The California Volcano Observatory—Monitoring the State's

Total Page:16

File Type:pdf, Size:1020Kb

The California Volcano Observatory—Monitoring the State's U.S. GEOLOGICAL SURVEY—REDUCING THE RISK FROM VOLCANO HAZARDS The California Volcano Observatory—Monitoring the State’s Restless Volcanoes Medicine olcanic eruptions happen in Mount Shasta Lake Volcano Vthe State of California about as frequently as the largest earthquakes Lassen Volcanic Center on the San Andreas Fault Zone. At Redding least 10 eruptions have taken place in California in the past 1,000 years—most recently at Lassen Peak in Lassen Volcanic National Park (1914 to 1917) in the northern part of the State—and As a part of the U.S. Geological future volcanic eruptions are inevitable. Survey’s Volcano Hazards The U.S. Geological Survey California Clear Lake Sacramento Program, the California Volcano Volcanic Field Long Valley Observatory aims to advance Volcano Observatory monitors the Volcanic Region scientific understanding of State’s potentially hazardous volcanoes. San Francisco volcanic processes and lessen Ubehebe the harmful impacts of volcanic CALIFORNIA Craters activity in the volcanically active USGS areas of California. More than 50 volcanoes in the CALIFORNIA Fresno United States have erupted one or VOLCANO more times in the past 200 years. The OBSERVATION most volcanically active regions are in Coso Volcanic Field Hawaii, Alaska, Washington, Oregon, EXPLANATION and California. California’s volcanoes Volcano—By threat rank are dispersed throughout the State—from High to very high near its northern border with Oregon Moderate to its southern border with Mexico. Volcano that erupted within the The U.S. Geological Survey California last 3,000 years Los Angeles Volcano Observatory (USGS CalVO) in 0 25 50 MILES Salton Buttes Menlo Park watches over California’s 0 25 50 KILOMETERS potentially hazardous volcanoes to help Base from 2012 U.S. Geological Survey 100-meter digital data communities prepare for, and respond to, Volcanoes of very high to low threat are San Diego volcanic activity. scattered throughout California, from the Oregon border (north) to Mexico (south). Other older volcanoes in California are of less concern. California’s volcano watch list is subject to change as new data on past eruptive activity Some California Volcanoes are are collected, as volcanic unrest changes, and as populations in threatened areas grow or More Hazardous Than Others decline. The half red/half yellow triangle for the Long Valley Volcanic Region denotes that it The USGS has ranked the volcanic is composed of four volcanic centers ranging from moderate to very high threat. threat at all U.S. volcanoes using volcano California Volcanoes Erupt in age, types of potential hazards, and This type of low-level volcanic Various Styles and Produce estimates of the societal exposure to unrest can persist for decades or even Diverse Hazards those hazards. Sixteen volcanoes are hundreds of years without an eruption. on California’s watch list to monitor. Although steady, low-level unrest is Explosive eruptions blast lava Research suggests that partially molten normal for many young volcanoes, fragments (tephra) and gas into the air rock (magma) lies beneath seven of these rapidly accelerating unrest is cause for with tremendous force. The fi nest particles volcanoes—Medicine Lake Volcano, concern. At California’s most threatening (ash) billow upward, forming an eruption Mount Shasta, Lassen Volcanic Center, volcanoes, monitoring sensors are in column that can attain stratospheric Clear Lake Volcanic Field, the Long place to continuously track levels of heights in minutes. Simultaneously, Valley Volcanic Region, Coso Volcanic unrest. Such monitoring is necessary to searing volcanic gas laden with ash and Field, and Salton Buttes. At these determine the baseline, or background coarse chunks of lava may sweep down volcanoes, earthquakes (seismicity), hot level, of activity at a volcano to help the fl anks of the volcano as a pyroclastic springs, volcanic gas emissions, and (or) volcanologists know what is normal. fl o w . Ash in the eruption cloud, carried ground movement (deformation) attest to An uptick in unrest may be a sign of by the prevailing winds, is an aviation their restless nature. increased volcanic threat. hazard and may remain suspended for U.S. Department of the Interior Fact Sheet 2014–3120 U.S. Geological Survey ver. 1.1, June 2019 hundreds of miles before settling to the ground as ash fall. During less energetic effusive eruptions, hot, fl uid lava may issue from the volcano as lava fl ows that can cover many miles in a single day. Alternatively, a Prevailing wind sluggish plug of cooler, partially solidifi ed lava may push up at the vent during an effusive eruption, creating a lava dome. A growing Eruption cloud u p t i o lava dome may become so steep that it E r n collapses, violently releasing pyroclastic fl ows l u m potentially as hazardous as those produced Tephra c o n during explosive eruptions. During and after an explosive or effusive (ash) eruption, loose volcanic debris on the fl anks of the volcano can be mobilized by heavy rainfall fall or melting snow and ice, forming powerful Lava dome fl oods of mud and rock (lahars) resembling Lava dome collapse Vent P y rivers of wet concrete. These can rush down r o c l valleys and stream channels as one of the most a s t i c destructive types of volcano hazards. w f l flo L o w tic a When a dormant volcano reawakens, las n Pyroc d sl a series of events commonly unfolds—the ide energy of eruptive activity increases, peaks, Lava flow and then gradually subsides as the volcano returns to a state of rest. The 1914 to 1917 Lahar (mud or debris flow) eruptions of Lassen Peak produced a yearlong Magma conduit series of minor steam blasts before a major explosion sent an eruption column 30,000 feet high and unleashed devastating pyroclastic fl ows and lahars. Windborne ash drifted 275 Volcanoes produce a variety of natural hazards that can damage infrastructure miles eastward and fell as far away as Elko, and negatively affect regional economies. This diagram shows the kinds of Nevada. The climactic phase of the eruption hazards that pose risks at volcanoes in California and elsewhere. Some hazards, was over in a matter of days, but recurring such as lahars and landslides, can occur even when a volcano is not erupting. steam blasts and lahars created hazardous Modified from “Geologic Hazards at Volcanoes” (USGS General Information conditions for several years afterwards. Product 64). Unlike other natural disasters, volcanic eruptions and their associated hazards can persist for months, years, or even decades before an “all clear” can be sounded. High to very high threat volcanoes. Several of California’s young volcanoes are less than 100 miles from major population centers. The inherent beauty of the State’s volcanic regions draws thousands of visitors each year, while their potential for geothermal energy has attracted industrial developers. Medicine Lake Volcano Mount Shasta Lassen Volcanic Center High threat Very high threat Very high threat Lava Beds National Monument, about 30 miles south This 14,162-foot-high volcano holds the Lassen Volcanic National Park, located about of Klamath Falls, Oregon, is located on the lower headwaters of the upper Sacramento 50 miles east of Redding, showcases the northern flank of the shield-shaped Medicine Lake River and is adjacent to several towns and dynamic history of this area and draws more Volcano and contains the highest concentration of major highway, rail, and air transportation than 350,000 visitors each year. Lassen Peak lava-tube caves in North America. corridors. erupted violently in the early twentieth century. The California Volcano Observatory uses several modern instrumental methods to monitor volcanoes. Three key techniques measure earthquakes (seismicity), movement of the ground surface (deformation), and the types and amounts of gases released from a volcano (gas geochemistry). Left: Sophisticated sensors like this Global Positioning System (GPS) receiver and seismometer in the Long Valley Volcanic Region can detect ground deformation and seismicity that occur as magma or volcanic gas rises toward the Earth’s surface in the weeks to months prior to an eruption. Data are telemetered from sensors in the field to USGS offices in Menlo Park, California, for processing and interpretation. Early detection of eruption precursors via a reliable volcano monitoring network is essential to hazard mitigation. Mammoth Mountain, a volcano made up of overlapping lava domes and flows, is visible behind the monitoring equipment. Right: Volcanic-gas “sniffer” at Mammoth Mountain continuously measures temperature plus carbon dioxide and other gas concentrations at a steaming vent. Volcano Hazard Zones Identify Statewide, California’s volcano CalVO Provides Timely Forecasting Threatened Areas. hazard zones encompass more than 24,000 of Volcano Hazards square miles, of which about half is Maps of volcano hazard zones convey privately owned and about half is public The mission of the California Volcano the types of hazards that may occur during a land that is managed by the U.S. Forest Observatory is to enhance public safety and future eruption and the areas of likely impact. Service, National Park Service, or Bureau minimize societal disruption in the event of The specifi c hazards to people and property of Land Management. Within these zones volcanic unrest through delivery of effective depend on the eruption style (effusive or are natural resources and infrastructure forecasts of volcanic activity derived from explosive), the volume of lava erupted, the essential to California’s water, power, monitoring and rigorous scientifi c research. location of the vent, the eruption duration, and transportation systems. Although less Whereas USGS maps of volcano hazard and local water-fl ow and precipitation than 1 percent of California’s population zones provide long-term perspectives on conditions. Low-energy effusive eruptions lives within a designated hazard zone, future volcanic activity, short-term forecasts are destructive, but generally not life more than 20 million recreational visitors give warning of likely outcomes under threatening.
Recommended publications
  • Warm Storage for Arc Magmas SEE COMMENTARY
    Warm storage for arc magmas SEE COMMENTARY Mélanie Barbonia,1, Patrick Boehnkea, Axel K. Schmittb, T. Mark Harrisona,1, Phil Shanec, Anne-Sophie Bouvierd, and Lukas Baumgartnerd aDepartment of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095; bInstitute of Earth Sciences, Heidelberg University, 69120 Heidelberg, Germany; cSchool of Environment, The University of Auckland, 1142 Auckland, New Zealand; and dInstitute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland Contributed by T. Mark Harrison, September 28, 2016 (sent for review August 2, 2016; reviewed by George Bergantz and Jonathan Miller) Felsic magmatic systems represent the vast majority of volcanic volumes outweigh their extrusive counterparts is sufficient rea- activity that poses a threat to human life. The tempo and son to assume that both may record different aspects of the magnitude of these eruptions depends on the physical conditions reservoir’s history (15–19); this is because melt-dominated volcanic under which magmas are retained within the crust. Recently the rocks may only represent a volumetrically minor part of the magma case has been made that volcanic reservoirs are rarely molten and reservoir, whereas plutonic rocks represent conditions in the crystal- only capable of eruption for durations as brief as 1,000 years dominated bulk of the magma reservoir (18). To provide a physical following magma recharge. If the “cold storage” model is generally context for our interpretive scheme, we point to simulations of applicable, then geophysical detection of melt beneath volcanoes is Bergantz et al. (19) that show that the full extent of thermal ex- likely a sign of imminent eruption.
    [Show full text]
  • Volcanic Ash and Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety
    Volcanic Ash and Aviation Safety: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety Edited by Thomas J. Casadevall U.S. GEOLOGICAL SURVEY BULLETIN 2047 Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety held in Seattle, Washington, in July I991 @mposium sponsored by Air Line Pilots Association Air Transport Association of America Federal Aviation Administmtion National Oceanic and Atmospheric Administration U.S. Geological Survey amposium co-sponsored by Aerospace Industries Association of America American Institute of Aeronautics and Astronautics Flight Safety Foundation International Association of Volcanology and Chemistry of the Earth's Interior National Transportation Safety Board UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.Government Library of Congress Cataloging-in-Publication Data International Symposium on Volcanic Ash and Aviation Safety (1st : 1991 Seattle, Wash.) Volcanic ash and aviation safety : proceedings of the First International Symposium on Volcanic Ash and Aviation Safety I edited by Thomas J. Casadevall ; symposium sponsored by Air Line Pilots Association ... [et al.], co-sponsored by Aerospace Indus- tries Association of America ... [et al.]. p. cm.--(US. Geological Survey bulletin ; 2047) "Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety held in Seattle, Washington, in July 1991." Includes bibliographical references.
    [Show full text]
  • (2000), Voluminous Lava-Like Precursor to a Major Ash-Flow
    Journal of Volcanology and Geothermal Research 98 (2000) 153–171 www.elsevier.nl/locate/jvolgeores Voluminous lava-like precursor to a major ash-flow tuff: low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado O. Bachmanna,*, M.A. Dungana, P.W. Lipmanb aSection des Sciences de la Terre de l’Universite´ de Gene`ve, 13, Rue des Maraıˆchers, 1211 Geneva 4, Switzerland bUS Geological Survey, 345 Middlefield Rd, Menlo Park, CA, USA Received 26 May 1999; received in revised form 8 November 1999; accepted 8 November 1999 Abstract The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (ϳ5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (Ͼ200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow- layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows.
    [Show full text]
  • Late Holocene Earthquake History of the Imperial and Brawley Faults, Imperial Valley, California
    Late Holocene Earthquake History of the Imperial and Brawley Faults, Imperial Valley, California Aron J. Meltzner and Thomas K. Rockwell Geological Sciences San Diego State University Final Technical Report U.S. Geological Survey Grant No. 02HQGR0008 February, 2004 Table of Contents List of Figures ii Abstract 1 Introduction 4 The Imperial Fault at Harris Road 10 Methodology 14 Trench Stratigraphy 15 Structure and Earthquake History 23 Event Z 23 Event X 23 Event V 24 Event T 24 Discussion 27 Conclusions 30 Acknowledgements 31 References Cited 32 Table 1a and 1b 35 Table 2 36 i LIST OF FIGURES Figure 1. Generalized fault map of the southern part of the Salton Trough. Surface ruptures indicated for the 1892 (M 71/4), 1934 (ML 7.1), 1940 (MW 6.9), 1968 (MW 6.5), 1979 (MW 6.4), and 1987 (MW 6.2 and 6.6) earthquakes. Figure 2. (a) Profiles of right-lateral component of displacement as a function of length along fault for the 1940 and 1979 ruptures. Comparison of slip in the two events shows important similarities and differences. Sieh (1996) argued that this example supports the concept of characteristic slip within individual patches of a fault, but not characteristic earthquakes. He argued that the sharp slip gradients in both 1940 and 1979 a few kilometers north of the international border suggest the presence of a fixed patch boundary. Redrafted from Sharp (1982b). (b) Diagram illustrating the “slip-patch” model as proposed by Sieh (1996) for the Imperial fault: accumulated over scores of earthquake cycles, slip along the fault between stepovers is uniform, and in both stepover regions, slip tapers to zero.
    [Show full text]
  • Explosive Eruptions
    Explosive Eruptions -What are considered explosive eruptions? Fire Fountains, Splatter, Eruption Columns, Pyroclastic Flows. Tephra – Any fragment of volcanic rock emitted during an eruption. Ash/Dust (Small) – Small particles of volcanic glass. Lapilli/Cinders (Medium) – Medium sized rocks formed from solidified lava. – Basaltic Cinders (Reticulite(rare) + Scoria) – Volcanic Glass that solidified around gas bubbles. – Accretionary Lapilli – Balls of ash – Intermediate/Felsic Cinders (Pumice) – Low density solidified ‘froth’, floats on water. Blocks (large) – Pre-existing rock blown apart by eruption. Bombs (large) – Solidified in air, before hitting ground Fire Fountaining – Gas-rich lava splatters, and then flows down slope. – Produces Cinder Cones + Splatter Cones – Cinder Cone – Often composed of scoria, and horseshoe shaped. – Splatter Cone – Lava less gassy, shape reflects that formed by splatter. Hydrovolcanic – Erupting underwater (Ocean or Ground) near the surface, causes violent eruption. Marr – Depression caused by steam eruption with little magma material. Tuff Ring – Type of Marr with tephra around depression. Intermediate Magmas/Lavas Stratovolcanoes/Composite Cone – 1-3 eruption types (A single eruption may include any or all 3) 1. Eruption Column – Ash cloud rises into the atmosphere. 2. Pyroclastic Flows Direct Blast + Landsides Ash Cloud – Once it reaches neutral buoyancy level, characteristic ‘umbrella cap’ forms, & debris fall. Larger ash is deposited closer to the volcano, fine particles are carried further. Pyroclastic Flow – Mixture of hot gas and ash to dense to rise (moves very quickly). – Dense flows restricted to valley bottoms, less dense flows may rise over ridges. Steam Eruptions – Small (relative) steam eruptions may occur up to a year before major eruption event. .
    [Show full text]
  • What Are Volcano Hazards?
    USGS science for a changing world U.S. GEOLOGICAL SURVEY REDUCING THE RISK FROM VOLCANO HAZARDS What are Volcano Hazards? \7olcanoes give rise to numerous T geologic and hydrologic hazards. Eruption Cloud Prevailing Wind U.S. Geological Survey (USGS) scien­ tists are assessing hazards at many Eruption Column of the almost 70 active and potentially Ash (Tephra) Fall active volcanoes in the United Landslide (Debris Avalanche) States. They are closely monitoring Acid Rain Bombs activity at the most dangerous of these Pyroclastic Flow volcanoes and are prepared to issue Lava Dome Collapse x Lava Dome warnings of impending eruptions or Pyroclastic Flow other hazardous events. Lahar (Mud or Debris Flow)jX More than 50 volcanoes in the United States Lava Flow have erupted one or more times in the past 200 years. The most volcanically active regions of the Nation are in Alaska, Hawaii, California, Oregon, and Washington. Volcanoes produce a wide variety of hazards that can kill people and destroy property. Large explosive eruptions can endanger people and property hundreds of miles away and even affect global climate. Some of the volcano hazards described below, such as landslides, can occur even when a vol­ cano is not erupting. Eruption Columns and Clouds An explosive eruption blasts solid and mol­ ten rock fragments (tephra) and volcanic gases into the air with tremendous force. The largest rock fragments (bombs) usually fall back to the ground within 2 miles of the vent. Small fragments (less than about 0.1 inch across) of volcanic glass, minerals, and rock (ash) rise high into the air, forming a huge, billowing eruption column.
    [Show full text]
  • Explosive Caldera-Forming Eruptions and Debris-Filled Vents: Gargle Dynamics Greg A
    https://doi.org/10.1130/G48995.1 Manuscript received 26 February 2021 Revised manuscript received 15 April 2021 Manuscript accepted 20 April 2021 © 2021 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Explosive caldera-forming eruptions and debris-filled vents: Gargle dynamics Greg A. Valentine* and Meredith A. Cole Department of Geology, University at Buffalo, 126 Cooke Hall, Buffalo, New York 14260, USA ABSTRACT conservation equations solved for both gas and Large explosive volcanic eruptions are commonly associated with caldera subsidence and particles, which are coupled through momentum ignimbrites deposited by pyroclastic currents. Volumes and thicknesses of intracaldera and (drag) and heat exchange (as in Sweeney and outflow ignimbrites at 76 explosive calderas around the world indicate that subsidence is com- Valentine, 2017; Valentine and Sweeney, 2018). monly simultaneous with eruption, such that large proportions of the pyroclastic currents The same approach was used to study discrete are trapped within the developing basins. As a result, much of an eruption must penetrate phreatomagmatic explosions in debris-filled its own deposits, a process that also occurs in large, debris-filled vent structures even in the vents (Sweeney and Valentine, 2015; Sweeney absence of caldera formation and that has been termed “gargling eruption.” Numerical et al., 2018), but here we focus on sustained dis- modeling of the resulting dynamics shows that the interaction of preexisting deposits (fill) charges. The simplified two-dimensional (2-D), with an erupting (juvenile) mixture causes a dense sheath of fill material to be lifted along axisymmetric model domain extends to an alti- the margins of the erupting jet.
    [Show full text]
  • Eruptive Proceses Responsible for Fall Tephra in the Upper Miocene Peralta Tuff, Jemez Mountains, New Mexico Sharon Kundel and Gary A
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/58 Eruptive proceses responsible for fall tephra in the Upper Miocene Peralta Tuff, Jemez Mountains, New Mexico Sharon Kundel and Gary A. Smith, 2007, pp. 268-274 in: Geology of the Jemez Region II, Kues, Barry S., Kelley, Shari A., Lueth, Virgil W.; [eds.], New Mexico Geological Society 58th Annual Fall Field Conference Guidebook, 499 p. This is one of many related papers that were included in the 2007 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • Geological Society of America Bulletin
    Downloaded from gsabulletin.gsapubs.org on January 15, 2014 Geological Society of America Bulletin Oceanic magmatism in sedimentary basins of the northern Gulf of California rift Axel K. Schmitt, Arturo Martín, Bodo Weber, Daniel F. Stockli, Haibo Zou and Chuan-Chou Shen Geological Society of America Bulletin 2013;125, no. 11-12;1833-1850 doi: 10.1130/B30787.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2013 Geological Society of America Downloaded from gsabulletin.gsapubs.org on January 15, 2014 Oceanic magmatism in sedimentary basins of the northern Gulf of California rift Axel K.
    [Show full text]
  • Assessing Eruption Column Height in Ancient Flood Basalt Eruptions
    This is a repository copy of Assessing eruption column height in ancient flood basalt eruptions. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/109782/ Version: Accepted Version Article: Glaze, LS, Self, S, Schmidt, A orcid.org/0000-0001-8759-2843 et al. (1 more author) (2017) Assessing eruption column height in ancient flood basalt eruptions. Earth and Planetary Science Letters, 457. pp. 263-270. ISSN 0012-821X https://doi.org/10.1016/j.epsl.2014.07.043 © 2016 Elsevier B.V. and United States Government as represented by the Administrator of the National Aeronautics and Space Administration. Published by Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]
  • Modeling of Pyroclastic Flows of Colima Volcano, Mexico: Implications for Hazard Assessment
    Journal of Volcanology and Geothermal Research 139 (2005) 103–115 www.elsevier.com/locate/jvolgeores Modeling of pyroclastic flows of Colima Volcano, Mexico: implications for hazard assessment R. Saucedoa,*, J.L. Macı´asb, M.F. Sheridanc, M.I. Bursikc, J.C. Komorowskid aInstituto de Geologı´a /Fac. Ingenierı´a UASLP, Dr. M. Nava No 5, Zona Universitaria, 78240 San Luis Potosı´, Mexico bInstituto de Geofı´sica, UNAM, Coyoaca´n 04510, D.F., Me´xico cGeology Department, SUNY at Buffalo, Buffalo, NY 14260, USA dInstitut de Physique du Globe de Paris, Paris, Cedex 05, France Accepted 29 June 2004 Abstract The 18–24 January 1913 eruption of Colima Volcano consisted of three eruptive phases that produced a complex sequence of tephra fall, pyroclastic surges and pyroclastic flows, with a total volume of 1.1 km3 (0.31 km3 DRE). Among these events, the pyroclastic flows are most interesting because their generation mechanisms changed with time. They started with gravitanional dome collapse (block-and-ash flow deposits, Merapi-type), changed to dome collapse triggered by a Vulcanian explosion (block-and-ash flow deposits, Soufrie`re-type), then ended with the partial collapse of a Plinian column (ash-flow deposits rich in pumice or scoria,). The best exposures of these deposits occur in the southern gullies of the volcano where Heim Coefficients (H/L) were obtained for the various types of flows. Average H/ L values of these deposits varied from 0.40 for the Merapi-type (similar to the block-and-ash flow deposits produced during the 1991 and 1994 eruptions), 0.26 for the Soufrie`re-type events, and 0.17–0.26 for the column collapse ash flows.
    [Show full text]
  • Super Eruptions.Pdf
    Aberystwyth University Super-eruptions Rymer, Hazel; Sparks, Stephen; Self, Stephen; Grattan, John; Oppenheimer, Clive; Pyle, David Publication date: 2005 Citation for published version (APA): Rymer, H., Sparks, S., Self, S., Grattan, J., Oppenheimer, C., & Pyle, D. (2005). Super-eruptions: Global effects and future threats. Geological Society of London. http://hdl.handle.net/2160/197 General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 10. Oct. 2021 The Jemez Mountains (Valles Caldera) super-volcano, New Mexico, USA. Many super-eruptions have come from volcanoes that are either hard to locate or not very widely known. An example is the Valles Caldera in the Jemez Mountains, near to Santa Fe and Los Alamos, New Mexico, USA. The caldera is the circular feature (centre) in this false-colour (red=vegetation) Landsat image, which shows an area about 80 kilometres across of the region in North-Central New Mexico.
    [Show full text]