E-10948 Spine & Cover Layout

Total Page:16

File Type:pdf, Size:1020Kb

E-10948 Spine & Cover Layout About the cover: Left: Mars Pathfinder Sojourner rover showing Lewis’ Wheel Abrasion Experiment (p. 31) on a special section of the center wheel. This experiment measured abrasion to analyze the consistency of the Martian soil. Two other Lewis experiments were conducted on the Sojourner rover: electrostatic charging experi- ments (p. 32), which measured the accumulation of static charge, and the Materials Adherence Experi- ment, which measured dust accumulation (p. 34) to assess its potential interference on solar panels. In addition, Lewis helped test the air-bag landing system for the Mars Pathfinder, modeled solar energy on Mars to determine solar panel requirements, and provided tungsten points for removing potentially damaging electrostatic charge from the rover. Visit Lewis on the World Wide Web to find out more about our involvement in the Mars Pathfinder mission (http://www.lerc.nasa.gov/WWW/PAO/html/ marspath.htm). Top right: Joint Strike Fighter model installed in Lewis’ 8- by 6-Foot Supersonic Wind Tunnel (p. 87). Bottom right: Astronaut crew training performed onboard Lewis’ DC–9 aircraft (p. 134) in preparation for the Microgravity Science Laboratory missions flown on the Space Shuttle Columbia in April and July of 1997. Research & Technology 1997 National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 NASA/TM—1998-206312 Trade names or manufacturers' names are used in this report for identification only. This usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration. Available from NASA Center for Aerospace Information National Technical Information Service Parkway Center 5287 Port Royal Road 7121 Standard Drive Springfield, VA 22100 Hanover, MD 21076-1320 Price Code: A08 Introduction NASA Lewis Research Center is responsible for developing and transferring critical technologies that address national priorities in aeropropulsion and space applications in part- nership with U.S. industries, universities, and Government institutions. As NASA’s designated Lead Center for Aeropropulsion, our role is to develop, verify, and transfer aeropropulsion tech- ologies to U.S. industry. As NASA’s designated Center of Excellence in Turbomachinery, our role is to develop new and innovative turbomachinery technology to improve the reliability, performance, efficiency and affordability, capacity, and environmental compatibility of future aerospace vehicles. We also maintain a science and technology development role in aeropropulsion, communications, space power and onboard propulsion, and microgravity fluid physics and combustion. We are committed to enabling nonaerospace U.S. industries to benefit directly from the technologies developed through our programs to maximize the benefit to the Nation and the return on each taxpayer’s investment. In addition, we are aggressively pursuing continuous improvement in our management and business practices and striving for diversity in our workforce as together we push the edge of technology in space and aeronautics. The Lewis Research Center is a unique facility located in an important geographical area, the southwest corner of Cleveland, Ohio. Situated on 350 acres of land adjacent to the Cleveland Hopkins International Airport, Lewis comprises more than 140 buildings that include 24 major facilities and over 500 specialized research and test facilities. Additional facilities are located at Plum Brook Station, which is about 50 miles west of Cleveland. Over 3700 people staff Lewis, including civil service employees and support service contractors. Over half of them are scientists and engineers, who plan, conduct or oversee, and report on our research tasks and projects. They are assisted by technical specialists, skilled workers, and an administrative staff. Our end product is knowledge. This report is designed to help us make this knowledge fully available to potential users—the aircraft engine industry, the energy industry, the automotive industry, the aerospace industry, and others. It is organized so that a broad cross section of the community can readily use it. Each article begins with a short introductory paragraph that should prove to be a valuable tool for the layperson. These articles summarize the progress made during the year in various technical areas and portray the technical and administrative support associated with Lewis’ technology programs. We hope that the information is useful to all. If additional information is desired, readers are encouraged to contact the researchers identified in the articles and to visit Lewis on the World Wide Web (http://www.lerc.nasa.gov/). This document is available on the World Wide Web (http://www.lerc.nasa.gov/WWW/RT). Donald J. Campbell Director iii NASA Lewis Research Center Senior Management Director Deputy Director Deputy Director Chief for Operations Scientist Donald J. Campbell Martin P. Kress Julian M. Earls Marvin E. Goldstein Office of the Office of Safety, Chief Counsel Environmental, and Mission Assurance J. William Sikora Vernon W. Wessel iv Aeropropulsion Plans and Office of Equal Chief Financial Office of Human Office of Acquistion Research Program Office Programs Office Opportunity Programs Officer Resources Paul L. Burstadt Olga D. Gonzalez-Sanabria Belinda M. Roberts Robert E. Fails Maury L. Blanton Julian M. Earls* Aeronautics Research and Space Engineering and External Technology Technical Services Programs Carol J. Russo Larry A. Diehl Gerald J. Barna Joseph A. Yuska John M. Hairston, Jr. *Acting CD-48534 December 1997 NASA Lewis Research Center Director Deputy Director Deputy Director for Operations Chief Scientist 0100 Office of Office of Safety, Environmental The Chief Counsel and Mission Assurance 0120 0500 Project Quality Institutional Environmental Security Assurance Management Safety Management Management Office Office Office Office Office 0510 0520 0530 0540 0550 Inspector General Army Office 0160 0300 v Aeropropulsion Research Plans and Programs Office of Chief Financial Officer Office of Office of Program Office Office Equal Opportunity Human Resources Acquisition 0140 0170 0180 0200 0400 0600 Special Hypersonics Resources Financial Procurement Logistics Projects Projects Analysis and Management Division and Technical Office Office Management Division Information Office Division 0141 0142 0210 0220 0610 0620 Office Aeronautics Directorate Research and Technology of Space Directorate Engineering and Technical External Programs University Directorate Programs Services Directorate Directorate 2000 5000 5010 6000 7000 9000 Subsonic High-Speed Materials Power and On-Board Instrumentation Space Launch Vehicle and Plum Brook Aircraft Computer Educational Community Commercial Systems Systems Division Propulsion and Controls Communications Transportation Management Operations Services Program and Media Technology Office Office Technology Division Office Projects Office Office Division Office Relations Office Division Office Office 2200 2300 5100 5400 5500 6100 6500 7030 7040 7100 9200 9300 9400 Propulsion Computing Communications Turbomachinery Structures Microgravity Power Test Manufacturing Facilities Systems and Interdisciplinary Technology and Propulsion and Acoustics Science and Propulsion Installations Engineering and Test Analysis Systems Division Systems Division Division Office Division Division Engineering Office Office Division Division 2400 2900 5600 5800 5900 6700 6900 7200 7400 7500 Engineering Systems Design Engineering and Analysis Division Division Est. 10-1-96 7700 7800 CD-44972 Rev. 3-3-97 Gerald J. Barna Guion B. Bluford Director of Space Support Service Contractor Liaison Joseph A. Yuska Director of Engineering and Technical Services Donald J. Campbell Director Dennis M. Sender Special Assistant to the Quality Council Virginia A. Cantwell President LESA Carol J. Russo Director of Aeronautics Quality Larry A. Diehl Director of Research vi Council and Technology Martin P. Kress Deputy Director Julian M. Earls Deputy Director for Operations NO PHOTO AVAILABLE Larry C. Kalb President AFGE Robert E. Fails Chief Financial Officer John M. Hairston, Jr. Marvin E. Goldstein Director of External Programs Chief Scientist The Quality Council was established in October 1992 to adopt and implement a Total Quality (TQ) plan for Lewis. It is composed of Executive Council members as well as the president of the American Federation of Government Employees (AFGE), Local 2812, and the president of the Lewis Engineers and Scientists Association (LESA), IFPTE Local 28. A representative of major onsite support service contractors serves as a liaison. January 1998 Contents Aeronautics High Speed Systems High Speed Research—Propulsion Project Accomplishments . 2 Propulsion Systems Analysis Minimum Climb to Cruise Noise Trajectories Modeled for the High Speed Civil Transport . 3 Inlet Performance Analysis Code Developed . 4 Conceptual Design Method Developed for Advanced Propulsion Nozzles . 5 Computing and Interdisciplinary Systems Multiphysics Code Demonstrated for Propulsion Applications . 6 Flow of a Gas Turbine Engine Low-Pressure Subsystem Simulated . 8 Research and Technology Materials Assessing the Resistance of γ-Ti-47Al-2Nb-2Cr (at.%) to Foreign Object Damage . 12 Strengthening Precipitate Morphologies Fully Quantified in Advanced Disk Superalloys . 13 High-Temperature Compressor Material Development . 15 Method Developed for the High-Temperature Nondestructive Evaluation of Fiber-Reinforced Silicon
Recommended publications
  • The Power for Flight: NASA's Contributions To
    The Power Power The forFlight NASA’s Contributions to Aircraft Propulsion for for Flight Jeremy R. Kinney ThePower for NASA’s Contributions to Aircraft Propulsion Flight Jeremy R. Kinney Library of Congress Cataloging-in-Publication Data Names: Kinney, Jeremy R., author. Title: The power for flight : NASA’s contributions to aircraft propulsion / Jeremy R. Kinney. Description: Washington, DC : National Aeronautics and Space Administration, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017027182 (print) | LCCN 2017028761 (ebook) | ISBN 9781626830387 (Epub) | ISBN 9781626830370 (hardcover) ) | ISBN 9781626830394 (softcover) Subjects: LCSH: United States. National Aeronautics and Space Administration– Research–History. | Airplanes–Jet propulsion–Research–United States– History. | Airplanes–Motors–Research–United States–History. Classification: LCC TL521.312 (ebook) | LCC TL521.312 .K47 2017 (print) | DDC 629.134/35072073–dc23 LC record available at https://lccn.loc.gov/2017027182 Copyright © 2017 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks National Aeronautics and Space Administration Washington, DC Table of Contents Dedication v Acknowledgments vi Foreword vii Chapter 1: The NACA and Aircraft Propulsion, 1915–1958.................................1 Chapter 2: NASA Gets to Work, 1958–1975 ..................................................... 49 Chapter 3: The Shift Toward Commercial Aviation, 1966–1975 ...................... 73 Chapter 4: The Quest for Propulsive Efficiency, 1976–1989 ......................... 103 Chapter 5: Propulsion Control Enters the Computer Era, 1976–1998 ........... 139 Chapter 6: Transiting to a New Century, 1990–2008 ....................................
    [Show full text]
  • Tasarlanmış Bir Turbojet Motorunun Maksimum Çalışma Performansının Doğrulanması
    Erciyes Üniversitesi Erciyes University Fen Bilimleri Enstitüsü Dergisi Journal of Institue Of Science and Technology Cilt 35, Sayı 1,2019 Volume35, Issue1, 2019 Ekserji Analiz Metoduyla Füzeler ve İnsansız Hava Araçları (UAV) Tasarlanmış Bir Turbojet Motorunun Maksimum Çalışma Performansının Doğrulanması Özgür BALLI*12 * MSB Askeri Fabrikalar Genel Md.lüğü,1’inci Hava Bakım Fabrika Md.lüğü, Tepebaşı/ESKİŞEHİR [email protected], [email protected], Tel:536-6771826 2ORCID:0000-0001-6465-8387 (Alınış / Received: 16.01.2019, Kabul / Accepted: 09.02.2019, Online Yayınlanma/ Published Online: 30.04.2019) Anahtar Kelimeler Öz: Bu çalışma, füzeler ve insansız hava araçları için tasarlanan bir turbojet Füzeler motorunun performans doğrulaması ekserji analiz metodu ile yapılmıştır. Bu İnsansız Hava Araçları araştırma için bazı ekserjetik performans doğrulama parametreleri geliştirilmiş ve Turbojet Motoru kullanılmıştır. Bu parametreler, yeni geliştirilen motorun performans, Exergy Analizi sürdürülebilirlik ve çevresel etki seviyelerini belirlemek için motor tasarımcılarına Performans Parametreleri yardımcı olacaktır. Maksimum çalışma şartları için incelenen turbojet motorunun ekserji verimi, iyileştirilmiş ekserji verimi, atık ekserji oranı, yakıt ekserjisi atık oranı, atık ekserji iyileştirme potansiyeli oranı, üretim kaybı oranı, yakıt ekserjisi iyileştirme potansiyeli oranı, atık ekserji maliyet akışı, çevresel etki faktörü, ekolojik etki faktörü, sürdürebilirlik indeksi ve sürdürülebilir verimlilik faktörü; sırasıyla %9.71, %52.55,
    [Show full text]
  • Microgravity and Macromolecular Crystallography Craig E
    CRYSTAL GROWTH & DESIGN 2001 VOL. 1, NO. 1 87-99 Review Microgravity and Macromolecular Crystallography Craig E. Kundrot,* Russell A. Judge, Marc L. Pusey, and Edward H. Snell Mail Code SD48 Biotechnology Science Group, NASA Marshall Space Flight Center, Huntsville, Alabama 35812 Received August 24, 2000 ABSTRACT: Macromolecular crystal growth is seen as an ideal experiment to make use of the reduced acceleration environment provided by an orbiting spacecraft. The experiments are small, are simply operated, and have a high potential scientific and economic impact. In this review we examine the theoretical reasons why microgravity is a beneficial environment for crystal growth and survey the history of experiments on the Space Shuttle Orbiter, on unmanned spacecraft, and on the Mir space station. The results of microgravity crystal growth are considerable when one realizes that the comparisons are always between few microgravity-based experiments and a large number of earth-based experiments. Finally, we outline the direction for optimizing the future use of orbiting platforms. 1. Introduction molecules, including viruses, proteins, DNA, RNA, and complexes of those molecules. In this review, the terms Macromolecular crystallography is a multidisciplinary protein or macromolecule are used to refer to this entire science involving the crystallization of a macromolecule range. or complex of macromolecules, followed by X-ray or The reduced acceleration environment of an orbiting neutron diffraction to determine the three-dimensional spacecraft has been posited as an ideal environment for structure. The structure provides a basis for under- biological crystal growth, since buoyancy-driven convec- standing function and enables the development of new tion and sedimentation are greatly reduced.
    [Show full text]
  • Summary of Liquid Propulsion System Needs in Support of The
    · m~-W Summary ofLiquid Propulsion System Needs in Support ofthe Constellation Program Terry Lorier, Program Manager, Space Propulsion Systems Development Pratt & Whitney Rocketdyne Canoga Park, CA Phil Sumrall, AdvancedPlanning Manager, Ares Projects Office NASA Marshall Space Flight Center Huntsville. AL Michael Baine, Ph.D., Orion Propulsion System Manager NASA Johnson Space Center Houston, TX Abstract In January 2004, the President ofthe United States established the Vision for Space Exploration (VSE) to complete the International Space Station, retire the Space Shuttle and develop its replacement, and expand the human presence on the Moon as a stepping stone to human exploration ofMars and worlds beyond. In response, NASA developed the Constellation Program, consisting ofthe components shown in Figure 1. This paper will summarize the manned spaceflight liquid propulsion system needs in support ofthe Constellation Program over the next 10 years. It will address all liquid engine needs to support human exploration from low Earth orbit (LEO) to the lunar surface, including an overview ofengines currently under contract, those baselined but not yet under contract, and those propulsion needs that have yet to be initiated. There may be additional engine needs for early demonstrators, but those will not be addressed as part ofthis paper. Also, other portions ofthe VSE architecture, including the planned Orion abort test boosters and the Lunar Precursor Robotic Program, are not addressed here as they either use solid motors or are focused on unmanned elements ofreturning humans to the Moon. Our Exploration Fleet What will the vehicles look like? Orion Crew Exploration Vehicle Figure 1. Constellation Program components I.
    [Show full text]
  • Failures in Spacecraft Systems: an Analysis from The
    FAILURES IN SPACECRAFT SYSTEMS: AN ANALYSIS FROM THE PERSPECTIVE OF DECISION MAKING A Thesis Submitted to the Faculty of Purdue University by Vikranth R. Kattakuri In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering August 2019 Purdue University West Lafayette, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF THESIS APPROVAL Dr. Jitesh H. Panchal, Chair School of Mechanical Engineering Dr. Ilias Bilionis School of Mechanical Engineering Dr. William Crossley School of Aeronautics and Astronautics Approved by: Dr. Jay P. Gore Associate Head of Graduate Studies iii ACKNOWLEDGMENTS I am extremely grateful to my advisor Prof. Jitesh Panchal for his patient guidance throughout the two years of my studies. I am indebted to him for considering me to be a part of his research group and for providing this opportunity to work in the fields of systems engineering and mechanical design for a period of 2 years. Being a research and teaching assistant under him had been a rewarding experience. Without his valuable insights, this work would not only have been possible, but also inconceivable. I would like to thank my co-advisor Prof. Ilias Bilionis for his valuable inputs, timely guidance and extremely engaging research meetings. I thank my committee member, Prof. William Crossley for his interest in my work. I had a great opportunity to attend all three courses taught by my committee members and they are the best among all the courses I had at Purdue. I would like to thank my mentors Dr. Jagannath Raju of Systemantics India Pri- vate Limited and Prof.
    [Show full text]
  • History Section (Intro)
    European Business Aviation Association Business Aviation in Europe 30th Anniversary Commemorative Book Editors: Ian Sheppard, Guy Norris, Mark Wagner The Business Aviation Market The current boom in business aviation is perhaps not much of a surprise, when you consider how large airports have become such bottlenecks to fluent travel. But even before the increased security measures following the events of 2001 the benefits of business aviation were very apparent, and even the growth in regional aviation from smaller, less congested airports has done little to dampen the sudden surge in demand for bespoke operations. Boeing Business Jet (BBJ) n the surface, using a corporate jet looks to your marked a real turning point in the industry's fortunes, both O average man in the street like an extravagance, and in the US and with ramifications rippling around the world. there is no denying that in some cases it is. Accepting The General Aviation Manufacturers Association that justification is a central plank of acceptance has led (GAMA), which is based in Washington DC but represents the industry to come up with various novel schemes for most of the worlds general/business aircraft shared fractional ownership and buying bulk hours, thus manufacturers and some component manufacturers (a bringing the benefits of fast, flexible point-to-point travel total of 60), says in its Statistical Handbook that “In the to businessmen around the world. 13 years since GARA the general aviation industry has In addition the shere variety of models compared with seen a rebirth.” It adds that since then, manufacturers 20 years ago, when there were but a handful of such have shipped 33,000 type-certificated, fixed-wing GA aircraft, allows for 'right-sizing' for a mission and gives aircraft worth over $130bn.
    [Show full text]
  • Study of a Nozzle Vector Control for a Low Cost Mini-Launcher
    Study of a nozzle vector control for a low cost mini-launcher Roberto Rodr´ıguez SUPERVISED BY Joshua Tristancho Universitat Politecnica` de Catalunya Master in Aerospace Science & Technology July 2011 Study of a nozzle vector control for a low cost mini-launcher BY Roberto Rodr´ıguez DIPLOMA THESIS FOR DEGREE Master in Aerospace Science and Technology AT Universitat Politecnica` de Catalunya SUPERVISED BY: Joshua Tristancho Applied Physics department ABSTRACT This study is addressed to the control system of a mini-launcher. A reaction control based on purge pressure from a solid propellant engine of a main stage, or using cold gas from a storage tank will be the control method. Pulse modulator system will be the actuation method studied, and simulations about its suitability will be done with Simulink. In this thesis, we try to check if this method is able to be implemented in a low cost way the Wiki-Launcher, a mini-launcher less than 100 kg. At the time we try to check if the control allowed by the reaction control can manage all the phases of the flight. Both possible con- trol configurations are going to be analyzed. Keywords: Nozzle Vector Control, Low cost mini-launcher, Solid propellant Acknowledgements I’m grateful to my parents and my friends for supporting me during this work. I want thank in a special way to Joshua Tristancho for his continuous help and support during this research work and for give me the opportunity to participate within his team in this project. I’m very grateful to all the WikiSat members who helped and supporting me with the re- alization of the thesis, specially Joshua Tristancho, Victor Kravchenco, Esteve Bardolet, Sonia Perez,´ Lara Navarro and Raquel Gonzalez.´ I want to thank the EETAC school for the facilities and tools they have provided to support this work.
    [Show full text]
  • The General Aviation Propulsion (GAP) Program
    https://ntrs.nasa.gov/search.jsp?R=20080031112 2019-08-30T04:54:59+00:00Z NASA/CR—2008-215266 The General Aviation Propulsion (GAP) Program Williams International Walled Lake, Michigan July 2008 NASA STI Program . in Profi le Since its founding, NASA has been dedicated to the papers from scientifi c and technical advancement of aeronautics and space science. The conferences, symposia, seminars, or other NASA Scientifi c and Technical Information (STI) meetings sponsored or cosponsored by NASA. program plays a key part in helping NASA maintain this important role. • SPECIAL PUBLICATION. Scientifi c, technical, or historical information from The NASA STI Program operates under the auspices NASA programs, projects, and missions, often of the Agency Chief Information Offi cer. It collects, concerned with subjects having substantial organizes, provides for archiving, and disseminates public interest. NASA’s STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and • TECHNICAL TRANSLATION. English- its public interface, the NASA Technical Reports language translations of foreign scientifi c and Server, thus providing one of the largest collections technical material pertinent to NASA’s mission. of aeronautical and space science STI in the world. Results are published in both non-NASA channels Specialized services also include creating custom and by NASA in the NASA STI Report Series, which thesauri, building customized databases, organizing includes the following report types: and publishing research results. • TECHNICAL PUBLICATION. Reports of For more information about the NASA STI completed research or a major signifi cant phase program, see the following: of research that present the results of NASA programs and include extensive data or theoretical • Access the NASA STI program home page at analysis.
    [Show full text]
  • Will Very Light Jets Replace King Air Turboprops for Business Travel?
    Applied Aviation Sciences - Prescott College of Aviation 7-2010 Will Very Light Jets Replace King Air Turboprops for Business Travel? Vince Jean-Paul Pujalte Embry-Riddle Aeronautical University, [email protected] Follow this and additional works at: https://commons.erau.edu/pr-meteorology Part of the Business Commons, and the Management and Operations Commons Scholarly Commons Citation Pujalte, V. J. (2010). Will Very Light Jets Replace King Air Turboprops for Business Travel?. , (). Retrieved from https://commons.erau.edu/pr-meteorology/5 This Article is brought to you for free and open access by the College of Aviation at Scholarly Commons. It has been accepted for inclusion in Applied Aviation Sciences - Prescott by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. WILL VERY LIGHT JETS REPLACE KING AIR TURBOPROPS FOR BUSINESS TRAVEL? by Vince Jean-Paul Pujalte A Graduate Capstone Project Submitted to the Extended Campus In Partial Fulfillment of the Requirements of the Degree of Master of Aeronautical Science Embry-Riddle Aeronautical University Extended Campus Tucson Center July 2010 WILL VERY LIGHT JETS REPLACE KING AIR TURBOPROPS FOR BUSINESS TRAVEL? By Vince Jean-Paul Pujalte This Graduate Capstone Project was prepared under the direction of the candidate’s Project Review Committee Member, Mr. Nolan Davidson, Adjunct Assistant Professor, Extended Campus, and the candidate’s Project Review Committee Chair, Dr. Mary Lou Collins, Associate Professor, Extended Campus, and has been approved by the Project Review Committee. It was submitted to the Extended Campus in partial fulfillment of the requirements for the degree of Master of Aeronautical Science.
    [Show full text]
  • NASA's Composite Case Armor Flying on Cessna Jets
    National Aeronautics and Space Administration NASA’s Composite Case Armor Flying on Cessna Jets NASA’s Glenn Research Center, Williams International, Benefits of Technology Transfer and A&P Technology partnered to develop a composite • Enhances flight safety: Although loss of a fan blade during flight is a rare event, jet engine fan case that is 30 percent lighter than damage caused by the released blade can metal fan cases and strong enough to contain a be catastrophic. This novel, high-strength technology enables use of the lighter weight released titanium blade. The resulting weight reduction materials while maintaining the required level translates directly into improved fuel efficiency, lower of safety for pilots, crew, and passengers. greenhouse gas emissions, increased payload, and • Sets new standard for industry to follow: greater aircraft range. During research and testing, The three-layered case armor is the first ever composite fan case capable of containing Glenn developed laboratory-scale ballistic impact a titanium blade during a blade-out event, testing and analysis methods that will save millions enabling composites to be more widely used in aeronautics. in aircraft design and development costs compared • Lowers greenhouse gas emissions: Aircraft to approaches that rely on full engine testing. A&P that use the case armor are more fuel-efficient Technology has commercialized numerous spinoffs and reduce harmful CO2 emissions. from the novel braided material they developed for the • Generates additional spinoffs that benefit society: The collaboration with fan case. Williams International incorporated the com- A&P Technology enabled the use of new posite case armor into its FJ44-4A engine, which is braided composite materials in high-pressure storage tanks and pressure vessels.
    [Show full text]
  • Development of a Fast-Response Variable-Amplitude Programmable Reaction Control System
    NISTIR 5118 Development of a Fast-Response Variable-Amplitude Programmable Reaction Control System Building and Fire Research Laboratory Gaithersburg, Maryland 20899 NIST United States Department of Commerce Technology Administration QC National Institute of Standards and Technology 100 .056 //5118 1993 /' 'i \ NISTIR 5118 r. Development of a Fast-Response Variable-Amplitude Programmable Reaction Control System William C. Stone January 1993 Building and Fire Research Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 U.S. Department of Commerce Ronald H. Brown, Secretary National Institute of Standards and Technology John W. Lyons, Director Abstract This report describes a high speed loading system comprised of: a piezoelectric stack and an associated microprocessor-based programmable DC power source; a low-loss mechanical displacement amplifier; a high pressure spring-loaded axial valve; an integral high pressure valve seat; an expansion nozzle; and a high pressure gas supply. A half square wave voltage signal of varying duration and amplitude was used to drive the piezoelectric stack in such a manner as to produce changing displacements which were subsequently amplified by a monolithically milled hinged anvil. The anvil is connected to a valve core which seats upon, and is normally forced closed upon a specially hardened throat of an expansion nozzle by means of a compression spring. The interior side of the thruster nozzle communicates with a high pressure gas supply. The flow of gas through the nozzle is normally prohibited by the spring loaded valve core. As the piezoelectric stack expands under computer control the valve core is lifted off the nozzle throat permitting gas to expand through the nozzle and create thrust that is directly proportional to the control signal from the microprocessor.
    [Show full text]
  • With Burt Rutan's Race to Space, Dan Linehan Tells the Dramatic Story Of
    With Burt Rutan’s Race to Space, Dan Linehan tells the dramatic story of Burt Rutan’s pioneering aviation work that has included building a racing biplane, the X Prize–winning SpaceShipOne and Voyager, the first airplane to fly around the world. Linehan gives Rutan the credit he is due as one of the architects of twenty-first century private space travel. As he did with his earlier book, SpaceShipOne: An Illustrated History, Linehan also shows himself to be an engaging writer who combines scientific know-how with behind-the- scenes reporting that makes this book read like an adventure story. —Paul G. Allen, co-winner of the Ansari X Prize Dan has done a fabulous job of describing the incredible journey of one of the most accomplished aircraft designers of all time, Burt Rutan. If you weren’t impressed by Burt before now, you certainly will be after reading this absolutely fascinating story of the incredible journey of Burt Rutan—from a young model airplane champion to legendaryCOPY aircraft designer among the ranks of Douglas, Heinemann, Lockheed, and Kelly Johnson. I personally read it from one end to the other and loved it. This is a book you will read from cover to cover without being able to put it down. What a fascinating story of the aircraft designer of our time, Burt Rutan. His accomplishments as an aircraft designer and builder revolutionized the way airplanes are made. Way to go Dan Linehan for creating a mesmerizing collection of stories! —Robert “Hoot” Gibson, Space Shuttle Commander REVIEW Burt Rutan Page v4.indd 1 2/3/11 2:30:17 PM burt rutan’s COPY race to space THE MAGICIAN OF MOJAVE AND HIS FLYING INNOVATIONS dan linehan REVIEW Burt Rutan Page v4.indd 2-3 2/3/11 2:30:18 PM First published in 2011 by Zenith Press, an imprint of MBI Publishing Company, 400 1st Avenue North, Suite 300, Minneapolis, MN 55401 USA.
    [Show full text]