinous zooplankton com - and morphological and behavioural characters mu nity, and may be found throughout the year noted prior to preservation attempts. Tissue in just about any tropical and subtropical region. samples were also collected for future study Furthermore, an unidentified species of Bolinopsis when tissues from congeners become available. blooms in such plague proportions in the South Extensive efforts were made to relax and fix Australian gulfs in the summertime that one live material, often without success. For cydippids must wonder what effect this might have on the and beroids, room temperature asphyxiation larvae and food sources of other species in the gulfs. was the only effective method of relaxation, but The first mention of a ctenophore in Austra- was extremely labour intensive; preservation in lian waters was by Quoy & Gaimard (1824: 575), about 2% formalin produced moderately good who noted a Beroe from Port Jackson. Since that specimens. For lobates, no method of relaxation time, at least 24 additional species of ctenophores could be obtained, and efforts to preserve speci- have been reported from Australian coastal mens universally resulted in total tissue disinte- waters, with another ten newly reported herein, gration, leaving only scattered ctenes; the only including seven new to science. exception was Ocyropsis vance sp. nov., which During the course of the Thirteenth Inter- preserved quite perfectly in 1-2% formalin. national Marine Biological Workshop, in More - Measurements were made on preserved mate - ton Bay, Queensland, numerous collections were r ial with Max-Cal digital calipers, to the nearest made of ctenophores. As we were identifying 0.01 mm. Every effort was made to obtain true this material, we realised that it would be very dimensions across the widest points; however, useful to attempt to compile the first synopsis some specimens were too brittle to be spread of Australian ctenophores, and thus provide a out, in which case absolute measurements were foundation for productive future work. To do taken across the two farthest available points. this it was necessary to document not only the Body length (BL) was measured from the aboral historical literature, but also specimens in pole to the tip of the mouth for all specimens. In museum collections, and our own samples lobate ctenophores, lobe length (LL) was measured gathered over the last ten years. This has resul - from the inner corner where the lobe attaches to ted in numerous new distribution records, and the body to the distal tip; total length (TL) the descriptions of the seven new species includes the lobes. presented here. It is highly likely that many Morphological examinations were made more species will prove to be present than so far under a variety of dissecting scopes, depending recognised, and our knowledge of the on what was available at the institution where distibutional ranges of many will no doubt the specimens were studied. Microscopic and increase significantly with further targeted macroscopic digital images were made of all collecting. observable structures with Fujifilm MX-700 and MX-2700 cameras, Nikon CoolPix 995, and MATERIALS AND METHODS Sony DVD-201e in JPG format. While it was not The collections of ctenophores held in all possible to publish all photographs made of each Australian museums were examined; in most taxon, we have compiled a library of images of 2 Memoirs of the Queensland Museum — Nature 2010 54(3) Ctenophores of Australia Table 1. An annotated checklist of ctenophores recorded from Australian waters, including all previous records from Moreton Bay. Nomenclatural notes are given in parentheses, where appropriate. Abbreviations used: Queensland (QLD), New South Wales (NSW), Victoria (Vic), Tasmania (Tas), South Australia (SA), Western Australia (WA), Northern Territory (NT), Great Barrier Reef (GBR), Australia ‘Unspecified’ (AU), Southern Australia (SO), Northern Australia (NO);
Recommended publications
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Ctenophore Relationships and Their Placement As the Sister Group to All Other Animals
    ARTICLES DOI: 10.1038/s41559-017-0331-3 Ctenophore relationships and their placement as the sister group to all other animals Nathan V. Whelan 1,2*, Kevin M. Kocot3, Tatiana P. Moroz4, Krishanu Mukherjee4, Peter Williams4, Gustav Paulay5, Leonid L. Moroz 4,6* and Kenneth M. Halanych 1* Ctenophora, comprising approximately 200 described species, is an important lineage for understanding metazoan evolution and is of great ecological and economic importance. Ctenophore diversity includes species with unique colloblasts used for prey capture, smooth and striated muscles, benthic and pelagic lifestyles, and locomotion with ciliated paddles or muscular propul- sion. However, the ancestral states of traits are debated and relationships among many lineages are unresolved. Here, using 27 newly sequenced ctenophore transcriptomes, publicly available data and methods to control systematic error, we establish the placement of Ctenophora as the sister group to all other animals and refine the phylogenetic relationships within ctenophores. Molecular clock analyses suggest modern ctenophore diversity originated approximately 350 million years ago ± 88 million years, conflicting with previous hypotheses, which suggest it originated approximately 65 million years ago. We recover Euplokamis dunlapae—a species with striated muscles—as the sister lineage to other sampled ctenophores. Ancestral state reconstruction shows that the most recent common ancestor of extant ctenophores was pelagic, possessed tentacles, was bio- luminescent and did not have separate sexes. Our results imply at least two transitions from a pelagic to benthic lifestyle within Ctenophora, suggesting that such transitions were more common in animal diversification than previously thought. tenophores, or comb jellies, have successfully colonized from species across most of the known phylogenetic diversity of nearly every marine environment and can be key species in Ctenophora.
    [Show full text]
  • NEW RECORD of PLEUROBRACHIA PILEUS (O. F. MÜLLER, 1776) (CTENOPHORA, CYDIPPIDA) from CORAL REEF, IRAQI MARINE WATERS Hanaa
    Mohammed and Ali Bull. Iraq nat. Hist. Mus. (2020) 16 (1): 83- 93. https://doi.org/10.26842/binhm.7.2020.16.1.0083 NEW RECORD OF PLEUROBRACHIA PILEUS (O. F. MÜLLER, 1776) (CTENOPHORA, CYDIPPIDA) FROM CORAL REEF, IRAQI MARINE WATERS Hanaa Hussein Mohammed* and Malik Hassan Ali** *Department Biological Development of Shatt Al-Arab and N W Arabian Gulf, Marine Science Center, University of Basrah, Basrah, Iraq **Department Marine Biology, Marine Science Center, University of Basrah, Basrah, Iraq **Corresponding author: [email protected] Received Date: 16 January 2020, Accepted Date: 27April 2020, Published Date: 24 June 2020 ABSTRACT The aim of this paper is to present the first record of ctenophore species Pleurobrachia pileus (O. F. Müller, 1776) in the coral reef as was recently found in Iraqi marine waters. The specimens were collected from two sites, the first was in Khor Abdullah during May 2015, and the second site was located in the pelagic water of the coral reef area, near the Al-Basrah deep sea crude oil marine loading terminal. Three samples were collected at this site during May 2015, February and March 2018 which showed that P. pileus were present at a densities of 3.0, 2.2 and 0.55 ind./ m3 respectively. The species can affect on the abundance of other zooplankton community through predation. The results of examining the stomach contents revealed that they are important zooplanktivorous species; their diets comprised large number of zooplankton as well as egg and fish larvae. The calanoid copepods formed the highest percentage of the diet, reaching 47%, followed by cyclopoid copepods 30%, and then the fish larvae formed 20% of the diet.
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • Resurrecting a Subgenus to Genus: Molecular Phylogeny of Euphyllia and Fimbriaphyllia (Order Scleractinia; Family Euphylliidae; Clade V)
    Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphylliidae; clade V) Katrina S. Luzon1,2,3,*, Mei-Fang Lin4,5,6,*, Ma. Carmen A. Ablan Lagman1,7, Wilfredo Roehl Y. Licuanan1,2,3 and Chaolun Allen Chen4,8,9,* 1 Biology Department, De La Salle University, Manila, Philippines 2 Shields Ocean Research (SHORE) Center, De La Salle University, Manila, Philippines 3 The Marine Science Institute, University of the Philippines, Quezon City, Philippines 4 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 5 Department of Molecular and Cell Biology, James Cook University, Townsville, Australia 6 Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan 7 Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines 8 Taiwan International Graduate Program-Biodiversity, Academia Sinica, Taipei, Taiwan 9 Institute of Oceanography, National Taiwan University, Taipei, Taiwan * These authors contributed equally to this work. ABSTRACT Background. The corallum is crucial in building coral reefs and in diagnosing systematic relationships in the order Scleractinia. However, molecular phylogenetic analyses revealed a paraphyly in a majority of traditional families and genera among Scleractinia showing that other biological attributes of the coral, such as polyp morphology and reproductive traits, are underutilized. Among scleractinian genera, the Euphyllia, with nine nominal species in the Indo-Pacific region, is one of the groups Submitted 30 May 2017 that await phylogenetic resolution. Multiple genetic markers were used to construct Accepted 31 October 2017 Published 4 December 2017 the phylogeny of six Euphyllia species, namely E. ancora, E. divisa, E.
    [Show full text]
  • Endemik Beyşehir Kurbağası Pelophylax Caralitanus (Arıkan,1988) Populasyonlarında Comet Analizi Ile DNA Hasarın Değerlendirilmesi Uğur Cengiz Erişmiş
    Instructions for Authors Scope of the Journal if there is more than one author at the end of the text. Su Ürünleri Dergisi (Ege Journal of Fisheries and Aquatic Sciences) is an open access, international, Hanging indent paragraph style should be used. The year of the reference should be in parentheses double blind peer-reviewed journal publishing original research articles, short communications, after the author name(s). The correct arrangement of the reference list elements should be in order technical notes, reports and reviews in all aspects of fisheries and aquatic sciences including biology, as “Author surname, first letter of the name(s). (publication date). Title of work. Publication data. DOI ecology, biogeography, inland, marine and crustacean aquaculture, fish nutrition, disease and Article title should be in sentence case and the journal title should be in title case. Journal titles in the treatment, capture fisheries, fishing technology, management and economics, seafood processing, Reference List must be italicized and spelled out fully; do not abbreviate titles (e.g., Ege Journal of chemistry, microbiology, algal biotechnology, protection of organisms living in marine, brackish and Fisheries and Aquatic Sciences, not Ege J Fish Aqua Sci). Article titles are not italicized. If the journal is freshwater habitats, pollution studies. paginated by issue the issue number should be in parentheses. Su Ürünleri Dergisi (EgeJFAS) is published quarterly (March, June, September and December) by Ege DOI information (if available) should be placed at the end of the reference as in the example. The DOI University Faculty of Fisheries since 1984. information for the reference list can be retrieved from CrossRef © Simple Text Query Form (http:// Submission of Manuscripts www.crossref.org/SimpleTextQuery/) by just pasting the reference list into the query box.
    [Show full text]
  • Assessing the Impact of Key Marine Invasive Non-Native Species on Welsh MPA Habitat Features, Fisheries and Aquaculture
    Assessing the impact of key Marine Invasive Non-Native Species on Welsh MPA habitat features, fisheries and aquaculture. Tillin, H.M., Kessel, C., Sewell, J., Wood, C.A. Bishop, J.D.D Marine Biological Association of the UK Report No. 454 Date www.naturalresourceswales.gov.uk About Natural Resources Wales Natural Resources Wales’ purpose is to pursue sustainable management of natural resources. This means looking after air, land, water, wildlife, plants and soil to improve Wales’ well-being, and provide a better future for everyone. Evidence at Natural Resources Wales Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment. We will realise this vision by: Maintaining and developing the technical specialist skills of our staff; Securing our data and information; Having a well resourced proactive programme of evidence work; Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and Communicating our evidence in an open and transparent way. This Evidence Report series serves as a record of work carried out or commissioned by Natural Resources Wales. It also helps us to share and promote use of our evidence by others and develop future collaborations. However, the views and recommendations presented in this report are not necessarily those of
    [Show full text]
  • Bertarelli Programme in Marine Science Coral Reef Expedition to the British Indian Ocean Territory, April 2019
    Bertarelli Programme in Marine Science Coral Reef Expedition to the British Indian Ocean Territory, April 2019 Figure 1: Early signs of coral reef recovery in BIOT, Takamaka, Salomon 1 | P a g e Executive Summary The Bertarelli Programme in Marine Science Coral Reef Expedition to the British Indian Ocean Territory on Coral Reef Condition took place in April 2019, and involved Bangor University, Oxford University, University College of London, and Woods Hole Oceanographic Institution, USA. The team joined the British Patrol Vessel Grampian Frontier in Male, Maldives on 6th April and travelled south, arriving Diego Garcia on 27th April 2019. Exceptionally calm seas were experienced until 17th April, and then rough conditions which progressively worsened until 27th April. Thirteen experienced scientific divers including a Medical Officer conducted a total of 113 dives, equating to 301 person dives and 318 hours underwater over the period. The team undertook 7 scientific tasks to investigate the current condition of the coral reefs at 34 sites across the archipelago as follows: Tasks 1 & 2: Coral condition, cover, juveniles, and water temperatures (C. Sheppard, A. Sheppard). Task 3: Extend video archive for long term assessment of coral reef benthic community structure (J. Turner, R. Roche, J. Sannassy Pilly). Task 4: Three-dimensional determination of reef structural complexity and spatial analysis of coral recruitment (D. Bayley, A. Mogg). Tasks 5 & 6: Spatiotemporal variations in internal wave driven upwelling and resilience potential across the Chagos Archipelago (G. Williams, M. Fox, A. Heenan, R. Roche) Task 7: Coral reef recovery and resilience (B. Wilson and A. Rose). The coral reefs of the Archipelago are still in an erosional state with very low coral cover 3 years after the back to back bleaching events of 2015/2016.
    [Show full text]
  • An Invitation to Monitor Georgia's Coastal Wetlands
    An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources).
    [Show full text]
  • Universidade Estadual Paulista Mapeamento De
    UNIVERSIDADE ESTADUAL PAULISTA Instituto de Geociências e Ciências Exatas Campus de Rio Claro MAPEAMENTO DE SENSIBILIDADE AO DERRAME DE ÓLEO DOS AMBIENTES COSTEIROS DOS MUNICÍPIOS DE SÃO VICENTE, SANTOS E GUARUJÁ – SP Volume I RAFAEL RIANI COSTA PERINOTTO Orientadora: Profa. Dra. Paulina Setti Riedel Co-orientador: Dr. João Carlos Carvalho Milanelli RIO CLARO (SP) 2010 UNIVERSIDADE ESTADUAL PAULISTA Instituto de Geociências e Ciências Exatas Campus de Rio Claro MAPEAMENTO DE SENSIBILIDADE AO DERRAME DE ÓLEO DOS AMBIENTES COSTEIROS DOS MUNICÍPIOS DE SÃO VICENTE, SANTOS E GUARUJÁ – SP Volume I RAFAEL RIANI COSTA PERINOTTO Orientadora: Profa. Dra. Paulina Setti Riedel Co-orientador: Dr. João Carlos Carvalho Milanelli Dissertação de Mestrado elaborada junto ao Programa de Pós-Graduação em Geociências e Meio Ambiente para obtenção do título de Mestre em Geociências e Meio Ambiente RIO CLARO (SP) 2010 Comissão Examinadora ________________________________ Profa. Dra. Paulina Setti Riedel ________________________________ Dra. Íris Regina Fernandes Poffo ________________________________ Prof. Dr. Gilberto José Garcia ________________________________ Rafael Riani Costa Perinotto _______________________________________________ Aluno Rio Claro, 03 de agosto de 2010 Resultado: APROVADO AGRADECIMENTOS Agradeço, A todos que direta ou indiretamente contribuíram para a execução deste projeto. À FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) pela Bolsa de Mestrado e pela Reserva Técnica concedidas. À CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) pelos primeiros 6 meses de bolsa no início do Mestrado. Em nome da Rosângela, agradeço ao Programa de Pós-Graduação em Geociências e Meio Ambiente e a todos os colegas, professores e amigos. À Profa. Dra. Paulina Setti Riedel (orientadora) e ao Dr.
    [Show full text]
  • Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide
    EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide BASAL METAZOANS Dirk Erpenbeck Ludwig-Maximilians Universität München, Germany Simion Paul and Michaël Manuel Université Pierre et Marie Curie in Paris, France. Paulyn Cartwright University of Kansas USA. Oliver Voigt and Gert Wörheide Ludwig-Maximilians Universität München, Germany Keywords: Metazoa, Porifera, sponges, Placozoa, Cnidaria, anthozoans, jellyfishes, Ctenophora, comb jellies Contents 1. Introduction on ―Basal Metazoans‖ 2. Phylogenetic relationships among non-bilaterian Metazoa 3. Porifera (Sponges) 4. Placozoa 5. Ctenophora (Comb-jellies) 6. Cnidaria 7. Cultural impact and relevance to human welfare Glossary Bibliography Biographical Sketch Summary Basal metazoans comprise the four non-bilaterian animal phyla Porifera (sponges), Cnidaria (anthozoans and jellyfishes), Placozoa (Trichoplax) and Ctenophora (comb jellies). The phylogenetic position of these taxa in the animal tree is pivotal for our understanding of the last common metazoan ancestor and the character evolution all Metazoa,UNESCO-EOLSS but is much debated. Morphological, evolutionary, internal and external phylogenetic aspects of the four phyla are highlighted and discussed. SAMPLE CHAPTERS 1. Introduction on “Basal Metazoans” In many textbooks the term ―lower metazoans‖ still refers to an undefined assemblage of invertebrate phyla, whose phylogenetic relationships were rather undefined. This assemblage may contain both bilaterian and non-bilaterian taxa. Currently, ―Basal Metazoa‖ refers to non-bilaterian animals only, four phyla that lack obvious bilateral symmetry, Porifera, Placozoa, Cnidaria and Ctenophora. ©Encyclopedia of Life Support Systems (EOLSS) EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide These four phyla have classically been known as ―diploblastic‖ Metazoa.
    [Show full text]
  • Title BOLINOPSIS RUBRIPUNCTATA N. SP., a NEW LOBATEAN
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository BOLINOPSIS RUBRIPUNCTATA N. SP., A NEW Title LOBATEAN CTENOPHORE FROM SETO Author(s) Tokioka, Takasi PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1964), 12(1): 93-99 Issue Date 1964-06-30 URL http://hdl.handle.net/2433/175350 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University BOLINOPSIS RUBRIPUNCTATA N. SP., A NEW LOBATEAN CTENOPHORE FROM SETO l) TAKAS! TOKIOKA Seto Marine Biological Laboratory With 3 Text-figures On the early afternoon of January 6 this year Mr. Torao YAMAMOTO brought me a perfect living Cyanea nozakii KrsHINOUYE of a medium-size caught inside the wharf at the fishing port of Seto about 1 km east of the laboratory and told me that many ctenophores were gathered near the northwest corner of the port together with some cyaneas. In a hope to get another good specimen of Cyanea or to find out some interesting medusae, I followed him to the port by bicycle and made a close observation there. The swarm there formed was composed mainly of Bolinopsis mikado (MosER), a significant number of Ocyropsis fusca RANG and some of Leucothea japonica KoMAr, Cestum amphitrites MERTENS and Beroe cucumis FABRICIUS, besides a considerable amount of Noctiluca and some hydromedusae. Among those ctenophores I found two specimens of a lobatean of a moderate size which were respectively marked distinctly with scarlet lines and large bright red spots up to about 15 in number. One of them was caught by bucket and the other by polyethylene bag, and then both specimens were carried to the laboratory on foot.
    [Show full text]