MolecularMechanismsofAndrogenFunctions

Moleculairemechanismenvanandrogeenreceptorfuncties

Proefschrift

terverkrijgingvandegraadvandoctoraande ErasmusUniversiteitRotterdam opgezagvande rectormagnificus

Prof.dr.S.W.J.Lamberts

envolgensbesluitvanhetCollegevoorPromoties Deopenbareverdedigingzalplaatsvindenop woensdag21november2007om9.45uur door KarineSteketee geborente 'sHeerArendskerke Promotiecommissie

Promotor :

Prof.dr.ir.J.Trapman

Overigeleden :

Prof.dr.J.A.Grootegoed

Prof.dr.J.P.T.M.vanLeeuwen

Dr.ir.G.W.Jenster

Copromotor: Dr.A.O.Brinkmann TheworkdescribedinthisthesiswasperformedattheDepartmentofPathologyoftheJosephineNefkensInstitute, ErasmusMC,Rotterdam,theNetherlands. Printedby:Wöhrmann,Zutphen ISBN:9789085702955

2 In dankbare herinnering aan mijn vader Voor mijn moeder Voor Jeroen 3 Contents Listofabbreviations...... 6

Chapter1Generalintroduction...... 9

INTRODUCTION ...... 10 1.1NUCLEARRECEPTORS...... 10 1.1.1 General features of nuclear receptors ...... 10 1.1.2 Structure and functional domains of nuclear receptors...... 11 1.1.2.1Theaminoterminaldomain...... 11 1.1.2.2TheDNAbindingdomain ...... 12 1.1.2.3Thehingeregion...... 12 1.1.2.4Thebindingdomain...... 13 1.1.3 The subfamily of steroid receptors...... 14 1.1.4 Nuclear receptors in regulatory complexes ...... 15 1.1.5 Nuclear receptor coactivators ...... 18 1.1.6 Nuclear receptor ...... 20 1.1.7 Post-translational modifications of nuclear receptors ...... 21 1.1.8 Additional nuclear receptor functions ...... 22 1.2THEANDROGENRECEPTOR...... 24 1.2.1 General features of the AR ...... 24 1.2.1.1TheARNH 2terminaldomain...... 25 1.2.1.2TheARDNAbindingdomain...... 25 1.2.1.3TheARhingeregion ...... 26 1.2.1.4TheARligandbindingdomain...... 27 1.2.2 AR coregulators...... 28 1.2.2.1ARcoactivators ...... 29 1.2.2.2ARcorepressors...... 33 1.2.2.3TheARintranscriptionregulatorycomplexes ...... 35 1.2.2.4 Post-translational modifications of the AR...... 37 1.2.3 AR LBD interaction with AR NTD and AR coactivators...... 39 1.2.3.1ARN/Cinteraction...... 39 1.2.3.2RelevanceofARN/Cinteractioninreceptorfunction...... 40 1.2.3.3N/Cinteractioninothernuclearreceptors ...... 41 1.2.3.4ARLBDspecificallybindstoFXXLFmotifsinARNTDandARcoactivators...... 42 1.2.3.4.1StructuralbackgroundofthepreferenceforFXXLFmotifsoftheARgroove ...... 42 1.2.3.4.2VariationsoftheFXXLFmotif ...... 44 1.2.4 Androgen-specific transcription...... 45 1.2.4.1Generalmechanismofandrogenregulatedgenetranscription ...... 45 1.2.4.2Androgenspecificallyregulated...... 45 1.2.4.3MechanismofARbindingtoandrogenspecificAREs...... 48 1.2.4.4RoleofandrogenspecificAREs ...... 49 1.2.5 The AR in disease ...... 51 1.2.5.1TheARinprostatecancer ...... 51 1.2.5.1.1Prostatecancerdevelopmentandprogression ...... 51 1.2.5.1.2Androgendependentprostatecancer...... 52 1.2.5.1.3MechanismsofARactivationinandrogenindependentprostatecancer ...... 52 1.2.5.1.3.1ARamplificationandoverexpression...... 53 1.2.5.1.3.2ARmutations ...... 53 1.2.5.1.3.3IntraprostaticconversionofadrenalandrogenstoTandDHT...... 56 1.2.5.1.3.4LigandindependentactivationoftheARthroughcrosstalkwithothersignalingpathways 57 1.2.5.1.3.5AberrantARcoregulatorexpressionandfunction...... 58 1.2.5.1.3.6SignalingpathwaysinprostatecancercellsbypassingtheAR...... 59 1.3AIMANDSCOPEOFTHISTHESIS...... 60 1.4REFERENCES ...... 61

4 Chapter2Aminoacids313andaminoacidsinandflankingthe 23 FXXLF 27 motif modulatetheinteractionbetweentheaminoterminalandligandbindingdomainofthe androgenreceptor ...... 89

Chapter3Abioinformaticsbasedfunctionalanalysisshowsthatthespecifically androgenregulatedgene SARG containsanactivedirectrepeatandrogenresponse elementinthefirstintron...... 109

Chapter4Broadenedligandresponsivenessofandrogenreceptormutantsobtainedby randomaminoacidsubstitutionofH874andmutationhotspotT877inprostatecancer ...... 131

Chapter5Generaldiscussionandfutureperspectives...... 149 5.1A IMOF AR RESEARCH ...... 150 5.2M OLECULARMECHANISMSOF AR FUNCTIONS...... 150 5.2.1 N/C interaction ...... 150 5.2.2 AR specific target genes...... 153 5.2.3 AR LBD mutations...... 155 5.3AR INFURTHERRESEARCHANDFUTUREPERSPECTIVES ...... 157 5.4REFERENCES ...... 158 Summary ...... 163

Samenvatting ...... 165

Listofpublications ...... 167

Curriculumvitae ...... 168

Dankwoord/Acknowledgements...... 169

5 Listofabbreviations aa aminoacids AD activationdomains AF1 transcriptionactivationfunction1 AF2 transcriptionactivationfunction2 AIS androgeninsensitivitysyndrome ARA ARassociated ARE androgenresponseelement AR androgenreceptor ARIP4 ARinteractionprotein4 BCA BPH benignprostatichyperplasia BRG Brahmarelatedgene BAF BRG1associatedfactor BRM Brahma CARM1 associatedarginine(R)methyltransferase1 CBP CREBbindingprotein CDK cyclindependentkinase CFP cyanfluorescentprotein ChIP immunoprecipitation CHIP carboxyterminusoftheHsp70interactingprotein CoRNRbox NRinteractionmotif CPA cyproteroneacetate CTE carboxylterminalextension DHEA DBD DNAbindingdomain DHT dihydrotestosterone DRIP vitaminDreceptor–interactingprotein E6AP E6associatedprotein EcR ecdysonereceptor EGF epidermalgrowthfactor EMSA electrophoreticmobilityshiftassay ERα receptorα ERβ estrogenreceptorβ ERR estrogenrelatedreceptor FRAP fluorescencerecoveryafterphotobleaching FRET fluorescenceresonanceemissiontransfer GPCR Gproteincoupledreceptor GR receptor GRE glucocorticoidresponseelement GRIP1 glucocorticoidreceptorinteractingprotein1 HAT acetyltransferase HDAC histonedeacetylaseactivity HER2 humanepidermalgrowthfactorreceptor2 HMT histonemethyltransferase HRE responseelement IGF1 insulinlikegrowthfactor1 IL6 interleukin6 ISWI imitationswitch LBD ligandbindingdomain LcoR liganddependentcorepressor LNCaP lymphnodederivedprostatecancercellline MAGE11 melanomaantigengeneprotein11 MAPK mitogenactivatedproteinkinase NURD nucleosomeremodelingandhistonedeacetylation

6 MR receptor N/CinteractioninteractionbetweentheNTDandLBDofanNR NCoR NRcorepressor NES nuclearexportsignal NLS nuclearlocalizationsignal NR nuclearreceptor NTD aminoterminaldomain NURSA NuclearReceptorSignalingAtlas OHFl hydroxyflutamide PPARα peroxisomeproliferatoractivatedreceptorα PPARβ peroxisomeproliferatoractivatedreceptorβ PPARγ peroxisomeproliferatoractivatedreceptorγ PPARδ peroxisomeproliferatoractivatedreceptorδ PAP prostaticacidphosphatase p/CAF p300/CBPassociatedfactor PCSC prostatecancerstemcells PI3K phosphatidylinositol3kinase PKA proteinkinaseA PKC proteinkinaseC PRMT1 proteinargininemethyltransferase1 PR receptor PSA prostatespecificantigen PTEFb positivetranscriptionelongationfactorb RARα retinoicacidreceptorα RARβ retinoicacidreceptorβ RARγ retinoicacidreceptorγ RD repressiondomain RID receptorinteractingdomain RIP140 receptorinteractingprotein140 RNApolII RNApolymeraseII RU486 RXRα retinoicXreceptorα RXRβ retinoicXreceptorβ SARG specificallyandrogenregulatedgene Sc Secretorycomponent Slp sexlimitedprotein SBMA spinalandbulbarmuscularatrophy SMRT silencingmediatorforandhormonereceptor SRC steroidreceptorcoactivator SRG3 SWI3relatedgene STAT signaltransducersandactivatorsoftranscription SUMO1 smallubiquitinlikemolecule1 SWI/SNF switch/sucrosenonfermenting T TA transitamplifying TAU1 transcriptionactivationunit1 TBP TATAbindingprotein TFIIF transcriptionfactorIIF TFIIH transcriptionfactorIIH TIF2 transcriptionintermediaryfactor2 TRα thyroidhormonereceptorα TRβ thyroidhormonereceptorβ TRAP thyroidreceptorassociatedprotein VDR vitaminDreceptor YFP yellowfluorescentprotein

7

8 Chapter1GeneralIntroduction Chapter1 Generalintroduction

9 INTRODUCTION The main physiological functions of the androgens testosterone (T) and dihydrotestosterone (DHT)involvethedevelopmentandmaintenanceofthemalephenotype.Tismainlyproduced inthetestisandconvertedtoDHTinseveraltargetorgans,includingtheprostate.Androgens have a hydrophobic derived steroid structure, which allowsfreetravelingbetween theextraandintracellularspace.Theintracellulartargetofandrogensistheandrogenreceptor (AR).Uponandrogenbinding,theARtranslocatestothenucleusandregulatestranscriptionof androgentargetgenes. 1.1NUCLEARRECEPTORS TheARbelongstothegroupofsteroidreceptors,whichisasubgroupofthenuclearreceptor (NR)familyoftranscriptionfactors.Invertebratesandinvertebrates,morethan150membersof theNRsuperfamilyhavebeenidentified.Duringthelastdecades,thisfamilyofphysiologically highlyimportanthasbeensubjectofstudy by many research groups, resulting in an overwhelmingnumberofpublications.InthissectionacomprehensiveoverviewofgeneralNR functioning is given, based on excellent reviews published on this subject 111 . Where appropriate,referencestokeypublicationsareincludedinthetext.Insection1.2,moredetailed informationoftheARispresented. 1.1.1Generalfeaturesofnuclearreceptors Basedonphylogeneticstudies,theNRfamilycanbesubdividedintosixdifferentsubtypes 12 . The group of type I receptors includes the thyroid hormone receptors (TRα and TRβ), the vitamin D receptor (VDR), the retinoic acid receptors (RARα, RARβ and RARγ), the peroxisomeproliferatoractivatedreceptors(PPARα,PPARβandPPARγ),andthe ecdysone receptor (EcR). Members of the type II receptor group are the retinoic X receptors (RXRαandRXRβ)andorphanreceptorslikeCOUPTF,RevErb,TR2,andTR4,forwhichthe ligandhasnotbeenidentifiedasyet,orwhichcanfunctionwithoutstimulationbyaligand 13 . The type III receptors comprise the group of steroid receptors, which includes the AR, the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), the progesterone receptor (PR),andtheestrogenreceptors(ERαandERβ).Thecloselyrelatedorphanreceptorsestrogen relatedreceptors(ERRs)alsobelongtothetypeIIIreceptors.TheNRsubtypesIV,VandVIall includevariousorphanreceptors. Ingeneral,NRsareligandactivatedtranscriptionfactors.Uponligandbinding,NRsundergo conformational changes that result in a cascade of events leading to DNA binding and transcriptionactivationorrepressionofspecifictargetgenes.Theliganded,andinsomecases theunliganded,receptorisabletobindasahomoorheterodimertospecificsitesintheDNA and subsequently recruits coactivators or corepressors, general transcription factors and RNA polymerase II (RNApolII), to ultimately regulate transcription of target genes. Proteinprotein interactionsplayaprominentroleintheseprocesses 1419 .Asimplifiedschemeoftheseeventsis depictedinFigure1A.

10 hormone A nucleus coactivator GTF NR NR transcription NR NR PolII HRE mRNA protein B N NTD DBDH LBD C Figure1. A)SchematicaloverviewofintracellularNRfunctioning.GTF=generaltranscriptionfactors,PolII= RNApolymeraseII,HRE=hormoneresponseelement.B)SchematicalrepresentationofNRfunctionaldomains. NTD=Nterminaldomain,DBD=DNAbindingdomain,H=hingeregion,LBD=ligandbindingdomain. 1.1.2Structureandfunctionaldomainsofnuclearreceptors NRshaveamodularstructurecomposedofanonconservedaminoterminaldomain(NTD),a highly conserved central DNAbinding domain (DBD), a moderately conserved carboxyl terminalligandbindingdomain(LBD),andaflexiblehingeregionlocatedbetweentheDBD andtheLBD(Figure1B).

1.1.2.1Theaminoterminaldomain TheNTDisthemostvariabledomainbothinsizeandaminoacidcomposition.Untilnow,for noneoftheNRsthethreedimensionalstructureofthisdomainhasbeenresolved.Itisgenerally assumed that the NTD has an unorganized, flexible structure, which hampers crystallization. Small regions in the NTD might adopt a morestructured conformation upon proteinprotein interactionsintranscriptioninitiatingcomplexes.However,structuresofsuchcomplexeshave notbeenelucidatedasyet. FormostNTDs,atransactivationfunction,AF1,hasbeenestablished.TheAF1domainsin thedifferentNRsdonotshowstructuralandaremappedatquitedistinctpositionsin theNTD.AF1isandcelldependent,whichindicatesinteractionsoftheNTDwith promoter and cell specific proteins involved in transcriptional regulation 14 . An increasing number of NTD interacting proteins has been identified. The NTD, if bound to a DBD, can autonomously activate expression of target genes, as proven by the constitutive activity of truncatedNRslackingtheirLBD.TheLBDfunctionsasanactivationlock,whichisopenedby bindingofitscognateligand.

11 1.1.2.2TheDNAbindingdomain Ligandactivated NRs bind through their highly conserved DBDs to hormone response elements (HREs) in the regulatory regions of target genes. HREs have specific consensus sequencesforhighaffinitybindingtothedifferentNRsubgroups,andarecomposedofaninverted ordirectimperfectrepeatoftwo6bphalfsitesseparatedbyaspacerofvariablelength.NRsbind toHREsashomoorheterodimers,eachreceptortooneHREhalfsite 20,21 . The DBD is composed of two zinc clusters and a carboxylterminal extension (CTE). TheN terminalzincclusterofsteroidreceptorscontainsthreeaminoacids,denotedasthePbox,which determine DNA binding specifity 22, 23 . The Cterminal zinc cluster contains a dimerization interface, the Dbox (Figure 2A). For several NRs, crystallographic analyses have revealed the DNAbound DBD dimer structures with detailed data on proteinprotein and proteinDNA interactionsites(reviewedinref.24).AdjacenttotheCterminalpartofeachzincclusterashortα helicalstructurecanberecognized.ThehelixflankingtheNterminalzincclusterentersthemajor grooveintheDNA.ThisconservedrecognitionαhelixenablestheaminoacidresiduesoftheP boxtobindtoreceptorspecificitydeterminingsitesintheHREs.Tworesiduesin this helix are also involved in nuclear export ofNRs in thepresence ofligand 25, 26 .Thehelix flankingtheCterminalzinccluster,theCTE,ispositionedperpendiculartotheotherhelix,inthis wayexposingtheDbox,facilitatingdimerization(Figure2B) 20 . A Dbox 2+ Zn 2+ Zn Pbox CTE B 2+ Zn Zn 2+ CTE CTE Zn 2+ Zn 2+ Figure2. A)SchematicrepresentationoftheNRDBDstructure.CTE=carboxyterminalextension.B)Tertiary structureofaDNAboundNRDBDdimer. 1.1.2.3Thehingeregion ThehingeregionformsaflexiblelinkbetweentheDBDandtheLBD,allowingeasyrotationof thelatterdomain.TheaminoacidsequenceofthehingeregionisnotconservedamongNRs.In many NRs, the hinge region contains a bipartite nuclear localization signal (NLS) essential for nuclearimportoftheligandedreceptor 27 .

12 1.1.2.4Theligandbindingdomain Smallvariationsexcluded,NRLBDshaveacanonicalstructureconsistingof12αhelices,folded inathreelayeredantiparallelsandwichconformation 28,29 .Theligandbindingpocketislinedby manyaminoacidresiduesthroughouttheLBDandvarieswiththestructureoftheligandsofthe respective receptors. Upon binding, helix 12 is repositioned like a lid over the ligand bindingpocketinamannerfavoringNRactivation.ThisisillustratedfortheRXRαandRARγin Figure3.BindingofantagonistsinducesadifferentLBDconformationleadingtoanunfavorable positioningofhelix12,therebycausingblockingofreceptorfunction 3033 . Inadditiontoligandbinding,theLBDmightbeinvolvedinhomoorheterodimerization.Italso interacts with chaperone proteins like heat shock proteins, and harbors the liganddependent transcriptionactivationfunction2(AF2). TheAF2structureisconservedamongmanyNRs.AcoreregionintheAF2domain,which is in helix 12, appears essential for liganddependent transcriptional activity 3438 . A general mechanismhasbeenproposed,inwhichtheAF2coreplaysacentralroleinthegenerationof an interaction surface, allowing binding of NR coactivators to the LBD 31 . Coactivators can modulatethetranscriptionalactivityofabroadrangeofNRs(seesection1.1.5).Alargenumber ofcoactivatorsthatbindtoNRshasbeendescribed.TheinteractionwithNRsisnotlimitedto the LBDs, but also involves binding to the NTDs, resulting in cooperation or even synergy betweenAF1andAF2activities 3942 . Unligandedorantagonistboundreceptorscanbindtocorepressorsbyaninteractioninterfacein the LBD that overlaps the coactivator binding site 43 . Recruitment of corepressors inhibits receptorfunctioningleadingtosilencingofgenetranscription 44 . InadditiontothemotiffoundintheDBD,fortheMR,ERandAR,anuclearexportsignal (NES)hasbeenidentifiedintheLBD.ThissecondNESis,incontrasttotheDBDNES,active intheabsenceofligandandinhibitedwhenligandispresent 45 . Figure3. TwodimensionalrepresentationofanNRLBDstructure.Left:RXR αLBDwithoutretinoicacid(RA). Right:RARγLBDboundbyRA.Fromref.29.

13 1.1.3Thenuclearreceptorsubfamilyofsteroidreceptors Throughbindingtotheirrespectivereceptors,steroidmediatebiologicalprocesseslike cell growth, cell differentiation, and . The GR regulates storage, mobilization and of carbohydrates and fatty acids. The MR plays an important role in maintaining electrolytelevelswithinanarrowrange.ERα,ERβ,andPRmediatedevelopmentandmaintenance of the female phenotype, but also play a role in males. The AR is responsible for the male phenotype,butisalsoimportantforfemaledevelopment. The structures of steroid receptors are highly conserved. The highest percentage homology is presentintheDBDsandLBDs.GR,PR,andMRDBDsshowupto80%homologywiththeAR DBD.ThisconservationlevelisreflectedintheHREpreferencesofthesteroidreceptors.GR,MR, PR and AR homodimers all bind with high affinity to a consensus HRE, the inverted repeat AGAACAnnnTGTTCT,generallydenotedasglucocorticoidresponseelement(GRE) 4649 .ERα and ERβ are quite distinct from the other steroid receptors. Their structures deviate more from these receptors and the highaffinity DNA binding site is an inverted repeat of the consensus G halfsiteAG /TTCA.MosttypeIandIINRsalsobindtothissequence,whichmightbepresentasa singlehalfsiteorinadirectorinvertedtandemrepeatorientationintheregulatorysequencesof targetgenes 16, 50 .BecauseGR,MR,PR,andARrecognizethesamehighaffinityGRE,many genescanberegulatedbymorethanonesteroidreceptor.However,thephysiologicalfunctionof thedifferentreceptorsisquitedistinct,whichcanonlypartlybeexplainedbytheirtissuespecific expressionpattern.So,additionalmechanismsarerequiredforahormonespecificresponseincase multiple receptors are simultaneously present in one and the same cell. Several mutually not exclusive mechanisms to explain steroid specific transcriptional regulation include selective interactions of receptors with specific and general transcription factors and coregulators, coregulator levels, ligand availability, local chromatin structure at the regulatory sites of the receptortargetgenesand,asrecentlydescribedfortheAR,steroidreceptorspecificHREs(see 1.2.6andChapter5) 4,7,5156 . TheAF1functionsofthesteroidreceptorshaveroughlybeenmapped.Foreachreceptoraregion intheNTDhasbeendefined,whichisrequiredforoptimaltranscriptionalactivity.Withinthese regions,acoreregionthatisessentialforAF1activityhasbeenestablished.TheAF1regionsin differentreceptorsarenotidenticalandmapatdifferentpartsoftheNTD.TwoPRisoformsare known,PRAandPRB.PRBhasanaminoterminalextensionharboringanAF3functionthat enhancesAF1activity 57 .LikeinotherNRsubgroups,theextenttowhichtheseparateAF1and AF2 activities contribute to steroid receptor activity varies among the different receptors. In addition, cell and promoter context determine the relative activities of AF1 and AF2. Furthermore,AF1andAF2activitiescanactsynergistically,aswasfoundforERα,ERβ,GR, PRandAR 3942 . Unlike other NRs, in the unliganded inactive state steroid receptors are bound by heat shock protein complexes. These complexes bind preferentially to the LBDs and are supposed to be involved in proper LBD folding, intracellular transport, nuclear import and protection against degradation.Moststudiesindicatethatheatshockproteincomplexesdissociatefromthesteroid receptoruponligandbinding,therebyenablingthereceptortodimerize,bindtoDNAandactivate transcriptionofitstargetgenes 58 .

14 1.1.4Nuclearreceptorsintranscriptionregulatorycomplexes To regulate transcription, the activity of NRs is directly and indirectly modulated by many otherproteins,whichcanbecomponentsoflargeproteincomplexes.Thesecomplexesfunction in a spatiotemporal sequence, of which the dynamics are not yet completely understood. A model of protein complexes, and proteinDNA and proteinprotein interactions involved in transcriptional gene regulation by NRs is depicted in Figure 4. It is based on many studies utilizing a variety of experimental approaches, including electrophoretic mobility shift assays (EMSA), twohybrid assays, reporter gene assays, chromatin immuno precipitation (ChIP), fluorescenceresonanceemissiontransfer(FRET),andrealtimemovementmeasuringinliving cells by fluorescence recovery after photobleaching (FRAP). The model includes binding of nuclear receptor, coregulators, chromatin remodeling complexes, and Mediator complexes, ultimatelyleadingtoactivationorinhibitionoftranscriptioninitiation. A Activation P300/ HMT Chromatin CBP p/CAF remodeling coactivator complex mediator SWI/SNF GTF transcription PolII NR NR TBP HRE B Repression Chromatin remodeling complexcorepressor NURD HDACs notranscription NR NR x HRE Figure4. SchematicmodeloftranscriptionalregulationbyNRs.A)Transcriptionalactivation,ligand(agonist)is in red. B) Transcriptional repression, ligand (antagonist) is in dark red. For further description see text of this section(1.1.4).

15 InthemodelligandboundNRsbindasadimertotheircognateresponseelementspresentin targetgenes.ItisknownthatsomeNRshavedirectaccesstoDNA,whichmightbedependent on nucleosomal phasing of their cognate recognition sites 59 . Interaction of NRs with DNA mightbeverytransientwithtenthsofsecondstosecondspercycle 6062 .ForGRandERαithas beenshownthattheycanberemovedfromtheirDNAbindingsitesbyproteasomes.Thiswould fastencyclingandtherebyallowthecontinuousresponsetofluctuationsinhormonelevels 63,64 . The chaperone protein hsp90 might stabilize GR binding by inhibiting removal from its responseelement 63 .UnlikeFRAPexperiments,ChIPexperimentshaveshownthattranscription factorsandcoregulatorscanberecruitedtopromoter/enhancersequenceswithinminutes 64 .Itis possible that proteins present in transcription initiation complexes individually and rapidly exchangemultipletimeswithinabindingcycleobservedwithChIP. Binding of aNRdimertoDNAisfollowedbyrecruitmentofcoregulators,whichmightbe coactivatorsorcorepressors.ThebestknownNRcoactivatorsarethep160proteins,whichare describedinmoredetailinsection1.1.5 60 . Coactivators,inturn,recruitfactorswithstronghistoneacetyltransferase(HAT)activity,like thecointegratorsCREBbindingprotein(CBP)/p300andp300/CBPassociatedfactor(p/CAF). Somep160coactivatorsalsohaveweakintrinsicHATactivity 65,66 .Subsequently,on targetgenesareacetylatedonlysineresidues.ThisdecreaseshistoneaffinityforDNA,which resultsinanopenedchromatinstructureallowingongoing recruitment of all requiredprotein complexesfavoringgenetranscription 6769 .Acetylationalsodisruptsinternucleosomalcontacts, therebydisturbinghigherorderchromatinstructures 70 .Incaseoftranscriptioninhibition,aNR corepressor is recruited, which in turn recruits proteins with histone deacetylase activity (HDACs) through which histones will be deacetylated resulting in tightening of chromatin conformation and thereby preventing transcriptional activation 44, 7173 . Examples of NR corepressorsaredescribedinmoredetailinsection1.1.6. Nucleosome disruption and thereby activation of gene transcription is also conferred by the proteinargininemethyltransferases:proteinargininemethyltransferase1 (PRMT1)andcofactor associated arginine (R) methyltransferase 1 (CARM1/PRMT4), which both can methylate histones.Thesehistonemethyltransferases(HMTs)arerecruitedbyp160coactivatorsandp300 7477 . The chromatin structure on transcribed genes is not only modified by HATs and methyltransferases,butalsobyATPdependentchromatinremodelingcomplexes.Infact,ERα, itscoactivatorSRC1,andp300,wereallfoundtobindtocomponentsofaremodelingcomplex 78, 79 . Remodeling complexes confer unwinding of DNA and release of histones in a non covalent and ATPdriven manner (reviewed in refs80,81).Threegroupsofthesecomplexes havebeenfound.Thebestknownistheswitch/sucrosenonfermenting(SWI/SNF)complex.It wasfirstidentifiedinyeast;thehumanhomologsare the Brahma related proteins. A second complexisimitationswitch(ISWI),whichwasoriginally identified in Drosophila .However, involvement in NR mediated transcription activation was only established for the SWI/SNF complexes. Other described complexes are Mi2/ nucleosome remodeling and histone deacetylation (Mi2/NURD) complexes, which act on chromatin regions that have become deacetylated by HDACs. These contain histone deacetylase activity, which confers further tighteningofthechromatinstructureofagenethathastobesilenced. CrosslinkingassayshaverevealedthattheGRandthehumanSWI/SNFcomplexbindona tandemly repeated MMTV promoter in an alternating fashion, with a cycle time of approximately5min. 62 .Thisindicatesthatwithinoneexchangecycle,afterconferringthefirst

16 step in opening the chromatin by recruitment of HATs, the GR is removed from its DNA bindingsite,leavingthestageforfurtherchromatinremodeling. Another large complex involved in transcriptional regulation is the Mediator complex, of which orthologs have been found in mammalians, Drosophila, C. elegans and yeast. This complex consists of about 25 subunits. The Mediator complex was initially identified as the thyroid receptorassociated proteins (TRAP) or the vitamin D receptor–interacting proteins (DRIP)oractivatorrecruitedcofactor(ARC) 8285 .AuniversalcodeforeachMediatorprotein in different species isnowavailable 86 .FRETexperimentshaveshownthatNRscandirectly interact with components of the Mediator 87 . The Mediator complex binds with its DRIP205/TRAP220subunit(MED1)totheNRLBDinaliganddependentmanner,throughan LXXLL motif which is also found in many coactivators (see section 1.1.5) 8892 . ChIP experimentshaverevealedthattheTRfirstrecruitsp160andp300,followedbytheMediator complex.ThisfindingissubstantiatedbytheobservationthatrecruitmentoftheMediatoris stimulatedbyinhibitionofHDACactivity,whichindicatesthathistoneacetylationisrequired for recruitment of the Mediator complex to chromatin 93 . Consistent with this observation, synergismwasobservedbetweentheMediatorcomplexandp300/CBPSRCforERαmediated transcriptionwithchromatintemplates,butnotwithnakedDNA 94 .ChIPexperimentswiththe ERαanditsrecruitedproteinsshowedthatthetime scale of Mediator cycling is in the same orderasthatofthereceptoranditscoregulators,indicatingacooperatingrolefortheMediator complexintranscriptionalregulation 64 . The Mediator complex canbind RNApolII thereby functioning as a scaffold torecruitother components of the transcription machinery 95 . In addition to transcription initiation, the Mediatorcomplexenablesreinitiationoftranscriptionbyprovidingaccessformultiplerounds oftranscription 96 .Thecompositenatureofdifferentpromoterswillinfluencetheconformation ofboundNRs,whichisultimatelytransmittedtotherecruitedMediatorcomplex(reviewedin ref. 97). The conformation of the Mediator complex, in turn, will determine the number of RNApolIImoleculesthatcanstarttranscriptioninadefinedperiodoftime. AsummarizingspatiotemporalmodeloftheeventsoccuringtoregulatetranscriptionbyNRs canbeasfollows: Afterligandbinding,NRscanfreelybindtoanddepartfromtheircognateDNAbindingsites veryquickly,givingtargetgenestheopportunitytorespondimmediatelytochangesinhormone concentration.ThiscouldimplythatNRshavelefttheresponseelementdirectlyfollowingthe recruitment of coregulators, which has been proposed as a 'hit and run' mechanism 61 . After binding to chromatin, NRs recruit nucleosome disrupting HATs and HMTs via their coactivatorsandchromatinremodelingcomplexestofurtherdisturbchromatinstructuresatthe regulatory sites of the NRs target genes (Figure 4A).Incaseof,inhibitionof transcriptionisestablishedbyrecruitmentofHDACsviatheircorepressors,whichmayalsobe guided by chromatin remodeling complexes (Figure 4B). The loosened chromatin enables recruitmentofthegeneraltranscriptionfactorsandRNApolIItothetranscriptioninitiationsite viatheMediatorcomplex.Manyofthespatiotemporaldetailsontranscriptionalregulationare not elucidated as yet, therefore the model described above is expected to be extended and modified.

17 1.1.5Nuclearreceptorcoactivators NRsfunctioninlargenetworksofproteinsandproteincomplexesthatdynamicallyinteractto activate or inhibit transcription initiation. An overview of the recent knowledge on these networkswasdescribedinsection1.1.4.Proteinsthatdirectlyorindirectlyactivateorenhance transcriptionalactivationofNRtargetgenesaregenerallyconsideredascoactivators.Examples are:thechromatinremodellingcomplexes,theMediatorcomplex,HATs,HMTs,andthegroup of proteins that recruit all these proteins to the NRs (reviewed in ref. 98). This latter group includesthep160coactivators,whichhavebeenstudiedinmostdetail. Threedistincthumanp160steroidreceptorcoactivatorproteinshavebeenidentified,SRC1, TIF2/SRC2,andSRC3,alsoknownasACTR,AIB1,RAC3,orTRAM1 65,99103 .NCoA1is the mouse homolog of SRC1, GRIP1/NCoA2 in the mouse is homologous to TIF2, and p/CIPisthemousehomologofSRC3 104,105 . P160coactivatorscontainseveralfunctionaldomains(Figure5).Beststudiedinthisregardis theNRinteractingdomain,orNRbox,whichcontainsthreeLXXLLmotifs(L=leucine,x= anyresidue) 106 .Theleucineresiduesinthesemotifsareindispensibleforreceptorinteraction, and flanking residues play a modulating role herein. The LXXLL motifs interact with a hydrophobiccleftintheNRLBDinaliganddependentmanner.Thiscleftislinedbyacharged clampformedbyaconservedlysineinhelix3andaconservedglutamicacidintheAF2corein helix 12 107 . Through an aminoterminal glutamine(Q)rich region and independent of its LXXLLmotifs,p160coactivatorscanbindtoNRNTDs,resultinginsynergismofAF1and AF2activities,whichmightbenecessaryforoptimalreceptorfunctioning 39,41,42,108,109 . P160 coactivators contain also binding domains for the HAT containing cointegrators CBP/p300andp/CAF(see1.1.4),whichplayanessentialroleingenetranscriptionashasbeen demonstratedinknockoutmodels 110, 111 . If fused to aheterologousDBD,p160coactivators canautonomouslytransactivatethroughtwoactivationdomains,AD1andAD2(seeFigure5). AD1 coincides completely with the CBP/p300 binding domain, and partly with the PCAF bindingdomain,whichalsocontainstheQrichregion 100, 105, 112 .Tosomeextent,SRC1and SRC3canacetylatehistonesbytheirweakintrinsicHATdomain,formedbytheQrichregion andAD2 65,66 .AD2canbindtotheHMTsCARM1andPMRT1 74,76 . NID AD1 Qrich AD2 N 00000 C Figure5. Schematicalrepesentationofap160NRcoactivator.NID=nuclearreceptorinteractingdomain,AD= activationdomain,Qrich=Qrichregion. The physiological function of p160 coactivators has been established in knockout and null mutantmice(reviewedinrefs98,113).SRC1inactivationledtodecreasedgrowthofsteroid targetorgans,likeuterus,mammae,testesandprostate,indicatingaroleforSRC1inER,PR andARfunction 114 .Pituitaryresistancetothyroidhormonewasalsoobserved,whereasPPARα regulatedgeneswereunaffectedinSRC1nullmice114,115 .Thesemiceshowedcompensatory overexpression of TIF2/SRC2, indicating redundancy between these two coactivators 114 . Furthermore,SRC1nullmiceexhibitmoderatemotordysfunctionanddelayeddevelopmentof cerebellarPurkinjecells 116 . SRC2playsacriticalroleinreproductivebehaviourandfunction,andisthemostprominent SRC family member expressed in the testis. Both male and female SRC2 knock out mice

18 showedreducedfertility 117 .AnARmutation,whichdisruptstheinteractionwithSRC2was reported in some men with oligospermic infertility 118 . SRC2 is a coactivator of PPARγ as reflectedinfataccumulationinmicelackingSRC2 119 .Inaddition,SRC2wasfoundtoforma fusiononcoprotein,asaresultofatranslocationcausingleukemia 120 . SRC3nullmutantmiceshoweddwarfism,deficiency in mammary gland development, and otherabnormalitiesinthefemalereproductivesystem 121,122 .VeryhighlevelsofSRC3mRNA werefoundinmanyERpositivebreastandovariantumors 123,124 .Thisindicatesanimportant role in estrogen stimulation of these tumors as substantiated by the observation that SRC3 depletion in MCF7 cells inhibited their estrogendependent growth 125, 126 . SRC3 is also thoughttofacilitatetheestrogenmediatedvasoprotectiveeffectsofviaERactivation 127,128 . P300inactivationislethalintheembryonicstage,indicatingpotentialredundancyofrelated CBPcannotovercomep300deficiency 110 .InactivationofCBPisassociatedwiththeseverely disablingRubinsteinTaybisyndrome 129 .Ascomparedwiththep160coactivators,thehigher importanceofCBP/p300proteinscorrelateswiththeirevolutionarystrongconservation. TheviabilityandfertilityofSRC1andSRC3null mutants are indications for redundancy among SRC family members. Indeed,analysisofknockout mice lacking SRC1 and SRC2 revealedthatSRC1canpartiallycompensateforlossofSRC2/TIF2.A TIF2 /mutantshowed an impaired testicular function, which was further decreased by inactivation of one or both SRC1 alleles 130 . A p/CIP /SRC-1/ mouse displayed impaired brown fat development and defective adaptive thermogenesis, which are due to absence of activation of certain PPARγ targetgenes 131 . Basedonthedataonmutantmiceandthetissuespecificexpressionpatternsitcanbeassumed thateachmemberoftheSRCfamilyhaspreferentialfunctions.Duringrecentyears,anumber ofstudieshasbeenpublishedthatareconsisitentwiththisobservation(reviewedinrefs132 134).TheindividualSRCproteinseachpreferentiallybindtoadifferentsubsetofNRs.They evencandistinguishbetweendifferentNRsubtypes.Forexample,ERαhasahigheraffinityfor SRC1andSRC3thanERβ,andPRAinteractsmoreefficientlywithSRC1thanPRB.The GR has an extra level of binding preference through a second charge clamp in the LBD. Moreover,thethreedifferentNRboxesofSRCproteinsshowNRbindingspecificities.TheGR showsthehighestaffinitytoNRbox3ofSRC2,whereasTRβprefersNRbox2.Ligandscan specifyNRboxaffinityofaparticularNRorevenNRsubtype.Different,selectedby phagedisplay, were found to bind to ERα activated by different ligands. For several NRs, crystallographic studies have revealed different conformations of the coactivator binding interfaceinLBDsboundbydifferentligands.SRCrecruitmentcanbepromoterdependentas wasfoundfortheMMTVpromoteronwhichtheGRrecruitsSRC1andSRC3,butnotSRC2 135 .ThefunctionalityoftheinteractionsbetweenSRC1 and the AR NTD or LBD was also foundtovaryinapromoterdependentfashion 136 . A large number of other NR coactivating proteins with less defined function has been identified,manyofwhichcontainLXXLLmotifs.Thesefactorsarethoughttobinddirectlyto multipleNRsthroughthesemotifsinaliganddependentmanner.Inadditiontothenumerous coactivatorsthatinteractwithDNAboundNRs,anothercategoryofcoactivatorsisformedby proteinsthatpositivelyinfluenceNRactivitypriortoorafterDNAbinding.Theseproteinsare involvedin:synthesis,properfoldingandstabilization,nucleartrafficking,nuclearimportand export,ordegradationoftheNR.Adetaileddescriptionofthosekindsofcoactivatorsisbeyond thescopeofthisthesis.

19 1.1.6Nuclearreceptorcorepressors In addition to transcription activation, transcriptional silencing is required for balanced regulationoftranscription.UnligandedtypeIreceptors,antagonistboundtypeIIIreceptors,and orphan receptors, are able to repress transcription, also called transrepression. To inhibit transcription,NRsrecruitcorepressors,whichbindHDACsthattightennucleosomalstructures bytheirhistonedeacetylatingcapacities 44 .Inthiswayanonpermissiveenvironmentiscreated forappropriatetranscriptioninitiation. Several corepressors are known, including the related corepressors NR corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptor (SMRT) 72, 137 . NCoR and SMRTshowhighsequencesimilarityandsharekeyfunctionaldomains(Figure6). RD1 RD2RD3 RD4 mSin3BS RID1 RID2 RID3 N C Figure6. SchematicalrepesentationoftheNRcorepressorNCoR.RD=repressiondomain,mSin3BS=mSin3 bindingsite,RID=receptorinteractingdomain. CorepressorshavetwoorthreeNRinteractingdomains(RIDs)throughwhichtheybindtoNR LBDs.EachRIDcontainsareceptorinteractionmotif(CoRNRbox)withaconsensussequence LxxI/HIxxxI/L.Thismotifispredictedtoadoptanamphipathicαhelicalconformationsimilar to that of the LXXLL motifs in coactivators 43, 138, 139 . Like LXXLL motifs, the hydrophobic residuesoftheCoRNRboxesareessentialinreceptorinteraction,flankingaminoacidresidues play a modulating role in this interaction. The coactivator binding cleft in the LBD is also involved in corepressor binding. However, compared to the LXXLL motif, the CoRNR box helixisNH 2terminallyextended,whichmostlikelypreventsbindingofthecorepressortothe hydrophobic cleft in the agonist activated LBD. IntheunligandedstateoftypeIreceptorsor antagonist bound type III receptors, helix 12 of the LBD is thought to be displaced by the extendedCoRNRhelix 43 . SMRTandNCoRrecruitdifferentclassesofHDACsubtypesthroughthreeorfourdifferent repressordomains(RDs),respectively 140143 .ThisrecruitmentmightbedirectorviatheSin3A protein 144146 . Todeacetylatehistonesinassociationwithcorepressor and DNA bound NRs, HDACshavetogainaccesstotheirtargetsite.Therefore,chromatinremodelingactivityisalso required.Indeed,theMi2/NURDremodelingcomplexeswerefoundtocontainHDACactivity 147149 . Likeforthecoactivators,receptorspecificityhasbeenestablishedforNCoRandSMRT.The TR prefers to recruit NCoR, whereas the RAR isoforms bind much better to SMRT than to NCoR. PPARα and PPARδ only bind to SMRT, whereas the orphan receptor Reverb exclusively binds to NCoR. In the two corepressors, specific CoRNR box motif residues of individualRIDshavebeenidentifiedtoconferthesereceptorspecificities 150 . ThethreedimensionalstructuresofseveralNRLBDsboundtoandantagonistshave beenelucidated(reviewedinref.151).Theagonisticandantagonisticformsprovideinteraction interfaces suitable for binding to coactivators or corepressors, respectively. The interaction interfacesareoverlapping,whichisillustratedbyasinglemutationintheTRLBDthatchanges itsinteractioninterfacefromaSRC1bindingtoanNcoRbindinginterface 152 . Whetheraligandactsasanagonistorantagonistisnotonlydeterminedbytheconformationit inducestoanNRLBD,butisalsodependentonthecoactivatorsandcorepressorspresentina

20 cell.TowhichextentcoactivatorsandcorepressorsinfluenceNRfunctionisdeterminedbytheir stoichiometry,whichiscelltypespecificanddependsoncellactivitystate 54 .IncaseofNCoR excess,thevitaminDanalogGeminiwasfoundtoshiftfromanagonisttoaninverseagonistby disabling coactivator interaction and stimulating corepressor recruitment 153 . This indicates a coregulator interface conformation that is dynamic rather than static, and the equilibrium between the different conformations is dependent on the ligand structure, the cellspecific coactivator/corepressor ratio and presumably other factors like the promoter context of the receptorstargetgenes.Thisisalsosubstantiatedbythefactthatcorepressorsandcoactivators, tosomeextent,cancompeteforbindingtoagonistboundRARandERβ 154,155 .Additionally, twoproteins,transducinβlikeR1andSkiinteractingprotein,werefoundtomediateexchange ofNRcorepressorsforcoactivators 156,157 . Anotherkindofcorepressorsincludesreceptorinteractingprotein140(RIP140)andligand dependentcorepressor(LcoR) 158,159 .Thesecorepressorsresemblethep160coactivatorsinthat theyarerecruitedbyagonistboundNRLBDsthroughtheirLXXLLmotifs.LCoRhasone,and RIP140 even has ten LXXLL motifs. Both corepressors function by HDACdependent and independentmechanisms. Likeforthecoactivators,thenumberofproteinsidentifiedtohavecorepressingactivityisstill growing.Furtherdetailsonthissubjectarebeyondthescopeofthisthesis. 1.1.7Posttranslationalmodificationsofnuclearreceptors Inadditiontocofactorsthatmodulatethechromatinstructure,NRfunctionisalsoregulatedby different kinds of direct posttranslational modifications, like acetylation, methylation, ubiquitylation,sumoylationandphosphorylation.Thesemodificationsarereviewedinrefs160 162. P300 and CBP, which are recruited by p160 coativators, can acetylate histones, but also transcriptionfactors,amongwhichtheARandERα.Throughacetylation,activationofERαis attenuated,whereasARactivationisstimulated 163 .TRβ1acetylationwasfoundtobeassociated withp300recruitment 164 . P160 coactivators recruit, in addition to HATs also HMTs, like CARM1 and PMRT1 (see section 1.1.4) 74, 165 . Although these HMTs can methylate histones and other proteins in the transcriptioninitiationcomplex,nomethylationofNRsandtheircoregulatorsbytheseHMTs hasbeenreported. Ubiquitinisawellconserved76aminoacidprotein, which is conjugated to many different substrates, including NRs. Polyubiquitylation of proteins leads to their proteasomemediated degradation, whereas monoubiquitylation is involved in transcriptional regulation. The AR, ERα, GR, PPARα, RARγ, RXRα, and TR were all found to be degraded by the ubiquitin proteasome system 166171 . However, overall activity of the GR is increased by this system, suggestingthatahighturnoverofGRontargetpromotersfavorstheopportunityforotherGR moleculestostartanotherroundoftranscription 63 . Sumoylationinvolvestheconjugationofthe101aminoacidsmallubiquitinlikemolecule1 (SUMO1)protein(18%homologywithubiquitin)tolysinesofatargetprotein.Sumoylation influences proteins with respect to their subcellular localization, subnuclear sequestration, stability, or ability to regulate gene transcription. Sumoylation of the GR increases its transcriptional activity probably by stabilization of this receptor, whereas ARdependent transcriptionisrepressedbysumoylation 172175 .However,theeffectonARmaybecausedby sumoylation of GRIP1, which probably impairs their colocalization 176 . In contrast,

21 sumoylation of SRC1 was shown to enhance PRSRC1 interaction thereby increasing PR activity 177 . NRscanbephosphorylatedatserine,threonineandresiduesintheirNTDsandLBDs aswellasintheirDBDs.Thekinasesinvolvedaremitogenactivatedproteinkinases(MAPKs), cyclindependentkinases(CDKs),Akt,proteinkinaseA(PKA),andproteinkinaseC(PKC). The number of phosphorylation sites ranges from oneintheVDRtoatleast13inthePR. PhosphorylationofERα,ERβ,PPARαandARNTDsbyMAPKsorAktstimulatesrecruitment of coactivators and of the transcription machinery, thereby facilitating chromatin remodelling andtranscriptioninitiation 178183 TheGRandPPARγareinhibitedbyphosphorylationoftheir NTDs, probably by promoting the ubiquitinproteasome mediated degradation 184189 . Phosphorylation of the ERα and RARα LBDs favors receptor dimerization and coactivator recruitment 183,190192 .DBDphosphorylationhasbeenobservedfortheVDR,ERα,andRARα, whichinterfereswithDNAbindingandreceptordimerization 193196 .Excessivekinaseactivity may activateNRsinaligandindependentmanner.Thiswasillustratedinbreast,ovarianand prostate cancers, which showed estrogen and androgenindependent growth and had abberant MAPKandAktactivities 180,197200 . NR coregulators are also subject to the posttranscriptional modifications described above. SRC3canbeacetylatedbyCBP,whichmodulatesoneofitslysinesleadingtoaninhibitionof bindingtoCBP.Thismodificationmayformanegativefeedbackloop 201 .FortheER,whichis notsumoylatedandthePR,whichcanbesumoylated,ithasbeenestablishedthatsumoylation ofSRC1,butnotofthesereceptors,increasedtheirbindingtothiscoactivator 177 .Sumoylation ofp300leadstorecuitmentofaHDAC,whichrepressesitsactivity.HDACs,inturnarealso regulatedby sumoylation 202 .P160familymembersandCBP/p300areparticularlysubjectto become phosphorylated by the different kinase pathways 203206 . Phosphorylation of the corepressor SMRT inhibits its interaction with NRs and causes its redistribution from the nucleus to the cytoplasm 207 . Phosphorylationdependent ubiquitylation was found for RARγ, indicating a mechanism of initial receptor activation followed by tagged degradation 208 . The liganded PR is also degraded upon phosphorylation, however, its degradation pathway is not clear yet 209, 210 . Taken together, crosstalk with other signal transducing pathways can sophisticallymodulateNRandcofactorfunction.Thismightresultinstimulationorinhibition oftranscriptionregulation. 1.1.8Additionalnuclearreceptorfunctions InadditiontotheclassicligandinducedtranscriptionalregulationoftargetgenesNRscanbe involved in other pathways, including ligandindependent , DNAbinding independenttransactivation,andeventranscriptionindependentfunction.Illustratingexamples aredescribedbelow. ForseveralNRsligandindependentfunctionshavebeendescribed.UnligandedTRandRAR can bind to HREs and recruit corepressors thereby repressing transcription 211213 . Ligand bindingtothesereceptorscausesdissociationofthecorepressors,allowingcoactivatorbinding. Anothermodeofligandindependentactioninvolvestheorphanreceptors(typeVNRs).These are constitutively active, have an LBD structure similar to that of agonistbound transcriptionally active NRs, but have an empty ligandbinding pocket or no ligandbinding pocketatall 214,215 .MutationsofaconservedtyrosineintheLBDinduceconstitutiveactivation oftheERαandERβ.However,antiestrogenscouldcompletelyabolishthisligandindependent activation 216,217 .

22 SeveralligandresponsiveNRscanalsobeactivatedintheabsenceofligand.Forexample,in reporterassaysthechickenprogesteronereceptor(cPR)couldbeactivatedby8BrcAMP 218 .8 Br cAMP activated p42/p44 MAPK and increased phosphorylation of SRC1, which then contributedtotheligandindependentactivationofthecPR 219 .Dopaminecanactivateanumber ofNRsincludingcPRandERαintheabsenceoftheircognateligands 220,221 .Treatmentwith dopaminecausesPRdependentinductionofmatingbehaviorinfemaleratsandmice,whereas PRnullmicearenotresponsive 222225 .TheERαisalsoresponsivetocellsignalingpathwaysin theabsenceofligand.Incellsmaintainedinphenolredfree,charcoalstrippedserum,theERα shows substantial basal transcriptional activity. This activitycanbeinhibitedbyapureanti estrogensuchasICI182780 221 .Epidermalgrowthfactor(EGF)dependentactivationofhuman ERα was observed in transfected hormone depleted HeLa cells, whereby Ser118 was phosphorylated 226 . Substitution of serine by alanine abrogated the hormoneindependent activation 227 .Intheabsenceofligand,ARactivitycanbeinducedbyEGF,keratinocytegrowth factor(KGF),interleukin6(IL6),andforskolin(seeformoredetailssection1.2.5.1.3.4) 228230 . AberrantactivationofARbycellsignalingpathwaysispresumedtobeinvolvedinmanycases of androgenindependent prostate cancer (see section 1.2.5.1.3.4). The GR needs ligand for activation,butcanbeextrastimulatedbyactivatorsofPKAandPKC 220,231233 .RARαcanbe activated in the absence of retinoic acid by the catalytic subunit of PKA 191 . In CV1 cells, RARα,RARβ,RXRα,RXRβ,andRXRγ,butnotRARγ,couldbeactivatedintheabsenceof ligandandaftertreatmentwiththephosphataseinhibitorokadaicacid,whichwasnotobserved ifthecellsweretreatedwithdopamine 234 .TheVDRcouldbeacivatedbyokadaicacidorby dopamine 234 . NRs can also regulate transcription independent of HRE binding, which is referred to as 'transcriptional crosstalk'. For example, in thepresence of agonists, GR, TR, RAR,andERβ inhibitAP1dependenttranscription,whereasERαisactivating.AntiestrogenboundERβcan activateAP1directedtranscription 235,236 . NongenomicsignalingmechanismsofNRshavealsobeenreportedandincluderecruitment ofsignalingpathwaysthatareoftenassociatedwithcellmembranereceptorssuchasGprotein coupledreceptors(GPCRs),ionchannelsorlinkedreceptors 237 .Forplasmamembrane associatedERsithasbeensuggestedthattheyareinvolvedintheregulationofcellmembrane ionchannels,GPCRs,andtyrosinekinasesandMAPKs 238242 .Theyalsocanactivateadenylate cyclase production, and induce C activation 243, 244 . This results in a rapid increase in intracellular Ca 2+ concentration due to Ca 2+ mobilization from the endoplasmic reticulumandtotheformationofinositol1,4,5trisphosphateanddiacylglycerol 244 .TheERis alsosupposedtobeinvolvedintheSrc/Ras/MAPKsignaltransductionpathwaybyinteraction with cSrc 238 . In breast cancer cells, the B isoform of the PR stimulatestheactivatedERto 245 recruit the Src/p21ras/ERK pathway . A specific polyproline motif in the NH 2terminal domain of PR mediates direct progestindependent interaction of PR with SH3 domains of various cytoplasmic signaling molecules, including cSrc tyrosine kinases 246 . Testosterone is alsoabletoregulatetheMAPKfamilyofproteinkinases.Recentworkindicatesthat,viaacell membrane associated AR, testosterone induces a rapid rise in the intracellular free Ca 2+ concentrationinmacrophages 247 .SimilarfindingswerereportedfortheVDR 248 .Inadditionto proteinkinasesignalingpathways,nontranscriptional actionsofNRscanbemediatedbythe recruitment of kinases. E 2bound ERα interacts with the regulatory subunit of the lipid kinasePI3K,triggeringactivationofthecatalyticsubunitandincreasingintracellularproduction ofphosphoinositides 249 .InteractionwithPI3KwasalsofoundforotherNRs,suchastheAR andtheGR 250 .

23 1.2THEANDROGENRECEPTOR The AR is essential in development of the male phenotype and controls male fertility and sexual behaviour. High AR levels are present in the tissues of the male urogenital tract, includingtheprostate.LowARexpressionwasfoundinmanyothertissuesincludingmammary gland,kidney,liverbrain,genitalskinfibroblastsandkeratinocytes,hairfollicles,cardiacand skeletalmuscle,andsalivaryglands 251,252 .Theandrogens,TandDHTarethemainARligands. TisproducedintheLeydigcellsofthetestis.Intargettissuesitcanbeconvertedintothemore activeDHTby5αreductase 253,254 . Inadditiontoitsroleinprostatedevelopmentandmaintenance,theARisinvolvedinprostate .OrchiectomyorinhibitionofARactivitybyantiandrogenscausesshrinkageof thenormalprostateandoftumorprostatictissue,includinglossofluminalepithelialcells(see forreviewref.255).Therefore,ARsignalingisanimportantsubjectofresearch. 1.2.1GeneralfeaturesoftheAR The AR genemapstobandXq11.2q12andiscomposedof8exonsspanning 186kbp 256258 .TwohARmRNAspeciesofapproximately8.5and11kbhavebeenidentified 256,259262 .Thesetranscriptsdifferonlyinthesizesoftheir3'UTRs.TheARNTDisencodedby partofexon1.Exons2and3codefortheARDBD,eachforonezincclusterdomain.TheAR LBDisencodedbypartofexon4,exons5,6,and7,andpartofexon8. ThesizeofthehumanARcanbevariable,duetovariationinthelengthofpolyglutamineand polyglycinestretchesinitsNTD(Figure7) 256,259 .IntheARfrom otherspeciesthesestretches areabsentorhaveaconsiderablydifferentsizeandarelocatedinadifferentpartoftheNTD. Amino acid numbering in this thesis corresponds to an AR length of 919 amino acids, as employed by The Androgen Receptor Gene Mutations Database (http://www.mcgill.ca/androgendb)263 . TheARcanbephosphorylatedintheabsenceorpresenceofandrogensresultinginisoforms displayed as a 110112114 kDa triplet in an SDSPAGE gel. As a result of alternative translationinitiation,atruncated87kDaARhasbeenfoundinfetaltissuesandgenitalskin fibroblasts 264,265 .Itconstitutes10%ofthetotalARproteinlevel,butits in vivo relevanceisnot known. TheARDBDandLBDprimarystruturearewellconservedbetweenspecies.TheARNTD containsonlyshortconservedregions,thehomologyofaminoacidstretches136,234247and 501529aremostobvious.Theseregionsareexpectedtobeoffunctionalimportanceandare discussedinthenextsection. FXXLF polyQ polyG N C TAU 1 TAU 5 Figure 7. Schematical overview of AR NTD functional subdomains. FXXLF = FXXLF motif, polyQ = poly glutaminestretch,polyG=polyglycinestretch,TAU=transactivationunit.

24 1.2.1.1TheARNH 2terminaldomain In the AR NTD several functional subdomains have been identified (Figure 7). The NTD harboursthetranscriptionactivationunit1(TAU1).TAU1comprisesaregionofapprox.250 amino acid (aa) residues (100370) and is active in the fulllength ligand activated AR. However, in a truncated AR lacking the LBD, another region containing aa 360485, termed TAU5,functionsasaconstitutivelyactivetransactivationdomain 266 .Dependingonthecellular context,deletionofTAU5causesasmallormorepronounceddecreaseinactivityofthefull lengthAR 266, 267 .Incontrast,TAU1isindispensibleforligandinducedactivationofthefull lengthAR 266 .ThesefindingsindicatethattheunligandedLBDpreventsTAU1activity,which isreverseduponligandbinding.Indeed,theTAU1regionbyitselfshowsaconstitutiveactivity thatisapprox.40%oftheactivityofthecomplete NTD 267 . TAU1 in the rat AR was even furthernarrowedtotworegions,AF1aandAF1b,whichcorrespondtoaa172185andaa296 360 in the human AR. Deletion of either subdomain caused a minor reduction of AR transcriptional activity, but absence of both AF1a and AF1b resulted in a 90% decrease in activity 268 .However,anotherstudyindicatedthatAF1bwasdispensible 267 .Theimportance of TAU1 and TAU5 in AR activity is further substantiated by the finding that the NTD is essentialinp160coactivatorbinding.AlthoughtheARLBDcanbindtop160coactivators,the ARNTDalsointeractswiththesecoactivators.TAU5directlyinteractswiththeglutaminerich regionofSRC1,whereasTAU1seemstoattenuateindirectlythisinteraction 267 . It has been predicted that the NTD contains several small αhelical structures, but a well definedstructureofthecompleteARNTDcouldnotbeestablished.ItispresumedthattheAR NTDadoptsaninducedfitconformationinresponsetobindingotherproteins,asproposedfor bindingofthegeneraltranscriptionfactorTFIIF 269 . Theregionaa234247,whichconstitutethemostconservedpartofARNTDwasfoundtobind tothecarboxyterminusoftheHsp70interactingprotein (CHIP), a negative regulator of AR (seealsosection1.2.2.2) 270 . The highly conserved region aa 1636 is predicted to fold in a long amphipathic αhelix, indicating a proteinprotein interaction domain. Aa 2327 is located within this region and comprisetheLXXLlikemotif,FQNLF.Thismotifisessentialinthedirectliganddependent interactionbetweentheARNTDandARLBD,thesocalledN/Cinteraction.Thisinteraction willbeextensivelydiscussedinsection1.2.3andChapter2.SomeARcoregulatorshavealso beenfoundtocontainFxxLFmotifs,throughwhichthey,likethemotifinARNTD,bindtothe ARLBDcoactivatorgroove,therebycompetingwiththeN/Cinteraction(reviewedinref.271, seealsosection1.2.2.1).Recently,themelanomaantigengeneprotein11(MAGE11)hasbeen identifiedasaproteinthatinteractswitharegionintheARNTDoverlappingwiththeFXXLF motif.BindingofMAGE11increasesARactivity(seesection1.2.2.1) 272 . Theregionaa501529isthethirdpartoftheNTDthatishighlyconservedbetweenARsfrom differentspecies.However,forthisregionnospecificfunctionhasbeenestablishedasyet. Inadditiontotheproteinsdescribedabove,manyotherproteins,includingothercoactivators andcorepressors,havebeenfoundtointeractwiththeARNTDandinfluenceARfunction.An overviewoftheseproteinscanbefoundinTheAndrogenReceptorGeneMutationsDatabase (http://www.mcgill.ca/androgendb)263 .Aselectionoftheseproteinsisgiveninsection1.2.2.

1.2.1.2TheARDNAbindingdomain The AR binds with high affinity to the consensus androgen response element (ARE) 5' AGAACAnnnTGTTCT3',whichissharedwiththeGR,PRandMR.Also,moreorlessAR

25 specificAREshavebeenreportedintheregularyregionsofgenesthatshowandrogenspecific transcriptionalregulation.TheseAREscontainoneperfectoralmostperfecthalfsite,whereas thesecondhalfsitecanvaryconsiderablefromtheconsensussequence(reviewedinref.55). BasedoncrystallographicdataoftheARDBDboundtoanARspecificARE,themechanismof ARbindingtoaspecificAREhasbeenelucidated.OneARbindstoahighaffinityconsensus halfsite, the second AR can have a weaker affinity to the second halfsite, because the AR DBD, unlike other steroid receptors, contains an additional interface that stabilizes the AR dimer/ARE complex. Dimerization strength of the other steroid receptors would not be sufficienttoretainstablebindingtoanARspecificARE.TheorientationoftheARdimeron theAREisinaheadtoheadfashiononbothnonspecificandARspecificAREs(Figure8) 24 . Moredetailsonthissubjectaredescribedinsection1.2.4andChapter3. LikeotherNRs,theARDBDwasfoundtocontainanonclassicalNES,whichisnecessary andsufficientfornuclearexport,indicatingarolefortheDBDinnucleocytoplasmicshuttling oftheAR 26 .Inaddition,asecondNEShasbeenpostulatedintheARLBD(seesection1.2.1.4) 45 . Figure8. OverallarchitectureoftheARDBDcomplexedtoanARspecificARE.ThetwoARDBDsubunitsare inredandblue,repectively,thehexamericAREhalfsiteisingold,thespacerandflankingbasepairsareblack. Fromref.24.

1.2.1.3TheARhingeregion The hinge region of the androgen receptor contains a bipartite nucleoplasminlike NLS (aa 605624),whichisessentialfornuclearimportofthereceptor 273,274 .TheNLSisblockedbythe unliganded LBD, because only in the presence of androgens the AR is transported to the nucleus.ARmutantslackingtheLBDareconstitutivelylocalizedtothenucleus. Betweenaa628and646adomainhasbeenidentifiedthatinhibitsAF2activityofARLBD. Mutations in this region enhanced the weak (see 1.2.1.4) AF2 transactivation by TIF2 indicatingthatthehingeregionplaysaninhibitoryeffectoncoactivatormediatedAF2function ofAR 275,276 .Alternatively,region628646mightbindaninhibitoryprotein,therebynegatively influencingtheoverallactivityoftheAR.

26 1.2.1.4TheARligandbindingdomain CrystallographicdatahaverevealedthethreedimensionalstructureoftheARLBD(Figure9) 277 . Although no helix 2 has been identified, helix numbering is further consistent with the generalNR12helicalLBDstructure,aswaspreviouslypredictedbycomparisonmodeling 278 . AR LBD helices10and11actuallyformonelonghelix,andhelix12appearedtobelonger than proposed by modeling. The crystallographic structure was elucidated for the AR LBD complexedwithDHTandcomplexedwiththesyntheticandrogenR1881.Adynamicstructure wasindicatedfortheARLBD,becausebindingofDHTinducedacontinuoushelix12,which was apparently split into two separate helices upon binding of R1881. Indications for the influence of the ligand on LBD conformation were earlier provided in limited proteolytic digestionexperiments,inwhichtheARboundtoeitheragonistsorantagonistsshowedprotease protectedfragmentsofdifferentsizes 279 . The ligand binding pocket in the AR LBD is primarily formed by 18 amino acid residues scatteredthroughouthelices3,4,5,10and11 277 .Thepositionsofallindividualaminoacid residuesrelativetotheboundligandhavebeenidentified.Substitutionsofaminoacidsthatare incontactwithorinthevicinityoftheligandhavebeenfoundinprostatecancerspecimensand intheandrogeninsensitivitysyndrome 280282 .ThesesubstitutionsimpairARfunctionorrender theAR,alsoresponsivetofemalesexhormones,,andevenantagonists 283 .More detailsonARrelateddiseasesandARligandspecificitycanbefoundinsection1.2.5andin Chapter4. LikewasfoundforotherNRs,helix12oftheARLBDisfoldedlikealidovertheligand binding pocket when occupied with an agonist 277 . The resulting conformation of the LBD provides an interface for coactivator binding. In case of antagonist binding, the resulting conformation might lead to corepressor recruitment and/or inhibition of coactivator binding. However,althoughthecoactivatorsSRC1,TIF2andGRIP1canbindtotheARLBDthrough theirLXXLLmotifs,thisbindingisnotessentialforARfunction.ThisisreflectedbyanAR deletionmutantlackingtheNTD,thatcanitselfnotbeactivatedbyandrogens 266 .Thismutant needs overexpression of a p160 coactivator to be activated, indicating very weak AR AF2 activity 40,284 . Althoughp160coactivatorbindingtotheARLBDmightnotbeessentialforfulllengthAR function,differentLBDconformationsinducedbydifferentligandsmightinfluencecoactivator bindingtotheNTD.Indicationsforthiswerefoundininteractionswithcoregulators.Theanti androgen bicalutamide (BCA) is unable to activate the AR. It cannot induce coregulator recruitment,althoughaBCAboundARisabletobindtoDNA 285,286 .However,asindicatedby FRAP experiments the time period of interaction with DNA is very short 287 . Cyproterone acetate(CPA)elicitsatranscriptionallyproductiveARGRIP1interaction,reflectingitspartial antagonisticcharacter.CPAwasalsofoundtoinducerecruitmentofthecorepressorSMRTto theARNTD 288 .So,theoutcomeofCPAactivitymaydependontheratioofcoactivatorsand corepressorspresentinacell. A separate category of AR coregulators, including ARA54, ARA70 and RAD9 (see section 1.2.2),werefoundtobindtotheLBDthroughtheir FXXLF motifs, which are related to the LXXLL motifs found in most coactivators 289 . An FXXLF motif (see also section 1.2.1.1), whichcanbindtotheARLBD,wasalsofoundintheNTD.Thismotifestablishesaligand dependentinteractionbetweenthesetwodomains,theN/Cinteraction.Thisinteractionmight contributetoARactivity,dependentonthepromotercontext 290 . TheARLBDshowsapreferenceforFXXLFmotifsoverLXXLLmotifs.Computermodeling and crystallographic analyses of AR LBD bound to FXXLF and LXXLL motif containing

27 peptides,haverevealedalargercoactivatorgroovefortheARLBDcomparedtotheERLBD. Thislargergrooveprovidessuitablecontactsitesforthebulkyphenylalaninesidechainsofthe FXXLF motif, whereas LXXLL motifs have less favorable interactions with the aminoacids lining the AR coactivator groove 162, 291, 292 .DetailedinformationontheN/Cinteractionand FXXLFmotifscanbefoundinsection1.2.3andChapter2. AnARNESislocalizedintheARLBDbetweenaminoacids742and817.Intheabsenceof ligand,thisNESisactiveanddominantovertheNLSinthehingeregion(seeprevioussection). LigandbindinginhibitstheNESandsimultaneouslyreleasesrepressionoftheNLS,leadingto an increase of AR nuclear localization 45 . The AR LBD also plays an important role in stabilizationofARDNAinteractionasrevealedbyFRAPanalysis 293 . 1 9 8 10 7 4 5 t ac co 11 6 12 3 Figure9. AR LBD helical structure. Numbers of the helices are indicated, coact = helixofacoactivatorthat interactswiththecoactivatorgroove,androgenmoleculeisinred. 1.2.2ARcoregulators Many proteins have been found to interact with the AR. A portion of these proteins was identified as AR coregulators, either coactivator or corepressor. In addition, a number of proteins have been descibed that do not interact directly with the AR, but can indirectly influence receptor activity. These proteins might also be considered as AR coregulators. An overview of ARinteracting proteins is presented in the AR mutations database (http://www.mcgill.ca/androgendb) 263 . In this section, an overview of AR coactivators and corepressorsisgiven,inTables1and2,respectively.Selectedproteinsarediscussedinsections 1.2.2.1and1.2.2.2.

28 1.2.2.1ARcoactivators ThemoststudiedgroupofNRcoactivatorsisthe familyofp160(SRC)proteins.Allthree membersarecapableofenhancingARactivity.SRC1andTIF2(SRC2)werefoundtobindto theligandactivatedARLBDthroughtheirLXXLLmotifs,butthisinteraction,ascomparedto other NRs, is weak. SRC1 also binds to the AR NTD region 360494 (TAU5) through its glutaminerich region, which is essential for its recruitment, whereas the LXXLL motif is dispensable for coactivation of the AR 108 . However, depending on the promoter context, LXXLLguidedSRC1bindingtotheARLBDcontributestothetotalARactivity 136 . MaleSRC1knockoutmicedonotdisplayasignificant androgeninsensitive phenotype 114 . Theyarefertile,buttheirtestesaresmallerthanthoseofwildtypemice.Androgentreatmentof castrated SRC1 knockout mice showed prostate growth albeit less if compared to wildtype castratedmice.ThesedatasuggestcompensationoftheSRC1absencebyothercoactivators. Indeed,inSRC1knockoutmicetheTIF2mRNAleveliselevated 114 .Thismightexplainwhy the SRC1 knockouts showed normal fertility. Combinatory knockout models have provided more insight in the redundancy of SRC coactivators. SRC1//TIF2 / mice, which were not viableafterbirth,andSRC1+//TIF2 /miceshowedseveretestisdegeneration.Thelatterwere sterile,whereasSRC1+/+ /TIF2 /micewerehypofertile 130 .ThesefindingsindicatethatSRC1 canpartiallycompensateforthelackofTIF2inadosedependentmanner.AlsoSRC3seems importantinandrogenregulateddevelopmentofthemalephenotype,sinceitsglutaminerepeat was found to be shorter in undermasculinized subjects 294 . This observation might indicate absence of redundancy by SRC1, TIF2 or nonSRC coactivators. However, details of the mechanism of inhibition of AR function by the shortened polyglutamine stretch in SRC3 remainstobeestablished.Morerecentlyithasbeenreportedthatinatransgenicmousemodel, GAL4DBD in which the AR DBD was swapped by the Gal4 DBD, AR mice,theARactivityin testeswasdecreasedinaTIF2+/background,andevenmoredecreasedinTIF2nullmutants comparedtowildtype.However,SRC1+/miceshowednosignificantchangesinAR GAL4DBD activity.ThesefindingsindicatethatTIF2mightserveasthepreferentialcoactivatorofARin thetestis 295 . ThegeneralcoactivatorCBP,SRC1,andARarecoexpressedinluminalepithelialcellsofthe prostate and in a subpopulation of prostate stromal cells. If transfected in CV1 cells, CBP enhances ARdependent transcription. Coimmunoprecipitation experiments have revealed that the AR and CBP can be found in the same multiprotein complex. An AR deletion mutant lacking the LBD and region aa 38296 of theNTD isstillcapabletobindCBP,indicatinga ligandindependentinteraction 296 . Tip60(Tatinteractiveprotein,60kDa),firstidentifiedincomplexwiththeTatproteinofthe humanimmunodeficiencyvirus1,isanNRtypeIIIspecificcoactivator 297,298 .ItdisplaysHAT activity and can directly acetylate the AR, which is necessary for Tip60mediated AR coactivation 299,300 .PIRH2caninteractwithbothTip60andtheAR,andenhancesARactivity 301 .PIRH2alsobindstotheARcorepressorHDAC1,whichleadstoinhibitionoftranscriptional repression 301 . ARassociatedprotein70,ARA70,bindstotheARLBDandwasshowntoenhanceandrogen inducedARtranscriptionalactivity 302 .OverexpressionofARA70changestheARantagonists OHFL and BCA into agonists and it also induces AR transcription at physiological E 2 concentrationsinfemales 303305 . ARA55 binds to the AR LBD and, when hypophosphorylated, is thought to act as an AR coactivatorinthenucleus 306,307 .LikeARA70,itcanenhancetheAR(T877A)mutantresponse to OHFL 305 . The phosphorylated form of ARA55 is found in focal adhesions that are

29 connected with the extracellular matrix 307, 308 . This property indicates that phosphorylated ARA55 might be involved in regulation of anchoragedependent growth, differentiation and apoptosis.ARA55containsLIMdomainsknownasproteinproteininteractionsites,butitisnot knownwhetherARA55recruitsothercoregulatorsviathesedomains 309 . ARA70,ARA55,andARA54containtheLXXLLrelatedmotifFXXLF(seesections1.2.1.1 and1.2.1.4).TheFXXLFmotifsofARA70andARA54specificallybindtotheAR LBD.However,theARA55FXXLFmotifwasunabletobindtotheARLBD,indicatingthat otherregionsinARA55areresponsibleforARinteraction 289 .FXXLFandrelatedmotifswill bediscussedextensivelyinsection1.2.4. ARA267β,whichishomologoustomouseNSD1(NRbindingSET(Su(var)39,Enhancerof Zeste, and Trithorax)domaincontaining protein), and its aminoterminal shortened isoform, ARA267α,canbindboththeARNTDandARLBDandenhanceDHTinducedtranscription 310 .BothARA267proteinscontainaSETdomain,whichisknowntointeractwithcomponents oftheSWI/SNFcomplex.WhethertheSETdomainsoftheARA267proteinsplayaroleinthe recruitmentoftheSWI/SNFcomplextotheARremainstobeestablished.NSD1containsan FXXLLmotif,throughwhichitcanbindtotheARLBD 311 . MAGE11(seealsosection1.2.1.1)hasbeenidentifiedasaproteinthatbindstotheregionin theARNTDthatcontainstheFXXLFmotif.ItstabilizestheunligandedARandinthepresence ofanagonistitcompeteswiththeN/Cinteraction,therebyincreasingtheexposureoftheLBD coactivatorgroovetotherecruitmentandactivationbycoactivators 272 . Two related AR coactivators, PIASαx and PIAS1, are members of the protein inhibitor of activated signal transducer and activator of transcription (STAT) family. STATs are transcription factors that arephosphorylated in response to interferon, interleukines,andEGF 312 .So,itispossiblethatthePIASproteinsmediatecrosstalkbetweencytokinesandandrogen signalling,butARactivationbytheseproteinsmayalsobeadistinctregulatoryprocess.PIAS1 isatargetofandrogenreceptorinteractingnuclearkinase(ANPK)andisexpressedinSertoli and Leydig cells, and in spermatogenic cells 313, 314 . PIASxα, identified as androgen receptor interactingprotein3(ARIP3),isalsoexpressedinthetestisandwasfoundtofacilitatetheAR N/C interaction (see section 1.2.4) 315 . PIAS proteins contain aminoterminal LXXLL motifs and bind to the AR in an androgendependent manner. The LXXLL motifs of PIASxα were foundtointeractwithGRIP1,butitisnotclearasyetwhetherthemotifsarealsoinvolvedin ARbinding 176 . Filamentous (Factin) binding proteins βcatenin, gelsolin, supervillin, and A determinecellmorphologybyregulatingactinpolymerizationanddepolymerization.βcatenin alsoactsasacoactivatorofdownstreamtranscriptionfactorsoftheWntsignallingpathway 316 . Interactions between the Wnt and AR signalling pathways, can both activate or inhibit AR activity 317,318 .βcateninwasfoundtofunctionasanARcoactivatorinprostatecancercells 319 . ThehistonemethyltransferaseactivityofCARM(seesection1.2.2.4)canfunctioninsynergy with βcatenin and p300 as a coactivator of the AR. Through βcatenin, CARM1 binds indirectlytotheAR,butnomethylationofARhasbeenfound 76 .TheexactARcoactivating mechanismofCARM1isstilltobeelucidated.Recently,βcateninwasfoundtobeinvolvedin insulinlikegrowthfactor1(IGF1)mediatedactivationoftheAR 320 .Gelsolininteractswith theARLBDbyanFXXFFmotifinaTdependentmannerandfunctionsasanARcoactivator intheprostatecancercelllineDU145 321, 322 .SupervillincancoactivatetheARandbindsto boththeARNTDandARLBD 88 .ItalsoactivatestheGRandispredominantlylocalizedtothe plasma membrane at sites of intercellular contacts 323 .Thissuggestsaroleforsupervillinin transducingsignalsfromcellularadhesionsitestothenucleus,therebyinfluencingNRfunction.

30 FilaminAisaproteinthatcancrosslinkF.ItcanalsointeractwiththeARhingeregion. MutantfilaminAdisablestheARtotranslocatetothenucleus,therebyinhibitingARregulated transcription 324 . Androgenreceptortrappedclone27,ART27,isanARcoactivatorthatbindstotheARNTD. Itisexpressedinprostateepithelialcells,inmuscle,andinbreasttissues,butnotinARpositive stromal cells of the prostate 325 . ART27 is associated with growth suppression and cell differentiation,whichisillustratedbyitsenhancementofPSAproduction 326 . ThefourandahalfofLIMonlyprotein2(FHL2)isanARcoactivatorthatispredominantly expressed in the heart and to a lesser extent in epithelial and stromal prostate cells. FHL2 requiresthefulllengthARtoenhanceitsactivity 327 .ItcontainsanFXXLFmotif,butapeptide fragmentwiththismotifisunabletointeractwiththeARLBD 289 .FHL2interactsalsowithβ catenin(seeabove),butstimulationofARactivitybybothFHL2andβcateninwasfoundtobe additiveandnotsynergistic 328 . The ubiquitinprotein E6 associated protein (E6AP) (see also section 1.2.3) has an intrinsictransactivationfunction,andcanactasacoactivatorforRARα,TR,ER,PR,GRand AR,inaliganddependentmanner.Coactivationisindependentoftheubiquitylationcapacityof this enzyme, whichindicatesthatcoactivationand ubiquitylation are distinct processes 329 . It could be presumed that the ubiquitinating activity contributes to NR activity by targeting degradationofcorepressors,aswasfoundforNCoR,oritcouldbeinvolvedindegradationof componentsofthepreinitiationcomplex,therebyfacilitating reinitiation of transcription. The AR interaction domain of E6AP has not been identified as yet. Ubc9 (or UBE2I) (see also section1.2.3)isrelatedtotheubiquitinconjugatingandcanactasacoactivatorforthe ligandbound AR. Instead of ubiquitylation, Ubc9 rather is involved in covalent linking of SUMO1.SimilartoE6AP,thecoactivationfunctionofUbc9isindependentofitssumoylation capacity.Ubc9bindstotheARDBDhingeregion 172 . Table1. ARcoactivators. Modified and extended from ref. 271. Coactivator Alternativename Bindingto Comments References SRC1 NCoA1,p160 NTD,DBD, EnhancesARN/Cinteraction;Interactswith 66,99,108, LBD CBP/p300;Generalnuclearreceptorcoactivator;Weak 136,330 acetyltransferaseactivity. TIF2 GRIP1,NcoA2, NTD,DBD, Generalnuclearreceptorcoactivator;FacilitatesAR 100,104,284, SRC2 LBD N/Cinteraction. 331 SRC3 AIB1,NcoA3, unknown EnhancestranscriptionbyAR,PR,TRandRAR; 65,101,303, ACTR,p/CIP, InteractswithCBP/p300;Acetyltransferaseactivity. 332 Rac3,TRAM1 Tip60 hingeLBD AcetylatesAR;AlsocoactivatesPRandER;Family 298300 memberoftheMYST/SAShistoneacetyltransferases. hPIRH2 unknown BindstoAR,Tip60,andHDAC1.EnhancesARby 301 reducingHDAC1proteinlevels SNURF RNF4 DBD RINGfingerprotein;InteractswithAR,ERandPR; 313 MayrecruitcromatinremodelingfactorHMGI(Y). ARA54 LBD Ringfingerprotein;Liganddependentcoactivatorof 333 ARandPR. ARA55 Hic5 LBD ContainsaLIMdomain;Liganddependentcoactivator 289,305307, ofAR,PR,GRandER. 309,334 ARA70 ELE1,RFG DBD,LBD LiganddependentcoactivatorofAR,GR,ERand 302305,335, PPARγ;Bridgingfactortop/CAFandTFIIB. 336 FHL2 DRAL,Slim3 unknown Liganddependentandprostatespecificcoactivatorof 327,328 AR;LIMonlyprotein. ARA160 TMF NTD EnhancesAR,PRandGRfunction;Synergisticwith 337 ARA70. ARA267β NSD1 NTD,LBD InteractswithAR,ER,TR,RARandRXR;Contains 310,311 SETanddomainsARA267αisNterminalshortened ARA267β ARIP3 PIASαx DBD FacilitatesARN/Cinteraction;repressestransactivation 315 oftheprobasinpromoterathighlevels(AR:ARIP3= 1:200)

31 Coactivator Alternativename Bindingto Comments References 1:200) PIAS1 DBD,LBD CoactivatorofARandGR,butacorepressorofPR; 314 Expressioninrattestesatonsetofspermatogenesis E6AP unknown InteractswithAR,ER,PRandGR;Ubiquitinylates 329 targetprotein,whichisseparatefromcoactivation. Ubc9 DBDhinge InteractswithARandGR;Sumoylatestargetprotein, 172,338 whichisseparatefromcoactivation. Gelsolin LBD EnhancesARinprostateandmusclecells;Actin 321 filamentseveringandcappingprotein. Caveolin1 NTD,LBD Membraneproteinassociatedwithcaveolimembrane 339 structures. βcatenin unknown Liganddependentcoactivator;Alsointeractswith 319,320,328 FHL2toactivateWntresponsivegenes(independentof AR). FilaminA hinge InvolvedinARnuclearimport;RepressesARfunction 324,340 byinterferingwiththeN/Cinteractionandcompeting forTIF2. Supervilin NTD,LBD InteractswithARandGR;Actinbindingprotein. 88 ANPK PKY DBD StabilizesARprotein 313 ARA24 Ran NTD InteractswithARNTDpolyglutaminerepeat. 341 BRCA1 NTD,LBD EnhancesARtranscriptionsynergisticallywithARA55 342 andARA70. BRCA2 NTD,LBD EnhancesARfunction,whichmaybeantiproliferative 343 in(male)breastcancer. CyclinE NTD EnhancesARactivityindependentofcellcycle 344 progression. pRb NTD,DBD Tumorsuppressor;EnhancesARtranscriptionand 345 repressesTRbybindingtotheTRcoactivatorTrip230 (hMED12). BAG1L unknown EnhancesARactivity;RegulatesHsp70function. 345 Hsp40 dnaJ,ydj1p LBD MutationofHsp40inyeastreducesARtransactivation; 346,347 Memberofthechaperoneheterocomplex. CBP p300 NTD,DBD FacilitatesARN/Cinteraction;interactswithSRC 296,330,348 familymembers;acetyltransferaseactivity;Coactivator ofmultipletranscriptionfactors. RIP140 NTD,DBD, Coactivatoratlowreceptorcoactivatorratios,but 349 LBD repressorathighratios;InfluencesactivityofAR,ER, PPARαandPPARγ ZAC1 LBD InteractswithAR,GR,ERandTR;ARcoactivatorin 350 HeLacells(synergisticwithTIF2)andARcorepressor in1471.1cells. PGC1 LEM6 unknown Generalnuclearreceptorcoactivator. 351 SRA unknown EnhancestranscriptionofAR,PR,GRandER; 352 FunctionsasaRNAtranscriptandassociateswithan SRC1containingcoregulatorcomplex. RAF IDE NTD EnhancesARandGRDNAbinding. 353 HMG1/2 unknown EnhancesDNAbindingofAR,PR,GRandER; 354 Abundantchromatinassociatedprotein;Doesnot recognizeaspecificDNAbindingsequence. MAGE11 NTD BindstheARNTDFXXLLFmotif;Competeswiththe 272 ARN/Cinteraction;StabilizestheunligandedAR ART27 NTD Associatedwithgrowthsuppressionandcell 325,326 differentiationofprostateepithelialcells,lowor negligiblelevelsinprostatecancersshowing dedifferentiation. CARM1 indirect Functionsinsynergywithβcateninandp300;Binds 355,356 throughβcateninindirectlytotheAR;Overexpressed inprostatecarcinoma.

32 1.2.2.2ARcorepressors AlthoughthenumberofidentifiedARcorepressorsislessthanthatofARcoactivators,thelist ofARinhibitingproteinsisstillgrowing 357 .ThebeststudiedARcorepressorssofarareNCoR andSMRT. AR transcription activity can be inhibited by cotransfection of small amounts of the corepressorNCoRinthepresenceofpartialantagonists,higherNCoRexpressionlevelscanin thepresenceofagonistseveninhibitARactivity 358,359,360 .PossiblyNCoRcaneasilycompete withcoactivatorsforbindingtotheagonistboundAR,becauseinteractionofcoactivatorswith theARLBDviaitscoactivatorbindinggrooveisnotstrong 358 .TheseresultsindicatethatAR activitywillnotonlybedeterminedbythepresenceofagonistsand/or(partial)antagonists,but alsobytheratiosofcoactivatorsandcorepressorsinacell.ThepartialantagonistCPAandthe antagonistOHFLshowagonisticactivitiesfortheARmutantT877A,presentinthe lymphnode derived prostate cancer ( LNCaP) cell line . These activities were hardly affected by NCoR. However, cotransfection of the coactivator TIF2 strongly enhanced the activity of the AR mutant 359 . This indicates that the antagonistbound T877A mutant preferentially binds to coactivators reflecting its activation by antagonists. NCoR mediated repression of AR seems independentofHDACs,aswasshownbydeletionoftheHDACinteractingdomainofNCoR 358 . Both the AR NTD and LBD are required for NCoR binding, which is dependent on the CoRNRboxesandindependentofligandandhelix12 358, 360.TheobservationsthatARand NCoR are present in the same complexes, as shown by coimmunoprecipitation and ChIP analysisofendogenousproteins,isstrongevidencethatNCoRisofrelevanceforregulationof ARfunctionunderphysiologicalconditions 358,360 . LikeNCoR,SMRTcanbindtoboththeARNTDandLBD.ItinteractswiththeLBDviathe RID2 corepressor motif. This interaction is enhanced by the presence of the AR DBDhinge region 361 .SMRTbindingtotheARcanoccurinCV1cellsinthepresenceofR1881orthe partialantagonistCPA,butnotwiththeantagonists BCA or OHFL 288 . However, in human kidney293cellsSMRTcanberecruitedtotheARinthepresenceofOHFLorBCA,indicating celldependentSMRTfunction 361, 362 .SMRTweaklydecreasesARactivitionbyagonists,but strongly enhances the AR inhibiting activity of (partial) antagonists 288, 361 . In addition, the antagonistmifepristone(RU486)inducesbindingoftheARtoSMRT,andalsotoNCoR.This interactionseemsevenstrongerthanthatinducedby CPA, OHFL and BCA 363 . It was also found that the coactivator SRC1 can compete with SMRT for binding to the AR NTD, indicatingamodulatingroleforrelativecoregulatorlevelsinARfunction 364 . RAD9, a member of the Rad family of checkpoint proteins involved in DNA damage detection, DNA repair, and cell cycle arrest, was found to interact with the AR LBD. An FXXLFmotifintheCterminalregionofRAD9mediatesthisinteraction,therebyinhibitingthe ARN/Cinteraction 365 .Inthisway,crosstalkbetweencheckpointproteinsandARsignalling canoccur. Dosagesensitive sex reversal adrenal hypoplasia congenita critical region on the X chromosomegeneI(DAX1)isanatypicalnuclearreceptor,lackingaDBD 366 .Itbindstothe ARLBDandcansequestertheARinthecytoplasm 367 . Shortheterodimericpartner(SHP)isanorphannuclearreceptorthatcanbindtotheARNTD andLBDandinhibitstheactivationfunctionsofbothARsubdomains.ThroughitsLXXI/LL motifs SHP binds to the AR LBD in an androgendependent manner. SHP was shown to competewiththeARcoactivatorsTIF2andFHL2forARLBDbinding 368 .SHPinducedAR repressionwasfoundtobemediatedbyrecruitmentofHDACs 369 .

33 Thehighlyconservedregionaa234247wasfoundtohaveanARinhibitingfunctionifbound toCHIP(seealsosection1.2.1.1).CHIPbindstotheunligandedAR,whichmightpromoteAR degradation 270 .Twomutations,A234TandE236G(seealso1.2.5.2.3),detectedinatransgenic mouseprostatecancermodel,reducedtheinteractionwithCHIP 370 . Table2. ARcorepressors. Modified and extended from ref. 357. Corepressor Alternativename Bindingto Comments References ARR19 DBD InhibitsARactivitybyrecruitmentofHDAC4;co 371 translocatesinthenucleuswithAR DJBP DBD RecruitsaHDAC1andmSin3Acontainingcomplex. 372 HDAC1 DBDLBD InhibitsARactivity;noeffectonARproteinlevels. 300,373 NCoR LBD Antagonistdependentcorepressor;competeswith 358360 TIF2;bindingtoARdependsoncorepressornuclear receptorboxes,butisindependentofligand. PIASγ unknown RepressesARactivityindependentofitssumoylation 374 activity,probablybyrecruitingHDACs. SMRT NTD,LBD LiganddependentcorepressorbyinhibitingARN/C 288,361364 interactionandcompetingforp160coactivators. TGIF DBD RepressesARactivitythroughtheHDACpathway 375 DBD CorepressesAR,GR,RARandRXR;inhibitsDNA 376 bindingandtranscription. Tip110 LBD BindstoARthroughitsLXXLLmotif;prevents 377 bindingofARtoAREs. DAX1 LBD InhibitsliganddependenttransactivationandARN/C 367 interaction;relocalizesARinnucleusandcytoplasm; inhibitsERandSF1. LATS2 KPM LBD InhibitsARN/Cinteraction;lowerexpressionin 378 prostatetumorsthaninnormalprostate. RAD9 LBD FXXLFmotifwithinCterminus;interruptsARN/C 365 interaction. ARA67 PAT1 NTD(strong), PromotescytoplasmicretentionofAR. 379 DBD,LBD PAK6 hinge,LBD Inhibitsnucleartranslocationoftheligandbound 380382 AR;alsoinhibitsER. Akt unknown PhosphorylatestheAR;repressesARARA70 383,384 binding PTEN DBD InhibitsARviaaPI3K/Aktindependentpathwayin 384,385 earlypassagesofLNCaPcells. CHIP NTD BindstotheunligandedAR,whichisthoughtto 270,370 promoteARdegradation CyclinD1 unknown ReducesARactivityindependentofcellcycle 386,387 progression;coactivatorofER. HBO1 DBD,LBD Liganddependentcorepressor;memberofthe 388 MYST/SASproteinfamily. RIP140 NTD,DBD, Coactivatoratlowreceptorcoactivatorratios,but 349 LBD repressorathighratios;influencesactivityofAR, ER,PPARαandPPARγ SHP NTD.LBD LXXLLmotifmediatedinteractionwithARLBD; 368,369,389 inhibitsARandER. SMAD4 DBD,LBD InhibitsSMAD3enhancedARactivitybydecreasing 390392 ARSMAD3interaction. SRY DBD InhibitsARactivity. 393 TR2 unknown InhibitsandrogenmediatedtransactivationinPC3 394 cells;overexpressioncausessuppressedPSA expression ZAC1 LBD InteractswithAR,GR,ERandTR;ARcoactivatorin 350 HeLacells(synergisticwithTIF2)andAR corepressorin1471.1cells.

34 1.2.2.3TheARintranscriptionregulatorycomplexes DuringthelastdecademanystudieshaveaddressedthequestionofARfunctionincooperation withtheplethoraoftranscriptionregulatoryproteins.Dataarerangingfromdirectinteractions with coactivators and corepressors through complex participation in chromatin remodeling, Mediator function, and ultimately to recruitment and activation of the general transcription machinery.Inthemajorityofthestudiesonthissubjectthe PSA promoterandenhancerhave been used as AR target. A comprehensive overview of the relationshipbetween the AR and transcriptionregulatorycomplexesisgivenbelow. ARregulatedrecruitmentofcoregulators In several studies thecomplexprocessofrecruitmentofcoregulatorstoARregulatedgenes hasbeendescribed,however,theoutcomesofthedifferentstudiesareinsomecasesconflicting. First,ithasbeenshownthatandrogensinducerecruitmentofTIF2,SRC3,andCBP/p300to theprostatespecificantigen(PSA)enhancer.ChIPexperimentsinLNCaPcellsrevealedthatthe coactivatorsarepreferentiallyrecruitedtothestrong4kbpupstreamenhancerofthe PSA gene and much less efficiently to the proximal PSA promoter. Remarkably, promoterindependent recruitment of RNApolII to the enhancer and subsequent induction of transcription has been observed.SRC3wasfoundtofacilitateRNApolIIrecruitment 395 .Asecondstudyrevealedthat forboth PSA andthecloselyrelated kalikrein gene KLK2 moreARisloadedontotheenhancers thanontothepromoters,buttheresidencetimeoftheARontheenhancerswasmoretransient 396 .However,incontrasttothepreviousstudy,RNApolIIwasfoundtobeassembledonthe promoters. The reason for this discrepancy is not understood. Binding by different anti androgensresultedindifferentARoccupationonenhancer/promoterregions:BCAboundAR isabletobindtothe PSA promoter,butnottotheenhancer,whereasthepartialantagonistsCPA andRU486werecapableofpromotingARloadingonboththe PSA enhancerandpromoter 396 . CPAandRU486,butnotBCA,boundARledtooccupation of both the PSA enhancer and promoterbyGRIP1,p300,andRNApolII.LikeBCA,CPAandRU486werealsoabletoinduce recruitmentofNCoRtothe PSA promoter.Consistentwiththesefindings,treatmentwiththe pureantiandrogenBCAdoesnotresultinhistoneacetylation 396 . InanearlierreportandrogeninducedassociationofRNApolIIwithboththe PSA promoterand enhancer has been described 362 . However, quantitative differences between both AR target regionswerenotaddressed.Basedonthisstudyamodelwasproposedinwhichproteinprotein contact between the PSA enhancer and promoter is via RNApolII, thereby looping out the interval DNA. A scenario of a 'facilitated tracking' mechanism was proposed, whereby RNApolIItrailsfromtheenhanceralongtheentire4kb PSA upstreamsequencetothepromoter 395 .ThiswouldbeinaccordancewiththefindingthattheARcanresideforalongertimeperiod onthepromoterandRNApolIImainlyoccupiesthepromoter,indicatingananalysistimepoint atwhichARandRNApolIIhavereachedtheendpointofthe'preinitiationtrail' 396 . ARinterplaywithcomponentsofchromatinremodelingcomplexes AlthoughmanyaspectsofchromatinremodelinginARfunctionremaintobeelucidated,afew ofthelargenumberofcomponentsofchromatinremodelingcomplexeshavebeenidentifiedto bedirectlyinvolvedinARfunction. An interaction of AR with Brahma (BRM), one of the core ATPases of the SWI/SNF chromatin remodeling complex, was found, correlating with the agonistic or antagonistic propertiesofthetestedligands 397 .ThetwolargestsubunitsofthehumanSWI/SNFchromatin remodelingcomplex,hOsa1,whichisidenticaltoBRMrelatedgene1(BRG1)associatedfactor 250(BAF250)orARID1A,andhOsa2,whichissimilartohOsa1,werefoundtostimulateAR andGRtranscriptionalactivity 398 .BothOsaproteinscaninteractwithhBRMandBRG1,which

35 arenecessaryforactivationofthe PSA promoter,butadditionofthe PSA enhancersequenceto the reporter gene overruled this requirement. In contrast, the promoter of the probasin gene maintainedalowactivationlevelintheabsenceofSWI/SNF.Additionofthe PSA enhancerto the probasin promoterdidnotbypasstherequirementofthechromatinremodelingcomplexto achieveincreasedARinducedactivationofthispromoter 399 .Thesefindingssuggestdifferent mechanismsofchromatinremodelingforenhancerandpromoterregionsandalsofordifferent promoters. BAF57isanaccessorycomponentofSWI/SNFthatcandirectlybindtotheAR.Itisrecruited to endogenous AR targets such as the PSA enhancer upon ligand activation, and loss or inhibitionofBAF57inhibitsARactivity 400 .BAF57,togetherwithhBRM,wasfoundtobe required for the proliferation of androgendependent prostate cancer cells 400 . In addition, BAF57cancooperatewithp160coactivatorsandARA70andARA55toactivatetranscription ofARtargetgenes 400 . SWI3related gene product (SRG3), a component of the mouse SWI/SNF complex, is a homologue of human BAF155 and recruits SRC1. Coactivation of the AR by SRG3 is independentofBRG1andBRM,indicatingthatthecompleteSWI/SNFcomplexisnotrequired 401 . AR interaction protein 4 (ARIP4) is a SNF2like protein with DNAdependent ATPase activity.ItwasfoundtomodestlyenhanceARactivityonminimalpromoters,butnotonthe probasin promoter 402 .ItremainstobeestablishedwhetherARIP4isneededforactivationof ARregulatednaturalpromoters. ARinteractionswiththeMediatorcomplex Liganddependent transcriptionby the ARinLNCaPcellswasfoundtobeenhancedbythe TRAP220(MED1,accordingtotheunifiednomenclatureforMediatorsubunits 86 ),TRAP170 (MED14),andTRAP100(MED24)componentsoftheMediatorcomplex 403 .Inlysatesfroma Heladerivedcellline,E 19 ,pulldownexperimentshaveshownthatinthepresenceofTorDHT theARdirectlybindstoTRAP220throughitsLBD.ChIPassayshaverevealedthatTRAP220 isrecruitedtothe PSA promoterinR1881treatedLNCaPcells 403 . ARinteractionswiththegeneraltranscriptionmachinery Three components of the general transcription machinery have been identified that interact with the AR. These are the general transcription factors II F and H (TFIIF, TFIIH) and the positivetranscriptionelongationfactorb(PTEFb). ARNTDstronglybindstotheTFIIFsubunitRAP74(TFIIFisatetrameroftwoRAP74and twoRAP30subunits),modestbindingwasfoundwiththeTFIIFsubunitRAP30 404 .RAP74to AR NTD interaction, which is mainly via the Cterminal domain of RAP74, resulted in increasedproteaseresistanceoftheARNTD,indicatingthattheassumedflexiblestructureof thisARsubdomaincanfoldintoamorestableconformationuponinteractionwithTFIIF 269,405 . The highly conserved AR NTD region 224258 contains several conserved hydrophobic residuesthatareinvolvedinTFIIFbinding:M244,L246,andV248 406 .Outsidethisregionalso S159,S162,S340,andS343werefoundtobeinvolvedinbindingtoTFIIF 405 .So,interaction sitesforTFIIFarescatteredthroughoutTAU1intheARNTD.Noneoftheresiduesinvolvedin TFIIFbindingarebindingsitesforSRC1,becausethiscoactivatorbindstotheCterminalpart oftheARNTD,aa360494,whichincludesTAU5 108 .ThedistinctbindingsitesforTFIIFand SRC1enabletheARNTDtomakemultipleproteinproteininteractionssimultaneouslywith coactivatorsandcomponentsofthegeneraltranscriptionmachinery 405 .TFIIFwasfoundtoplay a role in cooperation with TFIIE and TFIIH to overcome stalling of RNApolII after the

36 formationoftheinitialphosphodiesterlinkage 407 .So,theARmightbelinkedtotranscription elongationthroughTFIIFbinding. TFIIHcontainsakinasemoiety,CAK,thatinteractswithARNTDandenhancesARactivity. This interaction may provide efficient communication between AR, GTFs and RNApolII. Transfection of CAK in LNCaP and PC3 cells enhanced AR activity in a liganddependent manner, whereas in DU145 cells AR activation by CAK was ligandindependent. It was suggestedthatCAKcanphosphorylatetheAR,therebyenhancingtheactivityofthereceptor 408 . The AR can interact with PITALRE, a kinase subunit of PTEFb. Mutation of this kinase resulted in preferential inhibition of ARmediated transcription activation. A nuclear runon transcriptionassayofthe PSA generevealedthattranscriptionefficiencyofthedistalregionof thisgenewasincreasedafterandrogentreatment 409 .So,interactionsofARwithTFIIFandP TEFbarebothsuggestedtoinfluencetranscriptionelongation. ARNTDwasalsoshowntobindtothegeneraltranscription factor TATA binding protein (TBP) 404 .ThesecondlargestsubunitofRNApolII(RPB2)isabletobindtotheARandcan enhance AR transactivation 410 . However, more detailed information of these interactions is lacking.

1.2.2.4PosttranslationalmodificationsoftheAR AR function can be regulated by posttranslational modifications like phosphorylation, acetylation,ubiquitinylation,andsumoylation. PhosphorylationmainlyoccursattheARNTD 411 .Serinesatpositions16,81,256,308and 424 are phosphorylated in an androgendependent manner, whereas S94 is constitutively phosphorylated.PhosphorylationofS650inthehingeregionisalsoinducedbyandrogensand necessary for optimal AR activity depending on cell and promoter context. Specific agonists might differentially regulate the AR phosphorylation status. The functional role of AR NTD phosphorylationisnotclearyet.PKA,PKCandepidermalgrowthfactor(EGF)upregulatethe androgeninducedphosphorylationofS650,andcanalsophosphorylatetheARindependentof androgen. This strongly suggests that kinase pathways influence AR function by ligand independent AR activation or by sensitization of the AR to reduced ligand levels 412, 413 . Apparently,crosstalkoccursbetweenandrogenandgrowthfactorsignalingpathways 414 . E6associatedprotein(E6AP)(seealsosection1.2.2.1)isanE3typeubiquitinproteinligase with an intrinsic transactivation function. It can function as a coactivator of many NRs, includingAR,inaliganddependentmanner.However,thiscoactivationisindependentofthe ubiquitinylation capacity of this enzyme 329 . A defect in the E6AP ubiquitinylation function causes the Angelman syndrome, a genetic neurological disorder, but a role of disturbed AR ubiquitylation in this disease has not been established 415, 416 . Recently, the protooncogene Mdm2E3ligasehasbeenshowntocatalyzeARubiquitylationandproteolysis in vivo .ChIP analysis has revealed thatMdm2associateswiththe PSA promoterandisacomponentofa promoterboundmultiproteincomplexcontainingARandHDAC1 417 . Ubc9(seealsosection1.2.2.1)isahomologueoftheE2typeubiquitinconjugatingenzymes andwasfoundtoactasacoactivatoroftheligandboundAR.Insteadofubiquitylation,Ubc9 ratherisinvolvedincovalentlinkingofthesmallubiquitinlikemolecule1(SUMO1).Similar toE6AP,thecoactivationfunctionofUbc9isindependentofitssumoylationcapacity.Ubc9 bindstotheARDBDhingeregionandhasbeenshowntosumoylatetheARatK386asthe principalsumoylationsiteandtoalesserextentK520 172 . A corresponding lysine inthePR (K388)canalsobesumoylated 177 .SumoylationdefectivemutantsofARandPRshowedhigher

37 transactivating activity than the wildtype receptors, indicating an attenuating role for sumoylation 172,177 .Ubc9canalsobindtoandsumoylatetheGRDBD,butitseffectonreceptor activity has not been established yet 172 . Potential SUMO1 acceptor sites in the GR (K277, K293,K703)andAR(K386andK520)arelocatedinnegativecontrolmotifsthatrestrictthe transcriptionalsynergyofthesetworeceptors 418 .Whereasubiquitylationisofteninvolvedin protein degradation, sumoylation plays a role in subcellular localization, especially in intranuclear targeting, protein stability, and gene transcription 419, 420 . Because these protein modifyingmechanismseachhavelysineresiduesastheirtargets,theymightcompetewitheach other,dependingonthecellularneeds 421 . In addition to acetylation of histones, CBP/p300 and p/CAF are also able to acetylate transcriptionfactors 422 .ARacetylationaugmentsitsliganddependenttranscriptionalactivity. A highlyconservedlysinerichmotif, 630 KLKK 633 ,istheacetylationtargetsiteintheAR 423 . Acetylation neutralizes positively charged lysines, which may lead to conformational changes thataffectproteinproteinorproteinDNAinteractionsoftheAR.TheHATactivityofTip60 canactivatetheARbydirectacetylation 299,300 . AlthoughCARM1(seesection1.2.2.1)canincreaseARactivityitwasnotfoundtomethylate theARprotein 356 .Possiblythisactivationismediatedbyhistoneorcoactivatormethylation.

38 1.2.3ARLBDinteractionwithARNTDandARcoactivators

1.2.3.1ARN/Cinteraction InfulllengthAR,TAU1(aa100370)hasbeenidentifiedasessentialintranscriptionactivity oftheARNTD.However,deletionofARLBDshiftedthemaintranscriptionactivationunitin AR NTD from TAU1 to TAU5 (aa 360485) 266 . This finding led to the hypothesis of an interactionbetweentheARNTDandtheARLBD.Indeed,anandrogendependentfunctional NTDLBD interaction, designated AR N/C interaction, has been detected in proteinprotein interaction systems. This interaction could be blocked by antiandrogens 424, 425 . The N/C interactionisdirect,asassessedby in vitro pulldownexperiments 331 . InitialdeletionmappingstudiesfromourgroupindicatedthreeregionsintheARNTDtobe involvedinthefunctionalinteractionwiththeARLBD:aa336,aa172185(AF1a),andaa 370494 268, 284 .Thefirstregionappearedtobeanessentialinteractiondomain 284 .Mutational analysisofAF1adecreasedthefunctionalN/CinteractionaswellasARtransactivation,butan AF1a peptide was not able to interact with the AR LBD, indicating an indirect role for this domaininN/Cinteraction 40, 267 (andSteketee,unpublished).Asregion370494encompasses TAU5,whichprobablyisap160coactivatorbindingsite,itcontributestothetranscriptional functionoftheARNTD/ARLBDproteincomplexratherthantotheN/Cinteractionitself 267, 284 .Initialstudiesfromotherspointedtotheaa14150regionastheARN/Cinteractiondomain 425 .Combined,thesefindingsindicatedthatthemostimportantinteractiondomainoftheAR NTDisconstrainedtoresidues1436. Foraa1636aremarkablylongamphipathic αhelicalstructurewaspredicted,suggestingan importantproteininteractioninterface. In vivo and in vitro proteininteractionexperimentshave shown that aa 1636 can interact autonomously with the AR LBD and is essential for N/C interaction. Within aa 1636, the motif 23 FQNLF 27 appeared to be pivotal for direct N/C interaction 426,427 .ProteininteractionassaysshowedthatthehydrophobicresiduesF23,L26and F27 each were indispensable. Amino acids flanking the 23 FQNLF 27 motif modulate AR N/C interaction 290,291,427429 .Therefore,aa2327isreferredtoasanFXXLFmotifinwhichXcan beanyaminoacid.Regionaa370494(encompassingTAU5)containsanFXXLFrelatedmotif, 433 WHTLF 437 , which was postulated to affect the 23 FQNLF 27 mediated functional interaction withtheLBD 426 .However,apeptidecontainingthisregionwasnotabletointeractwiththeAR LBD,whichexcluded 433 WHTLF 437 asanautonomousinteractionmotifinARNTD(Steketee unpublishedresults). LikefortheARNTD,ARLBDaminoacidsinvolvedinARN/Cinteractionhavebeenstudied indetail.TheARFXXLFmotif 23 FQNLF 27 showssimilaritiestoLXXLLmotifspresentinNR boxesofp160coactivators,andthereforeitwashypothesizedthattheFXXLFmotifcouldbind tothecoactivatorgrooveintheARLBDinasimilarmannerasLXXLLmotifs 106,430,431 .As describedinsection1.2.2,theseLXXLLmotifsareessentialintheinteractionwithNRLBDs. They bind to a hydrophobic cleft in LBDs, which is lined by the highly conserved charged lysineresidueinhelix3andtheglutamicacidresidueinhelix12 106 .InAR,aminoacidresidues correspondingtothis'chargedclamp'areK720andE897,respectively.Bothwereshowntobe involvedintheliganddependentinteractionbetweentheARFXXLFmotifandARLBD,but solelyK720isinvolvedinLXXLLARLBDbinding 40, 284,291,292,331,432434 .So,theFXXLF mediated AR N/C interaction is comparable, but not completely identical to the LXXLL

39 mediatedcoactivatorARLBDinteraction.Insection1.2.4.4,adetailedmechanisticdescription oftheFXXLFARLBDinteractionisgiven. TheARfunctionsasahomodimertoregulatetranscriptionofitstargetgenes.Initialstudies aimingatunravelingtheARN/CinteractionhavebeencarriedoutwiththeFXXLFmotifand LBD coactivator groove present in separate AR protein fragments. Therefore it could not be determined from those experiments whether the interaction is intra or intermolecular or a dynamic combination of both. More recent FRET experiments in living cells with cyan fluorescentprotein(CFP)andyellowfluorescentprotein(YFP)attachedtoeitherendoftheAR (CFPARYFP) showed that after androgen treatment an N/C interaction occurs both in the cytoplasmandinthenucleus 435 .AFRETsignalbetweensingletaggedCFPARandARYFP fusion proteins indicated dimerization of AR (intermolecular interaction). This interaction is preferentiallyfoundinthenucleus.DeletionormutationoftheFXXLFmotifinbothCFPAR andARYFPdidnotalterthedimerizationsignal,butclearlydiminishedtheFRETsignalof CFPARYFP. These results indicate that the AR N/C interaction is intramolecular in the cytoplasm as well as in the nucleus, and that AR dimerization does not rely on FXXLF mediatedintramolecularinteraction.

1.2.3.2RelevanceofARN/Cinteractioninreceptorfunction The exact role of N/C interaction in fulllength AR function has not been completely establishedasyet.However,severalstudieshavegivencluesthatcontributetoelucidatingthe relevanceoftheinteraction. Liganddependent AR N/C interaction was found to slow ligand dissociation thereby increasing AR activity 291, 331, 426, 436 . Several AR LBD mutations in androgen insensitivity syndrome (AIS) patients have been found with a reduced or completely abolished N/C interaction 331, 436438 . However, not all AIS mutants cause similar conformational changes leadingtodisturbanceofARN/Cinteraction.So,disturbanceofN/Cinteractioncannotbeused asageneralindicatorofAIS.However,ifdisruptionofARN/CinteractionisfoundforanAIS mutant,thismaygiveaclueforthemechanismofthatparticularARmutant.AnN/Cinteraction deficientARmutantcanbetranslocatedtothenucleus,whichimpliesthattheN/Cinteractionis notnecessaryfornuclearimport 439 . BoththeliganddependentN/CinteractionandthetransactivatingfunctionoftheAR(T877A) mutantfoundinLNCaPprostatecancercellscouldnotonlybeinducedbyandrogens,butalso by noncognate ligands as estrogens, progestagens and antiandrogens at physiological or therapeuticconcentrations 424 .ThisreflectsthebroadenedligandspecificityofthisARmutant (seesection1.2.5.1.3.2),andthusindicatesaphysiologicalroleoftheN/Cinteraction. The N/C interaction was proposed to be a prerequisite for p160 coactivator recruitment, supporting an important role of AR NTD in p160 interaction 40, 108 . This would also be consistentwiththeexclusionofTIF2bindingtotheARLBDreportedasaneffectoftheN/C interaction 440 .However,theARN/Cinteractionwasfoundtobeinfluencedinanegativeor positive manner by different coactivators as well as corepressors 441 . So, there is no clear correlationasyetbetweentheN/Cinteractionandcoactivator/corepressorinteractionwithAR. The N/C interaction might play a modulating role in ARmediated transcription. N/C interaction disrupting AR mutants tended to be less active on nonspecific AREs than on androgenspecificAREs(seesection1.2.5.4) 290 . Recently,itwasfoundthatanARdeletionmutantlackingtheFXXLFmotifdoesnotbindto the MMTV promoter and PSA enhancer assembled on chromatin in Xenopus or mammalian cells 439 . However, this AR mutant can bind to a consensus ARE in vitro and activates the

40 MMTV promoter in transient transfection, which are supposed to be experimental conditions withoutproperchromatinstructures.ThemutantisalsodiminishedinitsbindingtotheATPase subunitofSWI/SNF,Brg1 439 .ThesefindingsindicatearoleofN/Cinteractioninchromatin embeddedARfunction.Insection1.2.2.3amoredetaileddescriptionofinterplayofARwith componentsofchromatinremodelingcomplexeshasbeenpresented. An artificial chromatin embeddedpromotercontaining4linkedAREscouldbeactivatedby the AR FXXLF deletion mutant, indicating that multiple AREs can overcome the chromatin constraints for the N/C interaction deficient AR 439 . Although the MMTV promoter also contains4AREs,theAREarrangementmightbeinsufficienttoaccommodatetheARmutant properlyifpackagedinchromatin.IntransienttransfectedLNCaPcellsanARdeletionmutant lacking aa 136 was able to activate anMMTVdrivenreporter,butmuchlessefficientthe6 kbpPSApromoter/enhancer(Steketee,unpublishedresults).Apparently,PSAtranscriptionhas specificdemandswithrespecttotheARN/Cinteraction,whichmaybechromatinindependent.

1.2.3.3N/Cinteractioninothernuclearreceptors Using a mammalian twohybrid system, N/C interaction has been found for the rat AR, indicatingauniversalmechanismofARfunctionindifferentspecies 442 . An N/C interaction has also been described for other NRs. The ER α displays a ligand dependentN/Cinteraction,whichisdisruptedbyaminoacidsubstitutionsthataffectreceptor function 42, 443 . The ER α N/C interaction isclaimedtobedirectandcanbe induced by the agonist (E2) and the antagonist hydroxytamoxifen, but not by the antagonist ICI164,384. It was found that the N/Cinteractionof ER α was required for SRC1 mediated synergism between AF1 and AF2 function 41, 42 . The coactivator TIF2 was also found to synergize AF1 and AF2 functions in ER α 41 .Recently,FRETexperimentshaveshownthat ER αN/Cinteractioncanoccurintramolecularly 435, 444 .AlthoughERβAF1isabletobindto SRC1andtoTIF2,itisnotknownwhetherAF1andAF2synergizeand,sofar,adirectN/C interactionhasnotbeenreportedforthisreceptor 179,445 . ForbothPRisoforms,PRAandPRB,anN/Cinteractionwasreportedinthepresenceofan agonist,butnotinthepresenceofanantagonist 446 .ThisinteractionwasmuchstrongerforPR B,whichisthestrongesttranscriptionalactivator.ThisactivatingcapacityisattributedtoitsN terminal164aminoacids,whicharelackinginthePRA.AnAF3functionhasbeenmappedto this region and it contains two LXXLL motifs 447, 448 . These motifs are essential for PRB transcriptional activity. However, they are thought to bind sites in the PRLBD which are differentfromthecoactivatorbindinggroove. For a number of other NRs there are indications of communicationbetween theirNTD and LBD.AdditionoftheMRNTDdoesnotrestorethediminishedligandinducedactivityofan NTDdeletedGR 449 .ThissuggestsaGRN/Cinteraction.ForPPARγcommunicationbetween itsNTDandLBDhasbeensupposedtoregulateligandbinding 450 .However,experimentswith CFPPPARγ2andPPARγ2YFPdidnotresultinadetectableFRETsignal 435 .ForTRβ,ithas been observed that its NTD can bind p160 coactivators in a ligandindependent manner. BecauseitsLBDbindsliganddependentlytothosecoactivators,thissuggestsanindirectN/C interactionbridgedbyap160coactivator 451453 .AlsotheNTDandLBDofRARα1werefound tobebridgedbySRC1,whichresultedinsynergistictranscriptionactivity 109 . So,NTDLBDcommunicationhasbeenproposedforotherNRs,butadirectN/Cinteractionis mostclearlyestablishedforARandmightevenbeuniqueforthisreceptor.

41 1.2.3.4ARLBDspecificallybindstoFXXLFmotifsinARNTDandAR coactivators OverexpressionofcoactivatorTIF2canenhanceARLBDAF2function,butlessefficiently full length AR activity 284 . SRC1 does not need its LXXLL motifs for enhancement of full lengthARactivity 108 .ARNTDcan,throughitsFXXLFmotif,competewithp160coactivators forbindingtoARLBD 440 .ThesefindingsindicatedthatcoactivationthroughLXXLLARLBD interaction is not essential in AR function. However, the AR candidate cofactors ARA54, ARA55,ARA70,andRAD9havebeenidentifiedtoenhanceARactivitybybindingtoitsLBD 302, 306, 333, 365 .Importantly,thesecoregulatorsmediatethisfunctionby FXXLF motifs, which bindtotheARLBD 289 .RandompeptidephagedisplayexperimentsusingtheARLBDaswell as the fulllength AR revealed almost exclusively FXXLF or related motifs, as high affinity interaction motifs 292, 429 . Although some LXXLL motifs, i.g. TIF2motifs1and 3, do have affinityforARLBDthatmightequalthatoftheARFXXLFmotif,mostLXXLLmotifstested havealowaffinityforARLBD 289,291,292,428,432434,454 .So,FXXLFmotifsincofactorsseemto bespecificallyinvolvedinARfunction.

1.2.3.4.1StructuralbackgroundofthepreferenceforFXXLFmotifsoftheARcoactivator groove ThequestionofhighaffinityofARLBDtoFXXLFmotifscomparedtoLXXLLmotifshas beenaddressedbyelucidationofthestructureofARLBDcomplexedwithFXXLFmotifs.Like reported for LXXLL motifs, the FXXLF motif has a short αhelical structure, of which the fit in the hydrophobic coactivator groove 32, 33 . The +1phenylalaninebindsa hydrophobicpartoftheARcoactivatorgroovethatisformedbyL712(H3),V716(H3),M734 (H5),I737(H5),Gln738(H5),M894(H12),andI898(H12).The+5phenylalaninebindingsite isformedbyV716(H3),K720(H3),F725(H4),V730(H5),Gln733(H5),M734(H5),and I737 (H5). The +4 leucine contacts L712 (H3) and V716 (H3) 292, 434 . The AR coactivator bindinggrooveismuchdeeperthanthatonthesurfaceofERαLBD(Figure10) 291,292,433 .This space allows phenylalanine residues, which havebulkiersidechainsthanleucineresidues,to enter the groove. In turn, although LXXLL motifs can enter the AR groove, they might lack sufficienthydrogenbondingandhydrophobicinteractionnecessaryfortightinteraction.FtoL substitutions in FXXLF motifs abolished AR LBD interaction, whereas L/F swaps increased interactionwithpeptidemotifsoreveninducedAR LBD interaction capacity in nonbinding LXXLLmotifs 432,454 . ThespecificityoftheARgrooveforFXXLFlikemotifsisfurthersubstantiatedbytheprostate cancerARmutantV730M,whichshowedanincreaseinbindingofLXXLLmotifs,whereasit slightlydecreasedFXXLFbinding 455 .Themethioninemightprovideadditionalinteractionsto the +5 leucine of an LXXLL motif without condiserably changing the interaction with the corresponding phenylalanine in FXXLF motifs. So, V730 seems important in FXXLF specificityoftheARLBD. Itwasexpectedthat,likeforLXXLLmotifs,theFXXLFmotifisstabilizedbyinteractionwith thechargedclampliningtheARLBDcoactivatorgroove 32,33 .Indeed,structuralanalysisofan FXXLF peptideAR coactivator groove complex indicated E897 binding to the +1 phenylalanineoftheFXXLFmotif,andK720bindingtothe+5phenylalanine 291,292,433,434 .In contrast,LXXLLmotifbindingtotheARLBDneedsK720,butE897isnotinvolved(Figure 11) 270, 292, 433 . This may, together with the larger size of the coactivator groove, explain the lowerbindingaffinityofLXXLLmotifsfortheARLBDifcomparedtoFXXLFmotifs.

42 A B Figure10. Sideviewsofthecoactivatorbindinggrooves/peptidemotifsofA,theERLBD/LXXLLandB,AR LBD/FXXLF. Meshes represent the extent of the ER LBD and AR LBD molecular surfaces, respectively. The LXXLLandFXXLFmotifsarerepresentedin green coils .Sidechainsatpositions+1and+5arein space-filling representationandcoloredin yellow .ThepositionsofthechargeclampLysandGluareindicated.Fromref.291. K72 0 + X X + + E8 97

Figure11. ModelofFXXLF(green)andLXXLL(yellow)bindingmodestoDHTboundARLBD.+1,+4,and +5 positions as well as the X positions in the motifs are indicated. This picture was kindly provided by H.J. Dubbink. LikeobservedforLXXLLmotifs,residuesflankingFXXLFmotifsunderlieARLBDbinding specificity 291, 429, 430, 432, 433, 456 .Electrostaticinteractionsbetweenresiduesflankingthemotif and the charged clamp are supposed to affect this specificity 428 .Forexample,inadditionto bindingtothe+5phenylalanineoftheARFXXLFmotif,K720alsomakescontactwiththe+8 valine 434 .AttheNterminalsideofthemotif,E897bindsnotonlytothe+1phenylalanine,but also to the 1 alanine. This is consistent with a study described in chapter 3, showing that mutationsofresiduesflankingtheARFXXLFmotifaffectedinteractionwiththeARLBD 427 . ThepeptidesfoundinphagedisplaystudiesmostlyhavepositivelychargedresiduesNterminal and negatively charged residues Cterminal to the peptide motif enabling electrostatic interaction with AR LBD 292, 429 . A G21Emutation,NterminaltotheFXXLFmotifin AR NTD,impairedtheARN/Cinteraction 290 .AcrystalstructureofARLBDincomplexwiththe

43 third LXXLL motif of TIF2 has shown that four negatively charged amino acid residues followingthismotif(DKDD)interactwithpositivelychargedpatchesonthereceptorsurface. ThismightexplaintheselectivebindingofARLBDtothisTIF2motifandindicatesthatcertain LXXLLmotifsareappreciatedbytheARLBD 433 . Residuesatpositions+2and+3inFXXLFmotifsmayalsoplayaroleinaffinityforARLBD. Phagedisplaystudieshaveshownavarietyofresiduesonthesepositions,whicharecompatible withstrongARLBDinteraction.However,atposition+2EandSresidueswerefoundmore often,andforposition+3preferenceforKwasreported 432,457 .PeptidescontainingtheFXXLF motifs of TAFII250 (FLRLF) or TFIIEα (FEDLF) interacted weakly with AR LBD. FXXLF motifsfoundinCBP(FGSLF)andp300(FGSLF)couldnotinteractwithARLBDpossiblydue toaglycineatposition+2 289 .TheFETLFmotiffoundintheARcoactivatorFHL2(seealso section1.2.2.1)wasalsonotcapabletobindARLBD 289 .ThismightbeduetotheTresidueat position+3,butalsotosequencesflankingthemotif.Obviously,notallFXXLFmotifscanbind toARLBD. Takentogether,ARLBDbindingpreferenceforFXXLFmotifscomparedtoLXXLLmotifsis mainlydeterminedbythehydrophobicphenylalanines,butspecificflankingresiduesmayplaya roleaswell.

1.2.3.4.2VariationsoftheFXXLFmotif In order to elucidate the mechanism and relevanceofFXXLFmotifsinARfunctionandto identify AR specific peptide antagonists, phage display studies and screening of randomized peptide libraries have been carried out using AR LBD or fulllength AR as a bait. These experiments have revealed many FXXLF motif variants containing exclusively hydrophobic amino acid substitutions atpositions +1, +4, and +5, including F/WXXLF/W, FXXLY/MW, WXXVW,FXXFF,FXXFY,FXXYF,FXXVF,andsporadicallyLXXLL 291, 292, 429, 457 .Many of these motifs showed a weaker interaction with AR LBD than the AR FXXLF motif. However,likeARFXXLF,manyFXXFF,FXXYF,andFXXFYmotifshadahighaffinityfor ARLBD 292, 457 .CrystallographicexperimentshaverevealedthattheconformationofFXXYF mimickedclosestthatofFXXLFifboundtotheARLBDcoactivatorgroove,bymakingdirect backboneinteractionswithE897.BindingofanFXXFFmotifresembledbindingoftheFXXYF and FXXFY motifs by interaction with its 2 serine residue to E897 292 . Substitution of the leucineofARandARA54FXXLFmotifsbyphenylalanineormethioninedidnotdecreasetheir AR specificity, and the same variants of the less ARselective ARA70 FXXLF motif even increaseditsARspecificity 322 . SomeFXXLForrelatedmotifsfoundinthephagedisplayandpeptidescreeningstudieshave also been found in AR LBD binding proteins. In addition to its FXXLF motif, the AR coactivator FHL2 also contains an FXXLY motif. Although a peptide with its FXXLF motif cannotbindARLBDonitsown(seealsosection1.2.4.4.1),bothmotifsaresupposedtobe necessary for FHL2 to bind AR LBD 289, 429 . As mentioned before in section 1.2.5.1, the WXXLFmotifintheARNTDonlyweaklycontributestotheARN/Cinteraction 289, 428 .An FXXFFandFXXMFmotiffoundintheARbindingproteinsgelsolinandPAK6,respectively, showeddirect,efficientandspecificinteractionwithARLBD 322 . SeveralofthepeptidescontainingFXXLFvariantmotifsthatbindtotheARLBDwereableto suppress AR N/C interaction. However, this did not always result in inhibition of AR transactivation 429,457 .PutativeimplicationsofsuchmotifsininhibitingARfunctioninorderto treatprostatecancerisfurtherdiscussedinChapter5.

44 1.2.4Androgenspecificgenetranscription

1.2.4.1Generalmechanismofandrogenregulatedgenetranscription Foranincreasingnumberofandrogenregulatedgenes,themechanismofandrogenactionhas beenatleastpartiallyelucidated 52,458497 .Identificationofnovelandrogenregulatedgeneshas been accelerated during the last 5 years, because techniques have evoluated from subtractive hybridization and differential display to the highthroughput expression microarrays. Array technologyhasbeenusedforgeneexpressionprofilingofprostatictissueanddifferentprostate cancercelllinesinthepresenceandabsenceofandrogens 498504 (reviewedinref.505).Thishas resultedinanextensiveandstillgrowingcatalogue of genesbeing up or downregulatedby androgens.Bioinformaticsassistedanalysisofthetranscriptionregulationmechanismsofthis hugenumberofgeneswillhelptofurtherelucidatethemechanismofactionofandrogens.In thenearfuturewholegenomeidentificationofandrogenregulatedgenesistobeexpected,as nowalreadystartedforERregulatedgenes 506 . Basically, androgen induced transcriptional regulation occurs through ligandactivated AR dimersthatbindtoAREsintheregulatoryregionsoftargetgenes.AREshavebeenfoundin promoters and in enhancers upstream or downstream of the promoter. Many AREs deviate considerably from the inverted repeat high affinity ARE consensus sequence 5' AGAACAnnnTGTTCT3' and, in many cases, have a relatively low affinity for the AR. In transfection experiments, those AREs are individually not able to show detectable androgen inducibility,buttogetheractsynergistically,therebyconferringveryeffectiveandrogeninduced transcriptional regulation. Cooperatively acting AREs canbelocatedinclosevicinityofeach other,butcanalsobeseparatedbylongdistances. Anillustrativeexampleofandrogenregulatedtranscriptionisthatoftheextensivelystudied prostatespecificantigen(PSA)gene.ItsproximalcorepromotercontainstwoAREs,AREIat 170 (AGAACAgcaAGTGCT) and AREII at 394 (GGATCAgggAGTCTC) 463, 491 . These AREsactcooperatively,albeitthattheirtotalactivityisstillweak 463.AthirdARE,AREIII (GGAACAtatTGTATC),whichispresentinanenhancerregionat4.2kbpofthePSAgene,is able to confer considerable androgen induced transcriptional activation of a reporter gene. Combination of the enhancer region and the core promoter synergistically results in a strong androgeninducibility 462 .InthevicinityofAREIII,fiveadditionalcandidateAREshavebeen reported: AREIIIA, AREIIIB, AREIV and AREVI, which have a low affinity for the AR, and AREV with moderate affinity to the AR. These AREs might increase PSA enhancer activity.

1.2.4.2Androgenspecificallyregulatedgenes Manyandrogenregulatedgenes,likethePSAgene,havebeenfoundtobealsoregulatedby other steroids, because GR, MR, PR and AR recognize the same sequences in the DNA. However,duringthelastdecade,geneshavealsobeenfoundthatcanbespecificallyregulated by androgens. As mentioned in section 1.1.2, this specificity can be caused by different mechanisms, including tissue specific AR expression, specific coactivator/corepressor expression,ligandavailabilityandlocalchromatinstructure4,7,51,5355,59 . Amechanismleadingtoreceptorspecificitycanalsobefoundinthehormoneresponseelements. Deviations from the HRE consensus sequence have been found to lead to receptor specific transcriptional regulation by AR, PR, GR, and MR. Flanking sequences can also contribute to

45 receptorpreference 507 .However,fortheARaclearspecificityappearstoexist.Forseveralgenes identifiedasspecificallyregulatedbyandrogens,adistinctclassofHREshasbeenfoundtobe highlyandrogenspecific.MostoftheseAREsdeviateconsiderablyinonehalfsitefromastandard ARE 52,494,496,508512 . Up to date, five genes harboring androgen specific AREs have been identified. Features of these genes and their androgen responsiveness are described below. An overview of their androgenspecificAREsispresentedinTable3. Probasin Theratprobasingeneencodesanuclearandsecretedprotein,whichisexpressedinepithelial cells of the dorsolateral prostate 513 . Its transcription can be induced by both androgens and glucocorticoids, but its androgen inducibility is much stronger than its regulation by glucocorticoids 481, 514516 . Theprobasin gene was the first gene described tobepreferentially regulated by androgens. Itspromoter contains two cooperative AREs, PbAREI and PbAREII, which were initially found not to function individually, but if duplicated in front of a heterologous minimal thymidine kinase promoter, androgen inducibility for PbAREII was observed 52,481,490 .PBARE1showsaclassicalinvertedrepeatsequenceandhasalowaffinity for the AR. PBARE2 (see Table 3) is specifically responsive to androgens 52 . PbAREII can bindtotheAR,butnottotheGR,andithasahigherARbindingaffinitythanPbAREI 52,517 . ThelefthandhalfsiteofPbAREII,5'GGTTCT3',determinesitsARspecificitybyexcluding GRbinding,aswasdeducedfromexperimentsusingchimericresponseelementswithswapped halfsites 52 .InanupstreamenhancerfragmentoftheprobasingenetwoadditionalAREswere identified,ARBS3andARBS4.LikePbAREII,ARBS3isalsoandrogenspecificandhasalso one halfsite that deviates considerably from a consensus half site (see Table 3) 518 . Two additional low affinity AREs with atypicalhalfsitesequences,G1andG2,arelocatednear ARBS1andARBS2.ThesewerepostulatedtostabilizeARbindingtoARBS1andARBS2and result in synergistic transcriptional activity and increased hormone sensitivity 519 . All AREs found in the probasin gene appeared to be necessary for full androgen induction of probasin transcription 518 . Secretorycomponent TheratSecretorycomponent(Sc)isthetransepithelialtransporterofimmunoglobulinsAand M 520 .Inmanytissues,expressionoftheScgeneisconstitutive.Intheprostateandthelacrimal glanditsexpressionismodulatedbyandrogens 521,522 .Inthe3.5kbpenhancerregionofthe Sc gene,anandrogenspecificARE,designatedScARE1.2,hasbeenfound,whichhasarelatively highaffinityfortheAR(seeTable3) 496 .Exon1ofthe Sc genecontainsasecondandrogen specific ARE, ScARE (see Table 3),whichisresponsivetoglucocorticoids,but,despiteofa lowARaffinity,itsandrogenresponseismuchstronger 475 .MutationalanalysisofScARE1.2 andScAREshowedthattheirlefthalfsitesexcludedordecreasedGRbinding.ARselectivity disappearedbymutatingthesehalfsitestomoreconsensuslikesequences 496,508,511 . Slp The mouse sexlimited protein ( Slp ) gene is a duplicated C4 gene encoding a liverspecific protein.Itstranscriptionisregulatedbyandrogens.The Slp genecontainsanenhancerregionat 2 kbp, which was introduced by insertion of an ancient provirus 523 . A fragment of this enhancerisspecificallyresponsivetoandrogens 524 .ItcontainsthreecandidateAREs.Oneis notfunctional,asecondoneisactivewithbothARandGR,andthethirdone,SlpHRE2(see Table3),isandrogenspecific 511,525 .TheSlpHRE2wasinitiallyconsideredasanAREofwhich theflankingsequencescouldbindothertranscriptionfactors,therebyallowingARbinding,but excluding GR binding. However, although additional factors do contribute to its specific

46 androgen regulation, the SlpHRE2 was proven to confer androgen specificity autonomously with a relatively high AR affinity 511, 525529 . Like in the probasin and Sc androgenspecific AREs,thelefthalfsiteoftheSlpHRE2determinestheexclusionoftheGRtofunctionviathis HRE 511 . Pem The Pem transcriptionfactorgeneishighlyconservedbetweenratandmouse,and isexpressedinreproductiveorgansaswellasinmuscleandplacenta 530 .Foritsexpressionthe rat Pem gene was showntousetwodifferentpromoters.Adistalpromoterisindependentof androgensandactiveintestis,ovary,muscle,andplacenta.Aproximalpromoterislocatedin intron2,closetoexon3whichharborsthetranslationstartcodon.Thisproximal Pem promoter is androgendependent and controls expression in testis and epididymis 530 . Analysis of the mouse Pem proximal promoter revealed that this promoter contains two androgen specific AREs, PemI and PemII (see Table 3), which act cooperatively and are both selectively responsive to androgens 458 . The Pem AREs have a preference for the AR, but are also responsivetoGRandPR,albeittoalesserextent.BothPemIandPemIIshowalowrelative affinityfortheAR.IncontrastwithstandardAREs,PemIcontainsa5bpspacing.Thisdoesnot preventresponsivenesstoandrogens,butreducingthespacingtothreenucleotidesincreasesits activity 458 . SARG Thespecificallyandrogenregulatedgene( SARG )wasidentifiedinthehumanLNCaPsubline LNCaP1F5,whichexpressesARandGRincomparableamounts.Inthiscellline,transcription of SARG can be upregulated by androgens but not by glucocorticoids, whereas PSA transcriptionisstimulatedbybothhormones 531 .Inintron1ofthe SARG gene,at+4.6kbp,an androgenspecificARE,designatedSARG+4.6ARE(seeTable3)ispresent 494 .SARG+4.6ARE hasaloweraffinityforAR,comparedtoprobasinPBARE2.SARG+4.6AREcannotbindGR, and in transfection it is not responsive to glucocorticoids. The identification and a detailed analysisofthe SARG geneisdescribedinChapter4ofthisthesis. Table3 .Androgenspecificandrogenresponseelements.

AREname AREsequence References -6 -5 -4 -3 -2 -1 +1 +2 +3 +4 +5 +6 PbAREII GGTTCT tgg AGTACT 52 ARBS3 AGAACC tcc AGTTCC 518 ScARE1.2 GGCTCT AGTTCT 496 ttc ScARE AGCAGG ctg TGTCCC 475 SlpHRE2 TGGTCA gcc AGTTCT 511 PemI AGATCT cattc TGTTCC 458 PemII AGCACA tcg TGCTCA 458 SARG+4.6ARE TGTGCT aac TGTTCT 494

47 1.2.4.3MechanismofARbindingtoandrogenspecificAREs Like for nonspecific AREs, androgenspecific AREs with different AR affinities havebeen found 52 . SARG+4.6ARE and SCARE weakly bind the AR, but are both highly androgen specific,theycannotbindtotheGR.However,thelowARaffinityPemARE1andPemARE2 show weak glucocorticoid responses. PBARE2, Slp HRE2 and SCARE1.2 have relatively highaffinitiesfortheAR,butalsoshowdifferencesinandrogenspecificity.PBARE2andSlp HRE2 arenotresponsivetoglucocorticoids,butSCARE1.2 can confer weak glucocorticoid induced transcriptional activation. So, it is not their relative affinity for the AR, but their preferential binding to the AR over the GR that may contribute to the androgen specific responsivenessofAREs.Additionalindicationsforthis hypothesis wereprovidedbyARGR chimeric receptor studies which revealed a crucialrole for theARDBDinandrogenspecific activationoftheSlpHRE2 532 . FormostandrogenspecificAREsithasbeenestablishedthatthelefthalfsitesdiminishGR binding(seeTable3).IthasbeenpostulatedthatinthishalfsiteaTatposition4isresponsible for GR exclusion 511 . However, PemARE2 and SCARE have an A at this position and SARG+4.6ARE a G. In addition, the G at position 3 of the SCARE is indispensable for androgen specificity,but no other androgenspecificAREhasaGatthisposition 508 .ATat position2wasalsosupposedtocontributetoandrogenspecificity,butisalsonotpresentinall androgenspecificAREs 511 .So,specificnucleotidesintheandrogenspecificAREsseemnotto beindividuallyresponsibleforandrogenspecificity. SinceandrogenspecificityofAREscouldnotbeexplainedbytheirrelativeaffinityfortheAR or specific nucleotide composition, it was proposed that another characteristic of androgen specific AREs is the determining factor. Most of the natural and synthetic androgenspecific AREs investigated so far can be considered as (im)perfect direct repeats rather than inverted repeats. Several crystallographic studies have shown a headtohead orientation of NR DBD dimersbindingtoaninvertedrepeatresponseelementandaheadtotailorientationfordirect repeatelements(reviewedinref.21).Therefore,itwassuggestedthatanARdimerbindstoan androgenspecificAREinaheadtotailorientation 508,510,511 .Thiswouldimplyanalternative dimerizationoftheARDBDwhenboundtoanandrogenspecificARE.Inthisway,theGR wouldbemoreorlessexcludedfrombindingtotheandrogenspecificAREs,becauseitcould not form headtotail DBD dimers. Unlike the first zinc cluster, the secondzincclusterofa DBDdoesnotcontacttheDNA,butisanimportantpartofthedimerizationinterface.Indeed, thesecondzincclusterandaCterminalextensionoftheARDBDwerepreviouslyfoundtobe involved in DNAspecificity 509 . This was substantiated by mutation to GR homologues of secondzincclusterresiduesThr585,Gly610,andLeu617,whichcausedaloweraffinityofthe ARforPBARE2 510 .AlthoughthesefindingsindicatethatspecificARDBDdimerizationplays aroleinARbindingtoandrogenspecificAREs,ARDBD dimer orientation on these AREs couldnotbedeterminedfromthoseexperiments. Ultimately,theorientationofARDBDdimersonandrogenspecificAREswaselucidatedbya crystallographic study that showed that AR DBDs dimerize in a headtohead fashion to a synthetic androgenspecific ARE (ADR3) (Figure 8 in section 1.2.1.2) 24 . This headtohead oriented DBD dimer indicated that an importantpart of the mechanism underlying androgen specific transcriptional regulation indeed could be found in the AR protein itself. So, the previouslyproposedheadtotaildimerizationofARDBD,comparedtothatoftheGRDBD,is related to the nonstandard ARE character of androgenspecific AREs. All androgenspecific AREs(Table3)arecomprisedofonehalfsitewithacompleteoralmostcompleteconsensus sequence,whichisknowntobindARaswellasGRwithhighaffinity.Thespecifichalfsite

48 canbedesignatedasnonconsensus,andwillhaveaverylowaffinityforbothARandGR.Itis thought that one DBD binds to the consensus halfsite and that the second DBD can cooperatively bind to the nonconsensus halfsite only when there is a strong interaction betweentheDBDs.Indeed,crystallographicdatarevealedthreeextrahydrogenbondsbetween thesecondzincclustersintheARDBDdimerifcomparedtotheGRDBDdimer(Figure12) 24, 510 .AhydrogenbondcanbeformedbetweenS580ofbothARDBDmonomers,andT585of each AR DBD monomer can hydrogen bond to A579 of the opposite monomer. So, the dimerizationofARDBDsissupposedtobestrongenoughtoovercomealowaffinityhalfsite, andasalsopreviouslyproposed,theGRtendstobeexcludedfromthenonconsensushalfsite ofanandrogenspecificAREbecauseofamuchweakerdimerizationinterface. Ala Ala Ala Ala

Figure12. MolecularmechanismsofARandGRdimerinterfaces A)TheARDBDdimerinterface.The molecularsurfacesoftheARsubunitsareshowninredandblue.Dashedblacklinesarehydrogenbonds.( B)A similarviewoftheGRDBDdimerinterface.A“glycinehole”isnotedbythedashedcircle.Adaptedfromref.24.

1.2.4.4RoleofandrogenspecificAREs Recently, several studies have revealed possible roles for the androgenspecific AREs. AndrogenspecificAREsseemtoreducetheneedfortheARN/Cinteractionfortranscription regulation(seesection1.2.5.1) 290 .ThenonspecificAREsTATGRE,slpHRE3,andC3(1) ARE,areresponsivetowildtypeAR,butnottoaN/Cinteractiondefectivemutant,whereasthe androgenspecificSlpHRE2andscARE1.2(seesection1.2.6.2)areequallyresponsivetothe wild type and mutant AR. Mutation of the latter AREs to nonspecific ones decreased their responses to the AR mutant. However, the androgenspecific PbARE2 required the AR N/C interactionforitsandrogenresponsiveness.Thebetterresemblanceofitslefthalfsitetohigh affinitybindingsitesmayplayaroleinthisregard(seesection1.2.6.3).TheN/Cinteraction dependent AREs were no longer dependent on the interaction if they were present in their naturalenhancer/promoterregions.Itwassuggestedthatthehighercomplexityoftheseregions mightovercometheneedforARN/Cinteractioninandrogenresponsiveness. A second study also described the requirement of N/C interaction for AR activity on non specific elements 533 . These AREs were all tested in the context of their corresponding enhancer/promoter sequences, like the PSA enhancer/promoter and the probasin enhancer, whichisinconflictwiththefirstreportinwhichN/Cinteractionrequirementwasonlyfound

49 for isolated nonspecific AREs. In contrast, the same study reported that for the MMTV promoter,theARN/Cinteractionwasdispensable,althoughitcontainsnonspecificAREs. ThefunctionofseveralARassociatedproteinscouldbedifferentiallyinfluencedbyandrogen specificandnonspecificAREs.OverexpressionoftheARcoactivatorsTIF2andARA55was reportedtoincreaseARactivationonandrogenspecificAREsratherthanonnonspecificAREs 534 .TwoproteinsinvolvedinmediatingARSUMOylation, (PIAS)xα and Ubc9 (see section 1.2.2),had,ifoverexpressed,differenteffectsonnonspecificandandrogenspecificAREs 534 . (PIAS)xα repressed AR activity much more on androgenspecific ARE driven genes than on genes regulatedby nonspecific AREs. Ubc9 showed littleeffectonandrogenspecificAREs, whereasitenhancedARactivityonnonspecificelements.Additionally,mutationalanalysisof an AR SUMOylation site revealed that overexpression of SUMO1 repressed ARmediated transcriptiononlyonnonspecificelements 535 .

50 1.2.5TheARindisease The AR is, next to its central role in normal development and maintenance of the male phenotype,alsoanimportantplayerinseveraldiseases. AR associated diseases are androgen insensitivity syndrome (AIS), spinal and bulbar muscular atrophy (SBMA) or Kennedy’s disease,andprostatecancer. AISisarareinheriteddefectofmaledevelopmentinwhich46,XYindividualshaveapartial orcompletelackofvirilization,referredtoaspartialAIS(PAIS)orcompleteAIS(CAIS) 536, 537 .Inthisdisorder,overonehundreddifferentaminoacidsubstitutionsintheARindifferent individuals or families havebeendocumented 263 . These substitutionspartially or completely inactivate AR function by affecting its ligand or DNA binding. AIS can also be caused by coactivatordefects 538 . SBMA or Kennedy’s disease is a spinobulbar motor neuropathy with an adultonset and associatedwithmildPAIS 539,540 .ThisdiseaseiscausedbyanexpandedCAGrepeatintheAR NTD,whichresultsinalongerpolyglutaminestretch 541 .ARcontainingaggregatesareformed inthecytoplasmofmotorneurons,buttheexactmolecularmechanismofthisdiseaseisstill unknown 542,543 . In Western countries prostate cancer forms a significant health problem as it is the most frequentlydiagnosedmalecancerandsecondleadingcauseofcancerdeathsinmen 544 .Therole ofARinprostatecancerisdiscussedinthe1.2.5.1subsectionbelow.

1.2.5.1TheARinprostatecancer

1.2.5.1.1Prostatecancerdevelopmentandprogression Theprostateisawalnutsizedglandlocatedbelowthebladderandsurroundingtheurethra.It produces approximately 30% of the seminal fluid, which contains secreted proteins like prostatic acid phosphatase (PAP) and the semen liquefying serine protease PSA 545, 546 . MeasurementofPSAserumlevelsisawellknowndiagnostictoolofprostatecancer.Benign prostatic hyperplasia (BPH), which is a common disorder in men over age 50, arises in the transitionalzoneoftheprostate,whereasmostprostatecancersoriginateintheperipheralzone (seeforreviewref.547). Theglandularacinioftheprostatearelinedbyadoublelayerofepithelialcells.Abasallayer of cuboidal cells is attached to the basal lamina. The basal layer is covered by a layer of columnar mucussecreting cells lining the lumen of the gland. The luminal epithelial cells expresscytokeratins8and18,AR,PAP,andPSA 548 .Thebasalcellsexpresscytokeratins5and 14,p63,andbcl2 434, 548, 549 .Mostprostatecancershaveapredominantlyluminalphenotype withexpressionofkeratins8and18,andAR.However, a smallpercentage of the cells in a prostate tumor might express keratins 5 and 14 indicating a basal cell type. Like in normal tissues,inseveralcancerstumorinitiatingcellshavebeenfound,whicharecalledcancerstem cells (CSCs) 550556 .Thekeratin5and14positiveprostatetumorcells were suggested to be prostateCSCs(PCSCs).Additionally,cellswithanintermediatephenotypehavebeenfoundto express either keratin 17 or 19, and low levels of keratin 8 and 18 557559 . These cells are consideredtoformanandrogenindependenttransitamplifying(TA)population.Thisledtothe hypothesisofkeratin5positiveandARnegativePCSCs,whichareandrogenindependentand give rise to androgendependent, fully differentiated luminal cells via a TA population 560 . PCSCsaresupposedtoarisefromnormalstemcells,whicharebelievedtoresideinthebasal layer 561 .EvidenceforthisisprovidedbythefindingofCD133andα2β1integrin,whichhave

51 beenidentifiedasnormalprostateepithelialstemcellmarkers,in0.1%ofprostatetumorcells, regardless of Gleason grade and metastatic states 562565 . In vitro these cells can, like normal stemcells,giverisetoamixedpopulationofCD133 + andAR cells,andmoredifferentiated CD133 andAR +cells 563,564 .ThemoredifferentiatedcellsdevelopthroughsubsequentTAand intermediatestagesintononproliferatingmaturecells 566 .WhethertheCD133+cellsindeedcan formtumorsremainstobeestablished. Likenormaldevelopmentandmaintenanceoftheprostate,prostatetumorgrowthdependson continuousstimulationbyandrogens 567 .Becauseofthisandrogendependence,prostatecancer therapyisgenerallybasedonandrogenwithdrawal,whichisachievedbyinhibitionoftesticular androgenproductionusingLHRHagonists,and/orblockadeofARfunctionby such as BCA or OHFl. However, after an initial regression, essentially all prostate tumors continuetogrowandbecomeandrogenindependent,whichmeansindependentofandrogenic stimulation.AlthoughlossofARexpressionhasbeenfoundinsometumors,studiesofprostate tumorsofvariousclinicalstageshaverevealedthatmostandrogenindependentprostatecancers retain AR expression 558 . In androgenablated progressive prostate cancer the AR is still primarilylocatedinthenucleusandandrogenregulatedgenesareexpressed 568571 .ThattheAR indeed still is playing an important role in androgenindependent prostate cancer is further substantiatedbyRNAidrivenARinhibitoninandrogenindependentprostatecelllines,which decreasedPSAexpression,cellproliferationandsurvival 572576 . Important and challenging questions in prostate cancer research are how prostate tumors developandhowtransitionfromandrogendependenttoandrogenindependentprostatecancer occursandwhichroletheARplaysintheseprocesses.

1.2.5.1.2Androgendependentprostatecancer Because early stages of prostate tumor growth are dependent on androgens, the underlying mechanisms are expected to involve AR function. Although a large number of androgen regulatedgeneshasbeenidentifiedinexpressionarrayexperiments,untilrecentlynoneofthese was specifically identified to play a direct role in the androgendependent tumor stage. However,recently,theandrogenregulated TMPRSS2 genewasfoundtobehighlyrelevantin androgendependent prostate cancer 577, 578 . Fusions of the promoter and first exon(s) of the TMPRSS2 genewithmembersoftheETStranscriptionfactorfamily, ERG or ETV1 ,havebeen found in the majority (estimate of 60%) of primary prostate tumors. These gene fusions are caused by interstitial deletions and translocations 577581 . The fusion genes are androgen responsiveandhighlyexpressedintumortissue,andthereforeETSfactorsareoverexpressedif comparedtonormalprostatetissue 582,583 .Expressionofthe TMPRSS2:ERG fusiongeneswas foundtocorrelatewithahigherrecurrencerate 584 .Inaddition,differentisoformsseemtobe associated with clinical and pathological variables of aggressive disease, and therefore might serveasprognosticfactorsfortumorprogression 585,586 .

1.2.5.1.3MechanismsofARactivationinandrogenindependentprostatecancer For androgenindependent prostate tumor growth G. Jenster (personal communication) has proposedseveralmechanismsinwhich,despiteofandrogenwithdrawal,theARisstillableto stimulate tumor growth (Figure 13). These mechanisms include: AR amplification and/or overexpression,ARmutations,intraprostaticconversionofadrenalandrogenstoDHT,ligand independentARactivation,andaberrantARcoregulatorexpressionandfunction.Inaddition, several cellular pathways that bypass the AR have been found to influence prostate tumor growth(Seeforreviewsrefs505,587591).

52 ARAMPLIFICATIONANDOVEREXPRESSION ARMUTATIONS ANDROGENDEPLETION INTRAPROSTATICCONVERSION ARINVOLVED ARINVOLVED OFADRENALANDROGENSTODHT LIGANDINDEPENDENTARACTIVATION ANDROGEN DEPENDENT ANDROGEN INDEPENDENT GROWTH GROWTH ABERRANTARCOREGULATOREXPRESSION ANDFUNCTION ARBYPASSED Figure13. SchematicoverviewoftheroleoftheARinprostatetumorgrowth.Proposedanddesigned firstbyG.Jenster

1.2.5.1.3.1ARamplificationandoverexpression AR overexpression, as found in a subset of prostate cancers, can be caused by several mechanismsofwhichgeneamplificationisthebeststudied.Inapproximately30%ofandrogen independent prostate tumors, AR gene amplification has been detected, whereas this is a rare eventinuntreatedprimarytumors 592597 .Inastudyofmatchedpairedandrogensensitiveand androgenindependent tumors, 80% of androgenindependent tumors with AR gene amplificationshowedanincreaseinARprotein 598 .AlthoughARamplificationisnotalways accompaniedby increased AR levels, it was found to correlate withashorterlifeexpectancy afterrelapseofprostatecancer 598 .OfandrogenindependenttumorswithoutARamplification, 35%showedincreasedARlevels 598 .Comparableobservationsweredoneinastudyofseven paired androgen sensitive and androgen independent prostate cancer xenografts 599 . Increased AR expression was suggested to enable the tumor cells to respond to low androgen levels presentduringandrogenwithdrawaltherapy.Thisfindingwassubstantiatedbyexperimentsin whichoverexpressionofARinLNCaPcellsbytransfectionledtoahighersensitivityofthese cellstolowandrogenlevelsfollowedbymorerapidlyprogresstohormonerefractoriness 599 . BecausenotallcasesofincreasedARexpressioncanbeexplainedbygeneamplification,also other mechanisms that regulate AR levels are supposed to be involved in androgen independenceofprostatetumors.Theseincludeincreased AR transcription,stabilizationofAR mRNA,andstabilizationoftheARprotein(reviewedinref.588).

1.2.5.1.3.2ARmutations AR mutations are rare in primary and locally progressive untreated prostate tumors, but are more common in high grade androgenindependent prostate cancer and distant metastases of patients following endocrine therapy. The relative prevalence of AR mutations found in androgenindependent prostate cancer varies betweendifferentstudies,butisestimatedtobe approximately10% 600 .AproportionoftheprostatecancerrelatedARmutationsenhanceAR activity, although there are also examples of AR inactivating mutations. Most AR mutations leadtogainoffunctionbyalteringtheligandspecificityoftheARallowingadrenalandrogens, nonandrogen steroids, and even antiandrogens to activate the receptor. The majority of AR mutations found in prostate cancer are confined to 8% of the coding region dispersed over

53 distinct regions of the receptor, but they are most common in the LBD 601 . AR mutations identified in prostate cancer are deposited in the Androgen Receptor Mutations Database (http://www.mcgill.ca/androgendb) 263 . MutationsintheNTDarerare,buttheymightaffectARinteractionwithcoregulators 602 .A E236GmutantisthoughttoincreaseARactivitythroughreducedbindingofCHIP(see1.2.2.1) and concomitantly increased responsiveness to coactivators ARA160 and ARA70 370 . This mutationcausedrapiddevelopmentofintraepithelialneoplasiathatprogressedtoinvasiveand metastaticprostatecarcinomainamousemodel 370 .Severalmutationsinthehingeregionaffect ARactivity.S646FsubstitutionwasdetectedinahighgradetumorandincreasedARactivity 603 .AQ640Stopnonsensemutant,whichappearsasatruncatedAR,isconstitutivelyactivein theabsenceofligand 604 .AC619Ysubstitutionisthoughttoinactivateandchangelocalization oftheAR 605 .ARmutationsattheboundaryofthehingeregionandLBDshowanenhanced response to androgens, but also to other steroidal and nonsteroidal ligands 606 . A748T substitutionintheLBDcausedrapiddegradation,hasahigherliganddissociationrateandalow expressionlevel,ifcomparedtothewildtypeAR 607 . BeststudiedarethemutationsintheARLBD.Often,thesemutationsconsiderablyalterthe ligandspecificity, which includes responsiveness to adrenal androgens, glucocorticoids, progesterone,estrogens,andevenantiandrogens.ThefirstARmutationidentifiedwasT877A 608,609 intheLNCaPcellline,whichwasderivedfromaorchidectomizedandE 2treatedpatient . Subsequently,thismutationwasrepeatedlyfoundinprostatecancertissuespecimensofpatients withadvanceddiseaseandtreatedwithOHFl 280, 610614 .Lessfrequentlyfoundmutationsare H874YintheandrogenindependentprostatecancerxenograftCWR22andinafewandrogen independent OHFl treated prostate cancer specimens, and T877S, which is found twice in androgenindependentOHFltreatedtumors 281,615,616 .TheT877AsubstitutionrenderedtheAR responsivetoprogesterone,E 2,DHEA,,OHFl,andcyproteroneacetate.BothH874Y andT877Sinduce,albeittoalesserextent,similarpropertiestotheAR(seeChapter4) 280,281, 494,613,615618 .AdoubleARmutant,L701H/T877A,foundintheMDAPCa2acellline,which wasderivedfromabonemetastasisofaorchiectomizedprostatecancerpatient,hasproperties similar to that of the T877A mutant, but it binds cortisol with a higher affinity 614, 619, 620 . Incubation of MDA PCa 2a cells with cortisol is associated with PSA expression and stimulationofgrowth 620 .ARV715MwasfoundinaOHFltreatedmetastasisandV730Mwas from an organconfined untreated prostate cancer. Both mutants can be activated by adrenal androgens 621623 . In a BCA treatedprostate cancer, aW741Cmutationwasfound.Thesame mutation and another one at the same position, W741L, were detected in an LNCaP subline chronicallytreatedwithBCA 624,625 .ThismutantcouldnotbeactivatedbyOHFl 626 . ART877Amutationseemsahotspotinandrogenindependentprostatecancer 280,610613 .Itis believedthatithasarisenbyselectionofanARmutantthatcouldbeactivatedbyE 2 orOHFL that have been used as treatment. This selection process was mimicked by screening of AR expressionlibrarieswithrandommutationsatcodons874or877inayeastreadoutsystemin the presence of Pg. This hormone was chosen because it is the best activating noncognate ligandoftheARH874YandT877Amutantsfoundsofar. The T877A mutant was obtained mostfrequently,followedbytheT877SandH874Ymutants(seeChapter4) 494 .Whentestedin mammaliancells,thesemutantsshowedbroadenedligandresponses,includingresponsiveness toOHFL.Thisindicatesthatthemutantsfoundinprostatecancercouldbeselectedwithnon cognate ligands that can activate the mutant ARs and therefore prostate tumor growth. It is assumedthattherapeuticantiandrogenlevelsaresufficientlyhightoconfergrowthadvantage tocellsharboringthosemutantsandthusfavortumorgrowth.

54 HomologymodelingandcrystallographicanalysisofwildtypeandmutantARLBDboundto agonistsornoncognateligandshaverevealedpossiblestructuralmechanismsofthebroadened ligand responsiveness of AR mutants identified in prostate cancer 277, 278, 626630 . The ligand bindingpocketoftheARislinedby18aminoacidresidues,ofwhichmostarehydrophobic, exceptN705,Q711,R752,andT877 278, 630 .N705andT877formhydrogenbondstothe17β hydroxylgroupoftheDringofR1881,R752formsahydrogenbondtoO3intheAringof R1881.Q711bindstoO3throughaH2Omolecule.T877isaveryimportantaminoacidin determining ligand specificity, because substitution by a less bulkier amino acid, like in the frequentlyfoundT877Amutant,enablesbindingofotherligandslikeprogesterone,estrogens, adrenal androgens, antiandrogens, and even glucocorticoids 277, 278 . The alanine residue in T877Aisnotabletoformahydrogenbondtothe17βhydroxylgroupoftheligand,eitherDHT or R1881, but N705 binding is still sufficient for ligand binding (see Figure 14) 277, 278 . In addition, L880 makes van der Waals contact with the 17β oxygen atom of R1881. On its correspondingposition,thePRhasathreonine(T894),whichhasalessbulkiersidechain.This aminoacidissupposedtoberesponsibleforbindingofprogesteronetothePRandnottothe wildtypeAR 278 . Homology modeling has predicted that binding of the wildtype AR to nonsteroidal antagonists like OHFl includes N705, Q711, and R752 629 . Crystallographic analysis of the wildtype AR LBD bound to agonists that resemble the OHFl structure, has shown that hydrogenbondingtoT877isnotinvolved,andthatthesidechainofthisaminoacidisrotated 180˚comparedtoitspositioninthereceptorboundtosteroidalligands 627 .Thisleavessome spacebetweenT877andthenonsteroidalligand,whichisincreasedintheT877Amutantand becomesoccupiedthenbyawatermoleculethatbridgestheketonegroupofthenonsteroidal ligandtothebackboneoxygenofL873 627 .Thisinteractionisthoughttoincreasetheagonistic activity of such a ligand. Similarly, crystallographicdataontheT877Amutantboundtothe partialagonistCPAhaveshownthatthisligandinducesmovementoftheL701sidechain.This leadstoanexpansionoftheligandbindingpocketthatissupposedtoenablethebulkyCPA moleculetoactasafullagonist 628 . ComparedtotheT877Amutant,intheARdoublemutantL701H/T877Athereisevenmore spacetoaccomodatenoncognateligandswithbulkiersubstituentsatposition17.Thecrystal structureofthismutantcomplexedwith9αfluorocortisolshowedfavorablehydrogenbonding betweentheC17andC21ofthissyntheticligandwiththemutantprotein 631 .Thismightexplain itsactivationbycortisol. H874isnotdirectlyliningtheligandbindingpocket.Infact,itprojectsawayfromit,andis notabletobindtheligand 630,632 .ThissuggestsaconformationalchangeinducedbytheH874Y substitutionthatindirectlyaffectsligandbinding. IntheW741LARmutantthebulkytryptophanresidueisreplacedbyleucine,whichallows accomodation of large molecules like BCA, thereby maintaining the agonist bound LBD structure.InthewildtypeAR,M895isdisplacedbyBCA,whereasintheW741Lmutantthis residuecanbeaccomodatednearL741 626 .Thismayexplainthepresenceofthismutationin BCAtreatedprostatecancerpatientsandinBCAtreatedLNCaPcells 624,625 .WhytheW741L mutantcannotbeactivatedbyOHFlisnotclearyet,butitisthoughtthatawatermediated interactiondoesnotoccurbetweenOHFlandL873aswasfoundfortheT877Amutant 627 .

55 Figure14. Comparisonof( A)bindingofDHTtoARLBDwith( B)bindingofDHTtotheARLBDT877A mutant.Fromref.277. In vitro timeresolvedFRETanalysisofthewildtypeandT877AmutantARLBDrevealed that DHT, R1881, E 2, spironolactone, Pg, and cortisol, conferred recruitment of the peptide D11FXXLFandtheSRC3LXXLLmotif1inawaythatcorrelatedwiththerankorderpotency of these ligands to induce receptor transactivation 633 . These findings indicate that ligand bindingandNTDorcoactivatorbindingcanbeconformationallyassociated.Also,theextentof partialantagonisticactivityofmightbereflectedbydifferentialmotifbinding.For example,theusuallyantagonisticOHFlconferredabetterbindingoftheFXXLFandLXXLL peptides to AR T877A LBD than to wildtype AR LBD, whereas thepartial antagonist CPA conferredrecruitmentoftheLXXLLmotif,butnotoftheFXXLFmotiftothemutantLBD 633 . V715M and AR H874Y showed an increase in both FXXLF and LXXLL motif binding as compared to the wildtype AR 634 . The V730M mutant showed an increase in LXXLL motif binding,andslightlydecreasesFXXLFbinding 455 .Androgendissociationwasnotalteredfor thismutant634 .ThesefindingssuggestthatseveralARLBDmutationsfoundinprostatecancer could confer aberrant AR activity through conformational changes that influence coactivator recruitmentbythenoncognateligandboundLBD.

1.2.5.1.3.3IntraprostaticconversionofadrenalandrogenstoTandDHT Themostcommon(90%)circulatingandrogenisT,whichissynthesizedbytheLeydigcellsin the testes. The remaining 10% are produced by the adrenals and include androgens like dehydroepiandrosterone(DHEA),androstenediol,andandrostenedione.Uponentranceintarget cellsTcanbeconvertedtomorepotentDHTby5αreductase.LHRHagonistsusedasprostate cancertherapyinhibitproductionofT,therebyleavingadrenalandrogenproductionunchanged. In normal and prostate cancer tissues, adrenal androgens have been found tobe converted in vitro and in vivo toseveraldifferentandrogensamongwhichTandDHT 635638 .Thismightbe causedbyincreasedexpressionofaldoketoreductasefamily1,memberC3(AKR1C3) 639 .This enzyme,alsocalled17βhydroxysteroiddehydrogenasetype5,convertsandrostenedioneintoT, whichinturncanbeconvertedtoDHT.Anadditionalmechanismcouldbethattheconversion

56 of prostatic DHT to 5α3α,17βdiol is reversed by a 11cis retinol dehydrogenase like oxidative 3αhydroxysteroid dehydrogenase (RLHSD) and/or L3hydroxyacyl coenzyme A dehydrogenase. These two enzymes were found to be highly expressed in normal prostate tissue and are suggested to contribute to castrate prostatic DHT levels 636 . Whatever the mechanismafterLHRHinducedcastrationthereisanintraprostaticreductionofDHTlevelsby only5070%,whileserumcastratelevelsofTarereducedby9095% 640643 .Asdescribedin 1.2.5.1.3.2, adrenal androgen levels are thought to be able to activate particular AR mutants foundinasubsetofprostatecancers,butnotwildtypeAR.Moreover,prostaticcastrateDHT levelsaresupposedtobesufficientforwildtypeARactivation.Thereforeacombinationofa LHRHagonistandanantiandrogenisoftenusedasprostatecancertherapy.

1.2.5.1.3.4LigandindependentactivationoftheARthroughcrosstalkwithother signalingpathways AnincreasingnumberofmanuscriptsdescribesmodulationofARactivitybycomplexcross talkwithothersignaltransductionpathways.Crosstalkwithothersignalingpathwaysmightbe both liganddependent or independent. Here several relevant examples of “alternative activation”ofARarepresented. Overexpression of the epidermal growth factor (EGF) receptor related human epidermal growthfactorreceptor2(HER2)hasbeenfoundinasubpopulationofprostatecancerpatients. IthasbeendescribedthatHER2activatestheAR via theMAPKpathway 180 .UseofaMAPK inhibitorreducedPSAlevelsinprostatecellsand the antagonistic actionofantiandrogensis decreasedinthepresenceofactivatedMAPK 644 .ConstitutivelyexpressedactiveRasstimulates MAPK activity and sensitizes prostate cells to low androgen levels, as examplified in the androgenindependentC42LNCaPsublinewheredominantnegativeRasrestoredsensitivityto BCA 645, 646 . MAPK activity was found to increase during androgen ablation. Its phosphorylation, which is thought to be due to TGFβ action, correlates with prostate tumor metastaticpotential 647650 . Interleukin6(IL6)activatestheARinaligandindependentmannerthroughp300andSRC1 651 . It also activates signal transducers and activators of transcription (STAT3), MAPK, and phosphatidylinositol3kinase(PI3K),whichallmightactivatetheAR 652,653 . Recently, it was found that AR can be phosphorylated on Y534 by Src 654, 655 . This phosphorylation increased AR activity at low androgen levels and stimulated prostate tumor growth in castrated mice 655 . Src in turn can be activated by growth factors including EGF, heregulin,andIL6 655, 656 .SrcisconstitutivelyexpressedinanandrogenindependentLNCaP subline with a high passage number 657 . Tyrosine phosphorylation of the AR is increased in androgenindependentclinicalprostatecancerandcorrelateswithahighGleasonscore 655 . Contradictory reports have been published on the effect of the protein kinase Akt on AR activity.IthasbeendescribedthatactivationofAktisassociatedwithadvancedprostatecancer andthatAktenhancesARactivity 658 .However,inhibitionARactivitybyAkthasalsobeen described 659 .Possibly,differentialphosphorylationofARbyAktindifferentcelllinesmight explainthesediscrepancies.ForexampleSerphosphorylatedARwasfoundinLAPC4cells, butnotinLNCaPcells 660 .HER2mightactivateARnotonlythroughMAPKbutalsobyAkt stimulatedphosphorylationofS213andS791 198 .TheAktdownstreamtargetForkheadboxO1 (FoxO1) transcription factor activates AR by interaction with the receptor, thereby inhibiting apoptosis 661 . Elevated serum levels of insulinlike growth factor1 (IFG1) have been associated with an increased prostate cancer risk and with the transition of prostate cancer xenografts to an

57 androgenindependent state 662 . IGF1 can activate the AR by inducing the PI3K/Akt or Ras/MAPKpathways,whichresultsinARphosphorylationandsensitizationtolowandrogen levels 271 . IGF1 receptor (IGF1R) expression in LNCaP cells can be inducedby androgens, however,thisseemsindependentofbindingofARtoDNA,butdependentontheSrc/MAPK pathway 663 .IncreasedlevelsofIGFbindingproteinsIGFBP2andIGFBP5havebeenfoundin prostatecancerpatients.Theseproteinsbindtotheextracellularmatrixtherebymaintaininga relativelyhighIGF1concentrationinthevicinityoftheIGF1R 664666 .Takentogether,several linesofevidenceindicatethattheIGFsignalingpathwaycanbeinvolvedinandrogeninduced cell proliferation causing androgendependent prostate tumor growth, moreover it is a good candidatetosubsequentlypromoteprogressiontoandrogenindependentprostatecancer.

1.2.5.1.3.5AberrantARcoregulatorexpressionandfunction Although the relative contributions of coregulators to AR function have not been fully determined as yet, several are considered to contribute to the development of androgen independentprostatecancer.Aberrantexpressionofcoregulatorshasbeendescribedinprostate tumorsamplesandcelllines,whichcouldleadtostimulationofARactivityinthepresenceof low androgen levels, or, like some AR mutations do (see section 1.2.5.2.2), alter ligand specificity of the AR (reviewed in ref. 667). Below several examples are described in more detail.Ithastoberealized,however,thatthisstillisacontroversialsubject,andthatnotalldata areconclusive. For all members of the SRC family, SRC1, TIF2, and SRC3, overexpression has been reported in subsets of androgenindependent tumors 668, 669 . Microarray analysis of a large patientcohorthasrevealedthatincreasedSRC1expressioninprostatecanceriscorrelatedwith more aggressive disease 670 . Another important finding is that phosphorylation of SRC1 by MAPK can activate the AR in the absence of androgens to the same extent asphysiological levelsofDHT 671, 672 .TIF2expressionandphosphorylationwerefoundtobeincreasedinan androgenindependentxenograftmodelbyEGFstimulation 668,673 .ThepartialantagonistCPA andtheantagonistOHFLareagonistsforARmutantT877A(seesection1.2.5.2.2),andthese activities were hardly affected by small amounts of the corepressor NCoR. However, TIF2 stronglyenhancedantagonistinducedARactivity 359 .Thisindicatesthattheantagonistbound T877Amutantpreferstobindacoactivator.So,ARactivitywillnotonlybedeterminedbythe ligand(agonistorantagonists),butalsobytheratioofcoactivatortocorepressorratioinacell. SomeprostatetumorsshowSRC3overexpression 674, 675 .SCR3increasesPSAlevelsinthe presence of very low adrenal androgen levels 395 . Furthermore there is a correlation between SRC3expressionandadecreasedtimeofprostatecancerrelapse 669 . CBPexpressioninLNCaPcellsisdownregulatedbyandrogens,andseemsoverexpressedin androgenindependent clinical prostate cancer, possibly due to androgen withdrawal 676 . In addition,theagonisticactionoftheARantagonistOHFLisincreasedbytransientlytransfected CBP inprostate cancer cells containingeitherwildtypeorantiandrogensensitivemutantAR 677 .IncreasedlevelofCBPrelatedp300alsocorrelatedwithprostatecancerprogression 678 . ARA55expressionwasfoundtobeincreasedinprimaryprostatetumors,andevenmorein androgenindependenttumors 679 .Itisalsoassociatedwithshorterrecurrencefreesurvivaland overallsurvivalinandrogenindependentprostatecancerpatients 680 .ARA55isphosphorylated by prolinerich tyrosine kinase2 (PYK2), which inhibits its binding to AR. In progressive prostate cancers PYK2 expression was found to be reduced, which increases ARARA55 bindingandthereforeARactivity 307 . ARA70isoverexpressedinprostatetumorsandandrogenindependentCWR22xenografts,and 569,681683 enablesOHFlandBCAtofunctionasARagonists .E 2levelsinthestromaofbenign prostatichypertrophyandinsomeprostatecancersampleswerefoundtoberelativelyhighby

58 684687 an increased level of aromatase, which converts T to E 2 . In vitro increased ARA70 304 expressionwasfoundtoactivateARinthepresenceoflowadrenalandrogenorE 2levels .In addition, expression of ARA70 itself is induced by E 2, which can further enhance the AR 688 responsetoE 2 .BecauseoftheseeffectsofARA70ontheligandresponseoftheAR,useof E2 or antiandrogens as therapy may be disadvantageous in prostate cancers with elevated ARA70. Like ARA70, other AR coactivators were also found to allow AR activation by adrenal androgens. βCatenin is mutated in 5% of prostate cancers 689 . This seems to increase AR activation by androstenedione at the physiological nanomolar level 319 . Supervillin is able to enhanceARactivityinthepresenceof10nMandrostenediol 690 . Upon androgen withdrawal, expression and nuclear localization of Tip60 are increased in LNCaP cells and CWR22 xenografts. InandrogenindependenttumorsTip60wasexclusively localizedinthenucleus 691 .However,anotherstudyrevealedthatTip60isdownregulatedin prostate cancer metastases, which indicates that it can have different roles in different tumor stages 692 .Tip60isalsorelatedtoPSAexpressioninandrogenindependentcelllines,probably bymodulatingARacetylation 300 . Gelsolin,whichisupregulateduponandrogenwithdrawalinLNCaPcells,LNCaPxenografts, andhumanprostatetumors,wasshowntoenhanceOHFlinducedARactivity 321 . ART27issupposedtobedifferentiationrelatedandisexpressedatlowornegligiblelevelsin prostatecancerspecimenscomparedtowelldifferentiatednormalprostatetissue 326 .However, theARmutantP340Linprostatecancershowedanincreased interaction with ART27. This indicatesthattheroleofART27switchesduringprostatecancerprogression. OverexpressionofCARM1hasbeendetectedinboth early stage prostate carcinoma and in androgenindependentprostatecarcinoma 355 .

1.2.5.1.3.6SignalingpathwaysinprostatecancercellsbypassingtheAR SeveralcellularsignalingpathwaysthatshowcrosstalkwithARfunctionmightalsoplaya role in prostate tumor growth without involvement of AR. These bypass pathways include MAPK,Akt,andPKCsignaling. MembersoftheMAPKcascadewerefoundamplifiedinandrogenindependentprostatecancer 693 . Transfection experiments have indicated that Ras may induce androgenindependence by increasingMAPKexpressionandactivation 646 .AP1,acJun/cFosheterodimer,activatedby the MAPK cascade, can increase expression of androgenregulated genes by binding to its recognitionsitepresentinthepromotersofsomeof these genes 694 . In PC3 cells, which are androgenindependent,thelevelsofcJunandcFosshowedasevenfoldincreaseascompared toandrogendependentLNCaPcells 695 . Aktwasfoundtoplayaroleinapoptosisandproliferation of prostate cancer cell lines by suppressingproapoptoticprocessesandstimulatingG1cellcycleprogression.Itinactivatesthe FoxO transcription factors, which hasbeen claimedto decreasep27kip,acellcycleregulator 661,696,697 . Increased PKC expression is correlated with decreased survival time after development of androgenindependence 695 .PKChasatleast12isoforms,whichactivatedifferent pathways, andsinceitisnotknownwhichisoformsarehigherexpressedinandrogenindependentprostate canceritisnotpossibletodeterminewhichPKCinducedmechanismisinvolved 698 .

59 1.3AIMANDSCOPEOFTHISTHESIS TheAR,whichisthetargetproteinofandrogens,isessentialindevelopmentandmaintenance ofthemalephenotype,andthereforeplaysakeyroleindiseaseslikeAIS,SBMAorKennedy's disease,andprostatecancer. Androgens stimulate prostate tumor growth, and a generally applied therapy is androgen ablationandincaseofmetastaticprostatecancerantiandrogensaresubscribed.Thistreatment initiallycausesadecreaseoftumorsize.However,unfortunately,almostalltumorsultimately relapse and have started to grow independent of androgens. In a number of patients the AR seems still involved in androgenindependent prostate tumor growth through an alternative mechanism for activation of the receptor which would not require binding of an androgenic ligandtotheAR.Therefore,athoroughknowledgeofthemechanismsunderlyingnormaland aberrantARfunctionisessentialfordevelopmentandimprovementofprostatecancertherapies. InvestigationofthemolecularmechanismsofARfunctionswasdoneattheleveloftheAR protein itself, AR regulated gene transcription and AR mutations. The study 'Molecular mechanismsofandrogenreceptorfunctions'describedinthisthesiscanbesubdividedinthree topics: 1) interactionsbetweenARsubdomains, 2) androgenspecifictranscriptionalgeneregulation, 3) aberrantARfunctioncausedbyARmutationsfoundinprostatecancer. Ad 1) A liganddependent functional interaction can occur between the AR NTD and AR LBD. Deletion mapping of the AR NTD has revealed an important interaction domain. This domaincontainsaninteractionmotifthatisessential in the interaction with the AR LBD. A detailedstudyofthismotifisdescribedinChapter2. Ad2)Thespecificallyandrogenregulatedgene SARG hasbeenidentifiedintheARandGR positive LNCaP1F5 subline. Its transcription can be upregulated by androgens, but not by glucocorticoids. Chapter 3 describes the characterization of the SARG gene, and the bioinformaticsbased identification and functional analysis of an androgen specific response elementinintron1. Ad3)Chapter4describesarandommutagenesisscreeningandthesubsequentisolationofAR mutants,whicharenotonlyresponsivetoandrogens,butalsotoothernoncognatesteroidsand evenantiandrogensandcortisol.Thisbroadenedligandspecificitymighthaveimplicationsfor prostatecancerpatientscarryingsuchARmutations. Chapter5summarizesthefindingsdescribedinChapters2,3,and4,andplacestheseinthe contextofrecentlypublishedstudiesandindicatesdirectionsoffutureresearch.

60 1.4REFERENCES 1 M.Beato,P.HerrlichandG.Schutz(1995)Steroidhormonereceptors:manyactorsinsearchofaplot Cell 83 68517 2 L.P.Freedman(1999)Increasingthecomplexityofcoactivationinnuclearreceptorsignaling Cell 97 15 8 3 N.J.Mckenna,J.Xu,Z.Nawaz,S.Y.Tsai,M.J.TsaiandB.W.O'malley(1999)Nuclearreceptor coactivators:multipleenzymes,multiplecomplexes,multiplefunctions J Steroid Biochem Mol Biol 69 16 312 4 C.K.GlassandM.G.Rosenfeld(2000)Thecoregulatorexchangeintranscriptionalfunctionsofnuclear receptors Genes Dev 14 212141 5 N.J.MckennaandB.W.O'malley(2000)Fromligandtoresponse:generatingdiversityinnuclear receptorcoregulatorfunction J Steroid Biochem Mol Biol 74 53516 6 D.Robyr,A.P.WolffeandW.Wahli(2000)Nuclearhormonereceptorcoregulatorsinaction:diversity forsharedtasks Mol Endocrinol 14 332947 7 A.ArandaandA.Pascual(2001)Nuclearhormonereceptorsandgeneexpression Physiol Rev 81 31269 304 8 K.C.LeeandW.LeeKraus(2001)Nuclearreceptors,coactivatorsandchromatin:newapproaches,new insights Trends Endocrinol Metab 12 51917 9 J.W.Lee,Y.C.Lee,S.Y.Na,D.J.JungandS.K.Lee(2001)Transcriptionalcoregulatorsofthenuclear receptorsuperfamily:coactivatorsandcorepressors Cell Mol Life Sci 58 228997 10 A.M.Naar,B.D.LemonandR.Tjian(2001)Transcriptionalcoactivatorcomplexes Annu Rev Biochem 70 475501 11 N.J.MckennaandB.W.O'malley(2002)Combinatorialcontrolofgeneexpressionbynuclearreceptors andcoregulators Cell 108 446574 12 V.Laudet(1997)Evolutionofthenuclearreceptorsuperfamily:earlydiversificationfromanancestral orphanreceptor J Mol Endocrinol 19 320726 13 V.Giguere(1999)Orphannuclearreceptors:fromgenetofunction Endocr Rev 20 5689725 14 W.H.EvansandJ.J.Bergeron(1988)Nuclearreceptors:areevaluation Trends Biochem Sci 13 178 15 S.GreenandP.Chambon(1988)Nuclearreceptorsenhanceourunderstandingoftranscriptionregulation Trends Genet 41130914 16 M.Beato,G.Chalepakis,M.SchauerandE.P.Slater(1989)DNAregulatoryelementsforsteroid hormones J Steroid Biochem 32 573747 17 M.Beato(1989)Generegulationbysteroidhormones Cell 56 333544 18 M.G.Parker(1993)Steroidandrelatedreceptors Curr Opin Cell Biol 53499504 19 K.B.Horwitz,T.A.Jackson,D.L.Bain,J.K.Richer,G.S.TakimotoandL.Tung(1996)Nuclear receptorcoactivatorsandcorepressors Mol Endocrinol 10 10116777 20 C.K.Glass(1994)Differentialrecognitionoftargetgenesbynuclearreceptormonomers,dimers,and heterodimers Endocr Rev 15 3391407 21 S.KhorasanizadehandF.Rastinejad(2001)NuclearreceptorinteractionsonDNAresponseelements Trends Biochem Sci 26 638490 22 S.Green,V.Kumar,I.Theulaz,W.WahliandP.Chambon(1988)TheNterminalDNAbinding'zinc finger'oftheoestrogenandglucocorticoidreceptorsdeterminestargetgenespecificity Embo J 7103037 44 23 K.UmesonoandR.M.Evans(1989)Determinantsoftargetgenespecificityforsteroid/thyroidhormone receptors Cell 57 7113946 24 P.L.Shaffer,A.Jivan,D.E.Dollins,F.ClaessensandD.T.Gewirth(2004)Structuralbasisofandrogen receptorbindingtoselectiveandrogenresponseelements Proc Natl Acad Sci U S A 101 14475863 25 B.E.Black,J.M.Holaska,L.Levesque,B.OssarehNazari,C.Gwizdek,C.DargemontandB.M. Paschal(2001)NXT1isnecessaryfortheterminalstepofCrm1mediatednuclearexport J Cell Biol 152 1 14155 26 B.E.BlackandB.M.Paschal(2004)Intranuclearorganizationandfunctionoftheandrogenreceptor Trends Endocrinol Metab 15 94117 27 X.S.Chen,Y.Y.ZhangandC.D.Funk(1998)Determinantsof5lipoxygenasenuclearlocalizationusing greenfluorescentprotein/5lipoxygenasefusionproteins J Biol Chem 273 473123744 28 J.M.Wurtz,W.Bourguet,J.P.Renaud,V.Vivat,P.Chambon,D.MorasandH.Gronemeyer(1996)A canonicalstructurefortheligandbindingdomainofnuclearreceptors Nat Struct Biol 32206 29 S.MinucciandK.Ozato(1996)Retinoidreceptorsintranscriptionalregulation Curr Opin Genet Dev 65 56774 30 A.M.Brzozowski,A.C.Pike,Z.Dauter,R.E.Hubbard,T.Bonn,O.Engstrom,L.Ohman,G.L.Greene, J.A.GustafssonandM.Carlquist(1997)Molecularbasisofagonismandantagonismintheoestrogen receptor Nature 389 66527538 31 D.MorasandH.Gronemeyer(1998)Thenuclearreceptorligandbindingdomain:structureandfunction Curr Opin Cell Biol 10 338491 32 R.T.Nolte,G.B.Wisely,S.Westin,J.E.Cobb,M.H.Lambert,R.Kurokawa,M.G.Rosenfeld,T.M. Willson,C.K.GlassandM.V.Milburn(1998)Ligandbindingandcoactivatorassemblyofthe peroxisomeproliferatoractivatedreceptorgamma Nature 395 669813743

61 33 A.K.Shiau,D.Barstad,P.M.Loria,L.Cheng,P.J.Kushner,D.A.AgardandG.L.Greene(1998)The structuralbasisofestrogenreceptor/coactivatorrecognitionandtheantagonismofthisinteractionby Cell 95 792737 34 N.J.Webster,S.Green,J.R.JinandP.Chambon(1988)Thehormonebindingdomainsoftheestrogen andglucocorticoidreceptorscontainaninducibletranscriptionactivationfunction Cell 54 2199207 35 P.S.Danielian,R.White,J.A.LeesandM.G.Parker(1992)Identificationofaconservedregionrequired forhormonedependenttranscriptionalactivationbysteroidhormonereceptors Embo J 11 3102533 36 D.Barettino,M.M.VivancoRuizandH.G.Stunnenberg(1994)Characterizationoftheliganddependent transactivationdomainofthyroidhormonereceptorEmbo J 13 13303949 37 B.Durand,M.Saunders,C.Gaudon,B.Roy,R.LossonandP.Chambon(1994)Activationfunction2 (AF2)ofretinoicacidreceptorand9cisretinoicacidreceptor:presenceofaconservedautonomous constitutiveactivatingdomainandinfluenceofthenatureoftheresponseelementonAF2activity Embo J13 22537082 38 R.B.LanzandS.Rusconi(1994)Aconservedcarboxyterminalsubdomainisimportantforligand interpretationandtransactivationbynuclearreceptors Endocrinology 135 5218395 39 S.A.Onate,V.Boonyaratanakornkit,T.E.Spencer,S.Y.Tsai,M.J.Tsai,D.P.EdwardsandB.W. O'malley(1998)Thesteroidreceptorcoactivator1containsmultiplereceptorinteractingandactivation domainsthatcooperativelyenhancetheactivationfunction1(AF1)andAF2domainsofsteroidreceptors J Biol Chem 273 20121018 40 P.Alen,F.Claessens,G.Verhoeven,W.RombautsandB.Peeters(1999)Theandrogenreceptoramino terminaldomainplaysakeyroleinp160coactivatorstimulatedgenetranscription Mol Cell Biol 19 9 608597 41 A.Benecke,P.ChambonandH.Gronemeyer(2000)Synergybetweenestrogenreceptoralphaactivation functionsAF1andAF2mediatedbytranscriptionintermediaryfactorTIF2 EMBO Rep 121517 42 R.Metivier,G.Penot,G.FlouriotandF.Pakdel(2001)SynergismbetweenERalphatransactivation function1(AF1)andAF2mediatedbysteroidreceptorcoactivatorprotein1:requirementfortheAF1 alphahelicalcoreandforadirectinteractionbetweentheNandCterminaldomains Mol Endocrinol 15 11195370 43 V.Perissi,L.M.Staszewski,E.M.Mcinerney,R.Kurokawa,A.Krones,D.W.Rose,M.H.Lambert,M. V.Milburn,C.K.GlassandM.G.Rosenfeld(1999)Moleculardeterminantsofnuclearreceptor corepressorinteraction Genes Dev 13 243198208 44 X.J.YangandE.Seto(2003)Collaborativespiritofhistonedeacetylasesinregulatingchromatin structureandgeneexpression Curr Opin Genet Dev 13 214353 45 A.J.Saporita,Q.Zhang,N.Navai,Z.Dincer,J.Hahn,X.CaiandZ.Wang(2003)Identificationand characterizationofaligandregulatednuclearexportsignalinandrogenreceptor J Biol Chem 278 43 419982005 46 S.K.Nordeen,B.J.Suh,B.KuhnelandC.D.Hutchison(1990)Structuraldeterminantsofa glucocorticoidreceptorrecognitionelement Mol Endocrinol 412186673 47 P.J.Roche,S.A.HoareandM.G.Parker(1992)AconsensusDNAbindingsitefortheandrogen receptor Mol Endocrinol 612222935 48 B.A.Lieberman,B.J.Bona,D.P.EdwardsandS.K.Nordeen(1993)Theconstitutionofaprogesterone responseelement Mol Endocrinol 7451527 49 M.Lombes,N.Binart,M.E.Oblin,V.JoulinandE.E.Baulieu(1993)Characterizationoftheinteraction ofthehumanmineralocorticosteroidreceptorwithhormoneresponseelements Biochem J 292(Pt2) 577 83 50 S.Kato,L.Tora,J.Yamauchi,S.Masushige,M.BellardandP.Chambon(1992)Afarupstreamestrogen responseelementoftheovalbumingenecontainsseveralhalfpalindromic5'TGACC3'motifsacting synergistically Cell 68 473142 51 U.Strahle,M.Boshart,G.Klock,F.StewartandG.Schutz(1989)Glucocorticoidandprogesterone specificeffectsaredeterminedbydifferentialexpressionoftherespectivehormonereceptors Nature 339 622662932 52 F.Claessens,P.Alen,A.Devos,B.Peeters,G.VerhoevenandW.Rombauts(1996)Theandrogen specificprobasinresponseelement2interactsdifferentiallywithandrogenandglucocorticoidreceptors J Biol Chem 271 32190136 53 V.G.Thackray,B.A.LiebermanandS.K.Nordeen(1998)Differentialgeneinductionbyglucocorticoid andprogesteronereceptors J Steroid Biochem Mol Biol 66 41718 54 D.Szapary,Y.HuangandS.S.Simons,Jr.(1999)Opposingeffectsofcorepressorandcoactivatorsin determiningthedoseresponsecurveofagonists,andresidualagonistactivityofantagonists,for glucocorticoidreceptorregulatedgeneexpression Mol Endocrinol 13 12210821 55 F.Claessens,G.Verrijdt,E.Schoenmakers,A.Haelens,B.Peeters,G.VerhoevenandW.Rombauts (2001)SelectiveDNAbindingbytheandrogenreceptorasamechanismforhormonespecificgene regulation J Steroid Biochem Mol Biol 76 152330 56 Z.Liu,D.Auboeuf,J.Wong,J.D.Chen,S.Y.Tsai,M.J.TsaiandB.W.O'malley(2002) Coactivator/corepressorratiosmodulatePRmediatedtranscriptionbytheselectivereceptormodulator RU486 Proc Natl Acad Sci U S A 99 1279404 57 C.A.Sartorius,M.Y.Melville,A.R.Hovland,L.Tung,G.S.TakimotoandK.B.Horwitz(1994)Athird transactivationfunction(AF3)ofhumanprogesteronereceptorslocatedintheuniqueNterminalsegment oftheBisoform Mol Endocrinol 810134760 58 D.F.SmithandD.O.Toft(1993)Steroidreceptorsandtheirassociatedproteins Mol Endocrinol 71411

62 59 J.R.LambertandS.K.Nordeen(1998)Steroidselectiveinitiationofchromatinremodelingand transcriptionalactivationofthemousemammarytumorviruspromoteriscontrolledbythesiteof promoterintegration J Biol Chem 273 493270814 60 J.G.Mcnally,W.G.Muller,D.Walker,R.WolfordandG.L.Hager(2000)Theglucocorticoidreceptor: rapidexchangewithregulatorysitesinlivingcells Science 287 545612625 61 G.L.Hager,A.K.Nagaich,T.A.Johnson,D.A.WalkerandS.John(2004)Dynamicsofnuclear receptormovementandtranscription Biochim Biophys Acta 1677 134651 62 A.K.Nagaich,D.A.Walker,R.WolfordandG.L.Hager(2004)Rapidperiodicbindingand displacementoftheglucocorticoidreceptorduringchromatinremodeling Mol Cell 14 216374 63 D.A.Stavreva,W.G.Muller,G.L.Hager,C.L.SmithandJ.G.Mcnally(2004)Rapidglucocorticoid receptorexchangeatapromoteriscoupledtotranscriptionandregulatedbychaperonesandproteasomes Mol Cell Biol 24 7268297 64 R.Metivier,G.Penot,M.R.Hubner,G.Reid,H.Brand,M.KosandF.Gannon(2003)Estrogenreceptor alphadirectsordered,cyclical,andcombinatorialrecruitmentofcofactorsonanaturaltargetpromoter Cell 115 675163 65 H.Chen,R.J.Lin,R.L.Schiltz,D.Chakravarti,A.Nash,L.Nagy,M.L.Privalsky,Y.NakataniandR. M.Evans(1997)NuclearreceptorcoactivatorACTRisanovelhistoneacetyltransferaseandformsa multimericactivationcomplexwithP/CAFandCBP/p300 Cell 90 356980 66 T.E.Spencer,G.Jenster,M.M.Burcin,C.D.Allis,J.Zhou,C.A.Mizzen,N.J.Mckenna,S.A.Onate, S.Y.Tsai,M.J.TsaiandB.W.O'malley(1997)Steroidreceptorcoactivator1isahistone acetyltransferase Nature 389 66471948 67 A.P.WolffeandD.Pruss(1996)Targetingchromatindisruption:Transcriptionregulatorsthatacetylate histones Cell 84 68179 68 K.Struhl(1998)Histoneacetylationandtranscriptionalregulatorymechanisms Genes Dev 12 5599606 69 M.Hagmann(1999)Howchromatinchangesitsshape Science 285 543112001,1203 70 D.Rhodes(1997)Chromatinstructure.Thenucleosomecoreallwrappedup Nature 389 6648231,233 71 W.Y.Chen,E.C.Bailey,S.L.Mccune,J.Y.DongandT.M.Townes(1997)Reactivationofsilenced, virallytransducedgenesbyinhibitorsofhistonedeacetylase Proc Natl Acad Sci U S A 94 115798803 72 A.J.Horlein,A.M.Naar,T.Heinzel,J.Torchia,B.Gloss,R.Kurokawa,A.Ryan,Y.Kamei,M. Soderstrom,C.K.GlassandEtAl.(1995)Ligandindependentrepressionbythethyroidhormonereceptor mediatedbyanuclearreceptorcorepressor Nature 377 6548397404 73 A.J.DeRuijter,A.H.VanGennip,H.N.Caron,S.KempandA.B.VanKuilenburg(2003)Histone deacetylases(HDACs):characterizationoftheclassicalHDACfamily Biochem J 370 Pt373749 74 D.Chen,H.Ma,H.Hong,S.S.Koh,S.M.Huang,B.T.Schurter,D.W.AswadandM.R.Stallcup (1999)Regulationoftranscriptionbyaproteinmethyltransferase Science 284 542321747 75 Y.Z.Chen,V.MohanandR.H.Griffey(2000)SpontaneousbaseflippinginDNAanditspossiblerolein methyltransferasebinding Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62 1PtB11337 76 S.S.Koh,D.Chen,Y.H.LeeandM.R.Stallcup(2001)Synergisticenhancementofnuclearreceptor functionbyp160coactivatorsandtwocoactivatorswithproteinmethyltransferaseactivities J Biol Chem 276 2108998 77 H.Wang,R.Cao,L.Xia,H.ErdjumentBromage,C.Borchers,P.TempstandY.Zhang(2001) PurificationandfunctionalcharacterizationofahistoneH3lysine4specificmethyltransferase Mol Cell 8 6120717 78 B.Belandia,R.L.Orford,H.C.HurstandM.G.Parker(2002)TargetingofSWI/SNFchromatin remodellingcomplexestoestrogenresponsivegenesEmbo J 21 154094103 79 Z.Q.Huang,J.Li,L.M.Sachs,P.A.ColeandJ.Wong(2003)Aroleforcofactorcofactorandcofactor histoneinteractionsintargetingp300,SWI/SNFandMediatorfortranscription Embo J 22 9214655 80 H.K.KinyamuandT.K.Archer(2004)Modifyingchromatintopermitsteroidhormonereceptor dependenttranscription Biochim Biophys Acta 1677 133045 81 A.LusserandJ.T.Kadonaga(2003)ChromatinremodelingbyATPdependentmolecularmachines Bioessays 25 121192200 82 J.D.Fondell,H.GeandR.G.Roeder(1996)Ligandinductionofatranscriptionallyactivethyroid hormonereceptorcoactivatorcomplex Proc Natl Acad Sci U S A 93 16832933 83 C.Rachez,Z.Suldan,J.Ward,C.P.Chang,D.Burakov,H.ErdjumentBromage,P.TempstandL.P. Freedman(1998)AnovelproteincomplexthatinteractswiththevitaminD3receptorinaligand dependentmannerandenhancesVDRtransactivationinacellfreesystem Genes Dev 12 121787800 84 S.MalikandR.G.Roeder(2000)TranscriptionalregulationthroughMediatorlikecoactivatorsinyeast andmetazoancells Trends Biochem Sci 25 627783 85 A.M.Naar,P.A.Beaurang,S.Zhou,S.Abraham,W.SolomonandR.Tjian(1999)Compositeco activatorARCmediateschromatindirectedtranscriptionalactivation Nature 398 673082832 86 H.M.Bourbon,A.Aguilera,A.Z.Ansari,F.J.Asturias,A.J.Berk,S.Bjorklund,T.K.Blackwell,T. Borggrefe,M.Carey,M.Carlson,J.W.Conaway,R.C.Conaway,S.W.Emmons,J.D.Fondell,L.P. Freedman,T.Fukasawa,C.M.Gustafsson,M.Han,X.He,P.K.Herman,A.G.Hinnebusch,S. Holmberg,F.C.Holstege,J.A.Jaehning,Y.J.Kim,L.Kuras,A.Leutz,J.T.Lis,M.Meisterernest,A.M. Naar,K.Nasmyth,J.D.Parvin,M.Ptashne,D.Reinberg,H.Ronne,I.Sadowski,H.Sakurai,M.Sipiczki, P.W.Sternberg,D.J.Stillman,R.Strich,K.Struhl,J.Q.Svejstrup,S.Tuck,F.Winston,R.G.Roeder andR.D.Kornberg(2004)Aunifiednomenclatureforproteinsubunitsofmediatorcomplexeslinking transcriptionalregulatorstoRNApolymeraseII Mol Cell 14 55537 87 J.Llopis,S.Westin,M.Ricote,Z.Wang,C.Y.Cho,R.Kurokawa,T.M.Mullen,D.W.Rose,M.G. Rosenfeld,R.Y.TsienandC.K.Glass(2000)Liganddependentinteractionsofcoactivatorssteroid receptorcoactivator1andperoxisomeproliferatoractivatedreceptorbindingproteinwithnuclear

63 hormonereceptorscanbeimagedinlivecellsandarerequiredfortranscription Proc Natl Acad Sci U S A 97 843638 88 H.J.Baek,S.Malik,J.QinandR.G.Roeder(2002)RequirementofTRAP/mediatorforbothactivator independentandactivatordependenttranscriptioninconjunctionwithTFIIDassociatedTAF(II)s Mol Cell Biol 22 8284252 89 S.Wang,K.Ge,R.G.RoederandO.Hankinson(2004)Roleofmediatorintranscriptionalactivationby thearylhydrocarbonreceptor J Biol Chem 279 1413593600 90 Y.K.Kang,M.Guermah,C.X.YuanandR.G.Roeder(2002)TheTRAP/Mediatorcoactivatorcomplex interactsdirectlywithestrogenreceptorsalphaandbetathroughtheTRAP220subunitanddirectly enhancesestrogenreceptorfunctioninvitro Proc Natl Acad Sci U S A 99 526427 91 S.Malik,A.E.Wallberg,Y.K.KangandR.G.Roeder(2002)TRAP/SMCC/mediatordependent transcriptionalactivationfromDNAandchromatintemplatesbyorphannuclearreceptorhepatocyte nuclearfactor4 Mol Cell Biol 22 15562637 92 A.Warnmark,T.Almlof,J.Leers,J.A.GustafssonandE.Treuter(2001)Differentialrecruitmentofthe mammalianmediatorsubunitTRAP220byestrogenreceptorsERalphaandERbeta J Biol Chem 276 26 23397404 93 D.SharmaandJ.D.Fondell(2002)Orderedrecruitmentofhistoneacetyltransferasesandthe TRAP/Mediatorcomplextothyroidhormoneresponsivepromotersinvivo Proc Natl Acad Sci U S A 99 1279349 94 M.L.AcevedoandW.L.Kraus(2003)Mediatorandp300/CBPsteroidreceptorcoactivatorcomplexes havedistinctroles,butfunctionsynergistically,duringestrogenreceptoralphadependenttranscription withchromatintemplates Mol Cell Biol 23 133548 95 L.C.Myers,C.M.Gustafsson,D.A.Bushnell,M.Lui,H.ErdjumentBromage,P.TempstandR.D. Kornberg(1998)TheMedproteinsofyeastandtheirfunctionthroughtheRNApolymeraseIIcarboxy terminaldomain Genes Dev 12 14554 96 N.Yudkovsky,J.A.RanishandS.Hahn(2000)Atranscriptionreinitiationintermediatethatisstabilized byactivator Nature 408 68092259 97 B.A.LewisandD.Reinberg(2003)Themediatorcoactivatorcomplex:functionalandphysicalrolesin transcriptionalregulation J Cell Sci 116 Pt18366775 98 J.XuandQ.Li(2003)Reviewoftheinvivofunctionsofthep160steroidreceptorcoactivatorfamily Mol Endocrinol 17 9168192 99 S.A.Onate,S.Y.Tsai,M.J.TsaiandB.W.O'malley(1995)Sequenceandcharacterizationofa coactivatorforthesteroidhormonereceptorsuperfamily Science 270 524013547 100 J.J.Voegel,M.J.Heine,C.Zechel,P.ChambonandH.Gronemeyer(1996)TIF2,a160kDa transcriptionalmediatorfortheliganddependentactivationfunctionAF2ofnuclearreceptors Embo J 15 14366775 101 S.L.Anzick,J.Kononen,R.L.Walker,D.O.Azorsa,M.M.Tanner,X.Y.Guan,G.Sauter,O.P. Kallioniemi,J.M.TrentandP.S.Meltzer(1997)AIB1,asteroidreceptorcoactivatoramplifiedinbreast andovariancancer Science 277 53289658 102 H.Li,P.J.GomesandJ.D.Chen(1997)RAC3,asteroid/nuclearreceptorassociatedcoactivatorthatis relatedtoSRC1andTIF2 Proc Natl Acad Sci U S A 94 16847984 103 A.Takeshita,G.R.Cardona,N.Koibuchi,C.S.SuenandW.W.Chin(1997)TRAM1,Anovel160kDa thyroidhormonereceptoractivatormolecule,exhibitsdistinctpropertiesfromsteroidreceptorcoactivator 1 J Biol Chem 272 442762934 104 H.Hong,K.Kohli,M.J.GarabedianandM.R.Stallcup(1997)GRIP1,atranscriptionalcoactivatorfor theAF2transactivationdomainofsteroid,thyroid,retinoid,andvitaminDreceptors Mol Cell Biol 17 5 273544 105 J.Torchia,D.W.Rose,J.Inostroza,Y.Kamei,S.Westin,C.K.GlassandM.G.Rosenfeld(1997)The transcriptionalcoactivatorp/CIPbindsCBPandmediatesnuclearreceptorfunction Nature 387 6634 67784 106 D.M.Heery,E.Kalkhoven,S.HoareandM.G.Parker(1997)Asignaturemotifintranscriptionalco activatorsmediatesbindingtonuclearreceptors Nature 387 66347336 107 W.Feng,R.C.Ribeiro,R.L.Wagner,H.Nguyen,J.W.Apriletti,R.J.Fletterick,J.D.Baxter,P.J. KushnerandB.L.West(1998)Hormonedependentcoactivatorbindingtoahydrophobiccleftonnuclear receptors Science 280 537017479 108 C.L.Bevan,S.Hoare,F.Claessens,D.M.HeeryandM.G.Parker(1999)TheAF1andAF2domainsof theandrogenreceptorinteractwithdistinctregionsofSRC1 Mol Cell Biol 19 12838392 109 M.Bommer,A.Benecke,H.GronemeyerandC.RochetteEgly(2002)TIF2mediatesthesynergy betweenRARalpha1activationfunctionsAF1andAF2 J Biol Chem 277 40379616 110 T.P.Yao,S.P.Oh,M.Fuchs,N.D.Zhou,L.E.Ch'ng,D.Newsome,R.T.Bronson,E.Li,D.M. LivingstonandR.Eckner(1998)Genedosagedependentembryonicdevelopmentandproliferation defectsinmicelackingthetranscriptionalintegratorp300 Cell 93 336172 111 A.L.Kung,V.I.Rebel,R.T.Bronson,L.E.Ch'ng,C.A.Sieff,D.M.LivingstonandT.P.Yao(2000) GenedosedependentcontrolofhematopoiesisandhematologictumorsuppressionbyCBP Genes Dev 14 32727 112 Y.Kamei,L.Xu,T.Heinzel,J.Torchia,R.Kurokawa,B.Gloss,S.C.Lin,R.A.Heyman,D.W.Rose,C. K.GlassandM.G.Rosenfeld(1996)ACBPintegratorcomplexmediatestranscriptionalactivationand AP1inhibitionbynuclearreceptors Cell 85 340314 113 J.XuandB.W.O'malley(2002)Molecularmechanismsandcellularbiologyofthesteroidreceptor coactivator(SRC)familyinsteroidreceptorfunction Rev Endocr Metab Disord 3318592

64 114 J.Xu,Y.Qiu,F.J.Demayo,S.Y.Tsai,M.J.TsaiandB.W.O'malley(1998)Partialhormoneresistance inmicewithdisruptionofthesteroidreceptorcoactivator1(SRC1)gene Science 279 535819225 115 C.Qi,Y.Zhu,J.Pan,A.V.Yeldandi,M.S.Rao,N.Maeda,V.Subbarao,S.Pulikuri,T.HashimotoandJ. K.Reddy(1999)Mousesteroidreceptorcoactivator1isnotessentialforperoxisomeproliferator activatedreceptoralpharegulatedgeneexpressionProc Natl Acad Sci U S A 96 4158590 116 E.Nishihara,H.YoshidaKomiya,C.S.Chan,L.Liao,R.L.Davis,B.W.O'malleyandJ.Xu(2003) SRC1nullmiceexhibitmoderatemotordysfunctionanddelayeddevelopmentofcerebellarPurkinjecells J Neurosci 23 121322 117 M.Gehin,M.Mark,C.Dennefeld,A.Dierich,H.GronemeyerandP.Chambon(2002)Thefunctionof TIF2/GRIP1inmousereproductionisdistinctfromthoseofSRC1andp/CIP Mol Cell Biol 22 165923 37 118 F.J.Ghadessy,J.Lim,A.A.Abdullah,V.PanetRaymond,C.K.Choo,R.Lumbroso,T.G.Tut,B. Gottlieb,L.Pinsky,M.A.TrifiroandE.L.Yong(1999)Oligospermicinfertilityassociatedwithan androgenreceptormutationthatdisruptsinterdomainandcoactivator(TIF2)interactions J Clin Invest 103 11151725 119 F.Picard,M.Gehin,J.Annicotte,S.Rocchi,M.F.Champy,B.W.O'malley,P.ChambonandJ.Auwerx (2002)SRC1andTIF2controlenergybalancebetweenwhiteandbrownadiposetissues Cell 111 7931 41 120 M.Carapeti,R.C.Aguiar,J.M.GoldmanandN.C.Cross(1998)AnovelfusionbetweenMOZandthe nuclearreceptorcoactivatorTIF2inacutemyeloidleukemiaBlood 91 9312733 121 Z.Wang,D.W.Rose,O.Hermanson,F.Liu,T.Herman,W.Wu,D.Szeto,A.Gleiberman,A.Krones,K. Pratt,R.Rosenfeld,C.K.GlassandM.G.Rosenfeld(2000)Regulationofsomaticgrowthbythep160 coactivatorp/CIP Proc Natl Acad Sci U S A 97 251354954 122 J.Xu,L.Liao,G.Ning,H.YoshidaKomiya,C.DengandB.W.O'malley(2000)Thesteroidreceptor coactivatorSRC3(p/CIP/RAC3/AIB1/ACTR/TRAM1)isrequiredfornormalgrowth,puberty,female reproductivefunction,andmammaryglanddevelopment Proc Natl Acad Sci U S A 97 12637984 123 T.Bouras,M.C.SoutheyandD.J.Venter(2001)OverexpressionofthesteroidreceptorcoactivatorAIB1 inbreastcancercorrelateswiththeabsenceofestrogenandprogesteronereceptorsandpositivityfor andHER2/neu Cancer Res 61 39037 124 H.J.List,R.Reiter,B.Singh,A.WellsteinandA.T.Riegel(2001)Expressionofthenuclearcoactivator AIB1innormalandmalignantbreasttissue Breast Cancer Res Treat 68 1218 125 I.T.Cavarretta,R.Mukopadhyay,D.M.Lonard,L.M.Cowsert,C.F.Bennett,B.W.O'malleyandC.L. Smith(2002)ReductionofcoactivatorexpressionbyantisenseoligodeoxynucleotidesinhibitsERalpha transcriptionalactivityandMCF7proliferation Mol Endocrinol 16 225370 126 H.J.List,K.J.Lauritsen,R.Reiter,C.Powers,A.WellsteinandA.T.Riegel(2001)Ribozymetargeting demonstratesthatthenuclearreceptorcoactivatorAIB1isaratelimitingfactorforestrogendependent growthofhumanMCF7breastcancercells J Biol Chem 276 26237638 127 M.E.MendelsohnandR.H.Karas(1999)Theprotectiveeffectsofestrogenonthecardiovascularsystem N Engl J Med 340 23180111 128 Y.Yuan,L.Liao,D.A.TulisandJ.Xu(2002)Steroidreceptorcoactivator3isrequiredforinhibitionof neointimaformationbyestrogen Circulation 105 2226539 129 Y.Tanaka,I.Naruse,T.Maekawa,H.Masuya,T.ShiroishiandS.Ishii(1997)Abnormalskeletal patterninginembryoslackingasingleCbpallele:apartialsimilaritywithRubinsteinTaybisyndrome Proc Natl Acad Sci U S A 94 191021520 130 M.Mark,H.YoshidaKomiya,M.Gehin,L.Liao,M.J.Tsai,B.W.O'malley,P.ChambonandJ.Xu (2004)PartiallyredundantfunctionsofSRC1andTIF2inpostnatalsurvivalandmalereproduction Proc Natl Acad Sci U S A 101 1344538 131 Z.Wang,C.Qi,A.Krones,P.Woodring,X.Zhu,J.K.Reddy,R.M.Evans,M.G.RosenfeldandT. Hunter(2006)Criticalrolesofthep160transcriptionalcoactivatorsp/CIPandSRC1inenergybalance Cell Metab 3211122 132 H.GreschikandD.Moras(2003)Structureactivityrelationshipofnuclearreceptorligandinteractions Curr Top Med Chem 314157399 133 H.A.Molenda,C.P.Kilts,R.L.AllenandM.J.Tetel(2003)Nuclearreceptorcoactivatorfunctionin reproductivephysiologyandbehavior Biol Reprod 69 5144957 134 R.S.SavkurandT.P.Burris(2004)ThecoactivatorLXXLLnuclearreceptorrecognitionmotif J Pept Res 63 320712 135 J.Grenier,A.Trousson,A.Chauchereau,L.Amazit,A.Lamirand,P.Leclerc,A.GuiochonMantel,M. SchumacherandC.Massaad(2004)Selectiverecruitmentofp160coactivatorsonglucocorticoid regulatedpromotersinSchwanncells Mol Endocrinol 18 12286679 136 S.M.Powell,V.Christiaens,D.Voulgaraki,J.Waxman,F.ClaessensandC.L.Bevan(2004) Mechanismsofandrogenreceptorsignallingviasteroidreceptorcoactivator1inprostate Endocr Relat Cancer 11 111730 137 J.D.ChenandR.M.Evans(1995)Atranscriptionalcorepressorthatinteractswithnuclearhormone receptors Nature 377 65484547 138 X.HuandM.A.Lazar(1999)TheCoRNRmotifcontrolstherecruitmentofcorepressorsbynuclear hormonereceptors Nature 402 6757936 139 L.Nagy,H.Y.Kao,J.D.Love,C.Li,E.Banayo,J.T.Gooch,V.Krishna,K.Chatterjee,R.M.Evansand J.W.Schwabe(1999)Mechanismofcorepressorbindingandreleasefromnuclearhormonereceptors Genes Dev 13 24320916 140 C.M.Grozinger,C.A.HassigandS.L.Schreiber(1999)Threeproteinsdefineaclassofhumanhistone deacetylasesrelatedtoyeastHda1p Proc Natl Acad Sci U S A 96 9486873

65 141 M.G.Guenther,W.S.Lane,W.Fischle,E.Verdin,M.A.LazarandR.Shiekhattar(2000)AcoreSMRT corepressorcomplexcontainingHDAC3andTBL1,aWD40repeatproteinlinkedtodeafness Genes Dev 14 9104857 142 E.Y.Huang,J.Zhang,E.A.Miska,M.G.Guenther,T.KouzaridesandM.A.Lazar(2000)Nuclear receptorcorepressorspartnerwithclassIIhistonedeacetylasesinaSin3independentrepressionpathway Genes Dev 14 14554 143 H.Y.Kao,M.Downes,P.OrdentlichandR.M.Evans(2000)Isolationofanovelhistonedeacetylase revealsthatclassIandclassIIdeacetylasespromoteSMRTmediatedrepression Genes Dev 14 15566 144 L.Alland,R.Muhle,H.Hou,Jr.,J.Potes,L.Chin,N.SchreiberAgusandR.A.Depinho(1997)Rolefor NCoRandhistonedeacetylaseinSin3mediatedtranscriptionalrepression Nature 387 66284955 145 T.Heinzel,R.M.Lavinsky,T.M.Mullen,M.Soderstrom,C.D.Laherty,J.Torchia,W.M.Yang,G. Brard,S.D.Ngo,J.R.Davie,E.Seto,R.N.Eisenman,D.W.Rose,C.K.GlassandM.G.Rosenfeld (1997)AcomplexcontainingNCoR,mSin3andhistonedeacetylasemediatestranscriptionalrepression Nature 387 6628438 146 L.Nagy,H.Y.Kao,D.Chakravarti,R.J.Lin,C.A.Hassig,D.E.Ayer,S.L.SchreiberandR.M.Evans (1997)NuclearreceptorrepressionmediatedbyacomplexcontainingSMRT,mSin3A,andhistone deacetylase Cell 89 337380 147 P.A.Wade,P.L.Jones,D.Vermaak,G.J.Veenstra,A.Imhof,T.Sera,C.Tse,H.Ge,Y.B.Shi,J.C. HansenandA.P.Wolffe(1998)Histonedeacetylasedirectsthedominantsilencingoftranscriptionin chromatin:associationwithMeCP2andtheMi2chromodomainSWI/SNFATPase Cold Spring Harb Symp Quant Biol 63 43545 148 Y.Xue,J.Wong,G.T.Moreno,M.K.Young,J.CoteandW.Wang(1998)NURD,anovelcomplexwith bothATPdependentchromatinremodelingandhistonedeacetylaseactivities Mol Cell 2685161 149 P.S.KnoepflerandR.N.Eisenman(1999)SinmeetsNuRDandothertailsofrepression Cell 99 544750 150 A.Makowski,S.Brzostek,R.N.CohenandA.N.Hollenberg(2003)Determinationofnuclearreceptor corepressorinteractionswiththethyroidhormonereceptor Mol Endocrinol 17 227386 151 L.NagyandJ.W.Schwabe(2004)Mechanismofthenuclearreceptormolecularswitch Trends Biochem Sci 29 631724 152 A.Stevens,H.Garside,A.Berry,C.Waters,A.WhiteandD.Ray(2003)Dissociationofsteroidreceptor coactivator1andnuclearreceptorcorepressorrecruitmenttothehumanglucocorticoidreceptorby modificationoftheligandreceptorinterface:theroleoftyrosine735 Mol Endocrinol 17 584559 153 M.M.Gonzalez,P.Samenfeld,M.PerakylaandC.Carlberg(2003)Corepressorexcessshiftsthetwoside chainvitaminDanalogGeminifromanagonisttoaninverseagonistofthevitaminDreceptor Mol Endocrinol 17 10202838 154 Y.C.Sohn,S.W.Kim,S.Lee,Y.Y.Kong,D.S.Na,S.K.LeeandJ.W.Lee(2003)Dynamicinhibition ofnuclearreceptoractivationbycorepressorbinding Mol Endocrinol 17 336672 155 P.Webb,C.Valentine,P.Nguyen,R.H.Price,Jr.,A.Marimuthu,B.L.West,J.D.BaxterandP.J. Kushner(2003)ERbetaBindsNCoRinthePresenceofEstrogensviaanLXXLLlikeMotifintheN CoRCterminus Nucl Recept 114 156 G.M.Leong,N.Subramaniam,L.L.Issa,J.B.Barry,T.Kino,P.H.Driggers,M.J.Hayman,J.A. EismanandE.M.Gardiner(2004)Skiinteractingprotein,abifunctionalnuclearreceptorcoregulatorthat interactswithNCoR/SMRTandp300 Biochem Biophys Res Commun 315 410706 157 V.Perissi,A.Aggarwal,C.K.Glass,D.W.RoseandM.G.Rosenfeld(2004)Acorepressor/coactivator exchangecomplexrequiredfortranscriptionalactivationbynuclearreceptorsandotherregulated transcriptionfactors Cell 116 451126 158 V.Cavailles,S.Dauvois,F.L'horset,G.Lopez,S.Hoare,P.J.KushnerandM.G.Parker(1995)Nuclear factorRIP140modulatestranscriptionalactivationbytheestrogenreceptor Embo J 14 15374151 159 I.Fernandes,Y.Bastien,T.Wai,K.Nygard,R.Lin,O.Cormier,H.S.Lee,F.Eng,N.R.Bertos,N. Pelletier,S.Mader,V.K.Han,X.J.YangandJ.H.White(2003)Liganddependentnuclearreceptor corepressorLCoRfunctionsbyhistonedeacetylasedependentandindependentmechanisms Mol Cell 11 113950 160 O.Hermanson,C.K.GlassandM.G.Rosenfeld(2002)Nuclearreceptorcoregulators:multiplemodesof modification Trends Endocrinol Metab 1325560 161 C.RochetteEgly(2003)Nuclearreceptors:integrationofmultiplesignallingpathwaysthrough phosphorylation Cell Signal 15 435566 162 S.H.BaekandM.G.Rosenfeld(2004)Nuclearreceptorcoregulators:theirmodificationcodesand regulatorymechanismbytranslocation Biochem Biophys Res Commun 319 370714 163 M.Fu,M.Rao,C.Wang,T.Sakamaki,J.Wang,D.DiVizio,X.Zhang,C.Albanese,S.Balk,C.Chang, S.Fan,E.Rosen,J.J.Palvimo,O.A.Janne,S.Muratoglu,M.L.AvantaggiatiandR.G.Pestell(2003) Acetylationofandrogenreceptorenhancescoactivatorbindingandpromotesprostatecancercellgrowth Mol Cell Biol 23 23856375 164 H.Y.Lin,R.Hopkins,H.J.Cao,H.Y.Tang,C.Alexander,F.B.DavisandP.J.Davis(2005) Acetylationofnuclearhormonereceptorsuperfamilymembers:thyroidhormonecausesacetylationofits ownreceptorbyamitogenactivatedproteinkinasedependentmechanism Steroids 70 574449 165 H.Wang,Z.Q.Huang,L.Xia,Q.Feng,H.ErdjumentBromage,B.D.Strahl,S.D.Briggs,C.D.Allis,J. Wong,P.TempstandY.Zhang(2001)MethylationofhistoneH4atarginine3facilitatingtranscriptional activationbynuclearhormonereceptor Science 293 55318537 166 H.Syvala,A.Vienonen,Y.H.Zhuang,M.Kivineva,T.YlikomiandP.Tuohimaa(1998)Evidencefor enhancedubiquitinmediatedproteolysisofthechickenprogesteronereceptorbyprogesterone Life Sci 63 17150512

66 167 M.Boudjelal,Z.Wang,J.J.VoorheesandG.J.Fisher(2000)Ubiquitin/proteasomepathwayregulates levelsofretinoicacidreceptorgammaandretinoidXreceptoralphainhumankeratinocytes Cancer Res 60 8224752 168 A.Dace,L.Zhao,K.S.Park,T.Furuno,N.Takamura,M.Nakanishi,B.L.West,J.A.HanoverandS. Cheng(2000)Hormonebindinginducesrapidproteasomemediateddegradationofthyroidhormone receptors Proc Natl Acad Sci U S A 97 16898590 169 B.J.Deroo,C.Rentsch,S.Sampath,J.Young,D.B.DefrancoandT.K.Archer(2002)Proteasomal inhibitionenhancesglucocorticoidreceptortransactivationandaltersitssubnucleartrafficking Mol Cell Biol 22 12411323 170 H.K.Lin,L.Wang,Y.C.Hu,S.AltuwaijriandC.Chang(2002)Phosphorylationdependent ubiquitylationanddegradationofandrogenreceptorbyAktrequireMdm2E3ligase Embo J 21 154037 48 171 G.Reid,M.R.Hubner,R.Metivier,H.Brand,S.Denger,D.Manu,J.Beaudouin,J.EllenbergandF. Gannon(2003)Cyclic,proteasomemediatedturnoverofunligandedandligandedERalphaonresponsive promotersisanintegralfeatureofestrogensignaling Mol Cell 11 3695707 172 H.Poukka,U.Karvonen,O.A.JanneandJ.J.Palvimo(2000)Covalentmodificationoftheandrogen receptorbysmallubiquitinlikemodifier1(SUMO1) Proc Natl Acad Sci U S A 97 261414550 173 Y.LeDrean,N.Mincheneau,P.LeGoffandD.Michel(2002)Potentiationofglucocorticoidreceptor transcriptionalactivitybysumoylation Endocrinology 143 934829 174 T.NishidaandH.Yasuda(2002)PIAS1andPIASxalphafunctionasSUMOE3towardandrogen receptorandrepressandrogenreceptordependenttranscription J Biol Chem 277 44413117 175 S.Tian,H.Poukka,J.J.PalvimoandO.A.Janne(2002)Smallubiquitinrelatedmodifier1(SUMO1) modificationoftheglucocorticoidreceptor Biochem J 367 Pt390711 176 N.Kotaja,U.Karvonen,O.A.JanneandJ.J.Palvimo(2002)Thenuclearreceptorinteractiondomainof GRIP1ismodulatedbycovalentattachmentofSUMO1 J Biol Chem 277 33302838 177 A.Chauchereau,L.Amazit,M.Quesne,A.GuiochonMantelandE.Milgrom(2003)Sumoylationofthe progesteronereceptorandofthesteroidreceptorcoactivatorSRC1 J Biol Chem 278 141233543 178 H.Endoh,K.Maruyama,Y.Masuhiro,Y.Kobayashi,M.Goto,H.Tai,J.Yanagisawa,D.Metzger,S. HashimotoandS.Kato(1999)Purificationandidentificationofp68RNAhelicaseactingasa transcriptionalcoactivatorspecificfortheactivationfunction1ofhumanestrogenreceptoralpha Mol Cell Biol 19 8536372 179 A.Tremblay,G.B.Tremblay,F.LabrieandV.Giguere(1999)LigandindependentrecruitmentofSRC1 toestrogenreceptorbetathroughphosphorylationofactivationfunctionAF1 Mol Cell 345139 180 S.Yeh,H.K.Lin,H.Y.Kang,T.H.Thin,M.F.LinandC.Chang(1999)FromHER2/Neusignal cascadetoandrogenreceptoranditscoactivators:anovelpathwaybyinductionofandrogentargetgenes throughMAPkinaseinprostatecancercells Proc Natl Acad Sci U S A 96 10545863 181 P.M.Barger,A.C.Browning,A.N.GarnerandD.P.Kelly(2001)p38mitogenactivatedproteinkinase activatesperoxisomeproliferatoractivatedreceptoralpha:apotentialroleinthecardiacmetabolicstress response J Biol Chem 276 4844495501 182 P.H.Driggers,J.H.SegarsandD.M.Rubino(2001)TheprotooncoproteinBrxactivatesestrogen receptorbetabyap38mitogenactivatedproteinkinasepathway J Biol Chem 276 50467927 183 M.Watanabe,J.Yanagisawa,H.Kitagawa,K.Takeyama,S.Ogawa,Y.Arao,M.Suzawa,Y.Kobayashi, T.Yano,H.Yoshikawa,Y.MasuhiroandS.Kato(2001)AsubfamilyofRNAbindingDEADbox proteinsactsasanestrogenreceptoralphacoactivatorthroughtheNterminalactivationdomain(AF1) withanRNAcoactivator,SRA Embo J 20 6134152 184 E.Hu,J.B.Kim,P.SarrafandB.M.Spiegelman(1996)InhibitionofadipogenesisthroughMAPkinase mediatedphosphorylationofPPARgamma Science 274 529521003 185 M.Adams,M.J.Reginato,D.Shao,M.A.LazarandV.K.Chatterjee(1997)Transcriptionalactivation byperoxisomeproliferatoractivatedreceptorgammaisinhibitedbyphosphorylationataconsensus mitogenactivatedproteinkinasesite J Biol Chem 272 8512832 186 H.S.Camp,A.ChaudhryandT.Leff(2001)Anovelpotentantagonistofperoxisomeproliferator activatedreceptorgammablocksadipocytedifferentiationbutdoesnotrevertthephenotypeofterminally differentiatedadipocytes Endocrinology 142 7320713 187 I.Rogatsky,C.L.WaaseandM.J.Garabedian(1998)Phosphorylationandinhibitionofratglucocorticoid receptortranscriptionalactivationbyglycogensynthasekinase3(GSK3).Speciesspecificdifferences betweenhumanandratglucocorticoidreceptorsignalingasrevealedthroughGSK3phosphorylation J Biol Chem 273 231431521 188 A.D.WallaceandJ.A.Cidlowski(2001)Proteasomemediatedglucocorticoidreceptordegradation restrictstranscriptionalsignalingbyglucocorticoids J Biol Chem 276 464271421 189 Z.E.FloydandJ.M.Stephens(2002)Interferongammamediatedactivationandubiquitinproteasome dependentdegradationofPPARgammainadipocytes J Biol Chem 277 640628 190 A.Migliaccio,M.DiDomenico,S.Green,A.DeFalco,E.L.Kajtaniak,F.Blasi,P.ChambonandF. Auricchio(1989)Phosphorylationontyrosineofinvitrosynthesizedhumanestrogenreceptoractivatesits hormonebinding Mol Endocrinol 3710619 191 J.I.Huggenvik,M.W.Collard,Y.W.KimandR.P.Sharma(1993)Modificationoftheretinoicacid signalingpathwaybythecatalyticsubunitofproteinkinaseA Mol Endocrinol 7454350 192 C.RochetteEgly,M.OuladAbdelghani,A.Staub,V.Pfister,I.Scheuer,P.ChambonandM.P.Gaub (1995)PhosphorylationoftheretinoicacidreceptoralphabyproteinkinaseA Mol Endocrinol 9786071 193 J.C.Hsieh,P.W.Jurutka,S.Nakajima,M.A.Galligan,C.A.Haussler,Y.Shimizu,N.Shimizu,G.K. WhitfieldandM.R.Haussler(1993)PhosphorylationofthehumanvitaminDreceptorbyproteinkinase C.Biochemicalandfunctionalevaluationoftheserine51recognitionsite J Biol Chem 268 201511826

67 194 D.Chen,P.E.Pace,R.C.CoombesandS.Ali(1999)Phosphorylationofhumanestrogenreceptoralpha byproteinkinaseAregulatesdimerization Mol Cell Biol 19 2100215 195 M.H.Delmotte,A.Tahayato,P.FormstecherandP.Lefebvre(1999)Serine157,aretinoicacidreceptor alpharesiduephosphorylatedbyproteinkinaseCinvitro,isinvolvedinRXR.RARalpha heterodimerizationandtranscriptionalactivity J Biol Chem 274 533822531 196 C.Solomon,J.H.WhiteandR.Kremer(1999)Mitogenactivatedproteinkinaseinhibits1,25 dihydroxyvitaminD3dependentsignaltransductionbyphosphorylatinghumanretinoidXreceptoralpha J Clin Invest 103 12172935 197 X.ZhuandJ.P.Liu(1997)Steroidindependentactivationofandrogenreceptorinandrogenindependent prostatecancer:apossiblerolefortheMAPkinasesignaltransductionpathway? Mol Cell Endocrinol 134 1914 198 Y.Wen,M.C.Hu,K.Makino,B.Spohn,G.Bartholomeusz,D.H.YanandM.C.Hung(2000)HER 2/neupromotesandrogenindependentsurvivalandgrowthofprostatecancercellsthroughtheAkt pathway Cancer Res 60 2468415 199 R.A.Campbell,P.BhatNakshatri,N.M.Patel,D.Constantinidou,S.AliandH.Nakshatri(2001) Phosphatidylinositol3kinase/AKTmediatedactivationofestrogenreceptoralpha:anewmodelforanti estrogenresistance J Biol Chem 276 13981724 200 B.J.FeldmanandD.Feldman(2001)Thedevelopmentofandrogenindependentprostatecancer Nat Rev Cancer 113445 201 H.Chen,R.J.Lin,W.Xie,D.WilpitzandR.M.Evans(1999)Regulationofhormoneinducedhistone hyperacetylationandgeneactivationviaacetylationofanacetylase Cell 98 567586 202 D.Girdwood,D.Bumpass,O.A.Vaughan,A.Thain,L.A.Anderson,A.W.Snowden,E.GarciaWilson, N.D.PerkinsandR.T.Hay(2003)P300transcriptionalrepressionismediatedbySUMOmodification Mol Cell 11 4104354 203 B.G.Rowan,N.L.WeigelandB.W.O'malley(2000)Phosphorylationofsteroidreceptorcoactivator1. Identificationofthephosphorylationsitesandphosphorylationthroughthemitogenactivatedprotein kinasepathway J Biol Chem 275 6447583 204 L.W.YuanandJ.E.Gambee(2000)Phosphorylationofp300atserine89byproteinkinaseC J Biol Chem 275 524094651 205 G.N.Lopez,C.W.Turck,F.Schaufele,M.R.StallcupandP.J.Kushner(2001)Growthfactorssignalto steroidreceptorsthroughmitogenactivatedproteinkinaseregulationofp160coactivatoractivity J Biol Chem 276 252217782 206 N.VoandR.H.Goodman(2001)CREBbindingproteinandp300intranscriptionalregulation J Biol Chem 276 17135058 207 S.H.HongandM.L.Privalsky(2000)TheSMRTcorepressorisregulatedbyaMEK1kinasepathway: inhibitionofcorepressorfunctionisassociatedwithSMRTphosphorylationandnuclearexport Mol Cell Biol 20 17661225 208 M.Gianni,A.Bauer,E.Garattini,P.ChambonandC.RochetteEgly(2002)Phosphorylationby p38MAPKandrecruitmentofSUG1arerequiredforRAinducedRARgammadegradationand transactivation Embo J 21 1437609 209 C.A.Lange,T.ShenandK.B.Horwitz(2000)Phosphorylationofhumanprogesteronereceptorsat serine294bymitogenactivatedproteinkinasesignalstheirdegradationbythe26Sproteasome Proc Natl Acad Sci U S A 97 310327 210 T.Shen,K.B.HorwitzandC.A.Lange(2001)Transcriptionalhyperactivityofhumanprogesterone receptorsiscoupledtotheirliganddependentdownregulationbymitogenactivatedproteinkinase dependentphosphorylationofserine294 Mol Cell Biol 21 18612231 211 A.Baniahmad,X.Leng,T.P.Burris,S.Y.Tsai,M.J.TsaiandB.W.O'malley(1995)Thetau4 activationdomainofthethyroidhormonereceptorisrequiredforreleaseofaputativecorepressor(s) necessaryfortranscriptionalsilencing Mol Cell Biol 15 17686 212 J.Casanova,E.Helmer,S.SelmiRuby,J.S.Qi,M.AuFliegner,V.DesaiYajnik,N.Koudinova,F. Yarm,B.M.RaakaandH.H.Samuels(1994)Functionalevidenceforliganddependentdissociationof thyroidhormoneandretinoicacidreceptorsfromaninhibitorycellularfactor Mol Cell Biol 14 9575665 213 G.X.Tong,M.Jeyakumar,M.R.TanenandM.K.Bagchi(1996)Transcriptionalsilencingbyunliganded thyroidhormonereceptorbetarequiresasolublecorepressorthatinteractswiththeligandbindingdomain ofthereceptor Mol Cell Biol 16 5190920 214 E.P.Sablin,I.N.Krylova,R.J.FletterickandH.A.Ingraham(2003)Structuralbasisforligand independentactivationoftheorphannuclearreceptorLRH1 Mol Cell 11 6157585 215 Z.Wang,G.Benoit,J.Liu,S.Prasad,P.Aarnisalo,X.Liu,H.Xu,N.P.WalkerandT.Perlmann(2003) StructureandfunctionofNurr1identifiesaclassofligandindependentnuclearreceptors Nature 423 6939 55560 216 G.B.Tremblay,A.Tremblay,F.LabrieandV.Giguere(1998)Ligandindependentactivationofthe estrogenreceptorsalphaandbetabymutationsofaconservedtyrosinecanbeabolishedbyantiestrogens Cancer Res 58 587781 217 R.White,M.Sjoberg,E.KalkhovenandM.G.Parker(1997)Ligandindependentactivationofthe oestrogenreceptorbymutationofaconservedtyrosine Embo J 16 6142735 218 L.A.Denner,N.L.Weigel,B.L.Maxwell,W.T.SchraderandB.W.O'malley(1990)Regulationof progesteronereceptormediatedtranscriptionbyphosphorylation Science 250 498817403 219 B.G.Rowan,N.Garrison,N.L.WeigelandB.W.O'malley(2000)8BromocyclicAMPinduces phosphorylationoftwositesinSRC1thatfacilitateligandindependentactivationofthechicken progesteronereceptorandarecriticalforfunctionalcooperationbetweenSRC1andCREBbinding protein Mol Cell Biol 20 23872030

68 220 R.F.Power,S.K.Mani,J.Codina,O.M.ConneelyandB.W.O'malley(1991)Dopaminergicandligand independentactivationofsteroidhormonereceptors Science 254 503816369 221 C.L.Smith,O.M.ConneelyandB.W.O'malley(1993)Modulationoftheligandindependentactivation ofthehumanestrogenreceptorbyhormoneandantihormone Proc Natl Acad Sci U S A 90 1361204 222 E.M.Apostolakis,J.Garai,C.Fox,C.L.Smith,S.J.Watson,J.H.ClarkandB.W.O'malley(1996) Dopaminergicregulationofprogesteronereceptors:brainD5dopaminereceptorsmediateinductionof lordosisbyD1likeagonistsinrats J Neurosci 16 16482334 223 S.K.Mani,J.M.Allen,J.P.Lydon,B.MulacJericevic,J.D.Blaustein,F.J.Demayo,O.Conneelyand B.W.O'malley(1996)Dopaminerequirestheunoccupiedprogesteronereceptortoinducesexualbehavior inmiceMol Endocrinol 10 12172837 224 S.K.Mani,J.D.Blaustein,J.M.Allen,S.W.Law,B.W.O'malleyandJ.H.Clark(1994)Inhibitionof ratsexualbehaviorbyantisenseoligonucleotidestotheprogesteronereceptor Endocrinology 135 41409 14 225 S.K.Mani,A.M.Reyna,J.Z.Chen,B.MulacJericevicandO.M.Conneely(2006)Differentialresponse ofprogesteronereceptorisoformsinhormonedependentandindependentfacilitationoffemalesexual receptivity Mol Endocrinol 20 6132232 226 S.Kato,H.Endoh,Y.Masuhiro,T.Kitamoto,S.Uchiyama,H.Sasaki,S.Masushige,Y.Gotoh,E. Nishida,H.Kawashima,D.MetzgerandP.Chambon(1995)Activationoftheestrogenreceptorthrough phosphorylationbymitogenactivatedproteinkinase Science 270 524114914 227 G.Bunone,P.A.Briand,R.J.MiksicekandD.Picard(1996)Activationoftheunligandedestrogen receptorbyEGFinvolvestheMAPkinasepathwayanddirectphosphorylation Embo J 15 9217483 228 Z.Culig,A.Hobisch,M.V.Cronauer,C.Radmayr,J.Trapman,A.Hittmair,G.BartschandH.Klocker (1994)AndrogenreceptoractivationinprostatictumorcelllinesbyinsulinlikegrowthfactorI, keratinocytegrowthfactor,andepidermalgrowthfactor Cancer Res 54 2054748 229 A.Hobisch,I.E.Eder,T.Putz,W.Horninger,G.Bartsch,H.KlockerandZ.Culig(1998)Interleukin6 regulatesprostatespecificproteinexpressioninprostatecarcinomacellsbyactivationoftheandrogen receptor Cancer Res 58 2046405 230 L.V.NazarethandN.L.Weigel(1996)Activationofthehumanandrogenreceptorthroughaprotein kinaseAsignalingpathway J Biol Chem 271 33199007 231 M.L.Moyer,K.C.Borror,B.J.Bona,D.B.DefrancoandS.K.Nordeen(1993)Modulationofcell signalingpathwayscanenhanceorimpairglucocorticoidinducedgeneexpressionwithoutalteringthe stateofreceptorphosphorylation J Biol Chem 268 302293340 232 S.K.Nordeen,M.L.MoyerandB.J.Bona(1994)Thecouplingofmultiplesignaltransductionpathways withsteroidresponsemechanisms Endocrinology 134 4172332 233 P.N.Rangarajan,K.UmesonoandR.M.Evans(1992)Modulationofglucocorticoidreceptorfunctionby proteinkinaseA Mol Endocrinol 6914517 234 T.MatkovitsandS.Christakos(1995)LigandoccupancyisnotrequiredforvitaminDreceptorand retinoidreceptormediatedtranscriptionalactivation Mol Endocrinol 9223242 235 K.Paech,P.Webb,G.G.Kuiper,S.Nilsson,J.Gustafsson,P.J.KushnerandT.S.Scanlan(1997) DifferentialligandactivationofestrogenreceptorsERalphaandERbetaatAP1sites Science 277 5331 150810 236 M.Pfahl(1993)Nuclearreceptor/AP1interaction Endocr Rev 14 56518 237 C.S.Watson(1999)Signalingthemessharedbetweenpeptideandsteroidhormonesattheplasma membrane Sci STKE 1999 12PE1 238 A.Migliaccio,M.DiDomenico,G.Castoria,A.DeFalco,P.Bontempo,E.NolaandF.Auricchio(1996) Tyrosinekinase/p21ras/MAPkinasepathwayactivationbyestradiolreceptorcomplexinMCF7cells Embo J 15 61292300 239 T.Nakajima,T.Kitazawa,E.Hamada,H.Hazama,M.OmataandY.Kurachi(1995)17betaEstradiol inhibitsthevoltagedependentLtypeCa2+currentsinaorticsmoothmusclecells Eur J Pharmacol 294 2 362535 240 J.TesarikandC.Mendoza(1995)Nongenomiceffectsof17betaestradiolonmaturinghumanoocytes: relationshiptooocytedevelopmentalpotential J Clin Endocrinol Metab 80 4143843 241 M.A.Valverde,P.Rojas,J.Amigo,D.Cosmelli,P.Orio,M.I.Bahamonde,G.E.Mann,C.Vergaraand R.Latorre(1999)AcuteactivationofMaxiKchannels(hSlo)byestradiolbindingtothebetasubunit Science 285 5435192931 242 J.J.Watters,J.S.Campbell,M.J.Cunningham,E.G.KrebsandD.M.Dorsa(1997)Rapidmembrane effectsofsteroidsinneuroblastomacells:effectsofestrogenonmitogenactivatedproteinkinase signallingcascadeandcfosimmediateearlygenetranscription Endocrinology 138 940303 243 S.M.Aronica,W.L.KrausandB.S.Katzenellenbogen(1994)EstrogenactionviathecAMPsignaling pathway:stimulationofadenylatecyclaseandcAMPregulatedgenetranscription Proc Natl Acad Sci U S A91 18851721 244 V.LeMellay,B.GrosseandM.Lieberherr(1997)PhospholipaseCbetaandmembraneactionof calcitriolandestradiol J Biol Chem 272 18119027 245 A.Migliaccio,D.Piccolo,G.Castoria,M.DiDomenico,A.Bilancio,M.Lombardi,W.Gong,M.Beato andF.Auricchio(1998)ActivationoftheSrc/p21ras/Erkpathwaybyprogesteronereceptorviacrosstalk withestrogenreceptor Embo J 17 7200818 246 V.Boonyaratanakornkit,M.P.Scott,V.Ribon,L.Sherman,S.M.Anderson,J.L.Maller,W.T.Miller andD.P.Edwards(2001)Progesteronereceptorcontainsaprolinerichmotifthatdirectlyinteractswith SH3domainsandactivatescSrcfamilytyrosinekinases Mol Cell 8226980 247 Z.Guo,W.P.Benten,J.KruckenandF.Wunderlich(2002)Nongenomictestosteronecalciumsignaling. Genotropicactionsinandrogenreceptorfreemacrophages J Biol Chem 277 33296007

69 248 S.Bravo,R.Paredes,P.Izaurieta,J.B.Lian,J.L.Stein,G.S.Stein,M.V.Hinrichs,J.Olate,L.G. AguayoandM.Montecino(2006)Theclassicreceptorfor1alpha,25dihydroxyvitaminD3isrequiredfor nongenomicactionsof1alpha,25dihydroxyvitaminD3inosteosarcomacells J Cell Biochem 99 4995 1000 249 T.Simoncini,A.HafeziMoghadam,D.P.Brazil,K.Ley,W.W.ChinandJ.K.Liao(2000)Interactionof oestrogenreceptorwiththeregulatorysubunitofphosphatidylinositol3OHkinase Nature 407 6803538 41 250 A.HafeziMoghadam,T.Simoncini,Z.Yang,F.P.Limbourg,J.C.Plumier,M.C.Rebsamen,C.M. Hsieh,D.S.Chui,K.L.Thomas,A.J.Prorock,V.E.Laubach,M.A.Moskowitz,B.A.French,K.Ley andJ.K.Liao(2002)Acutecardiovascularprotectiveeffectsofcorticosteroidsaremediatedbynon transcriptionalactivationofendothelialnitricoxidesynthase Nat Med 854739 251 J.A.RuizeveldDeWinter,J.Trapman,M.Vermey,E.Mulder,N.D.ZegersandT.H.VanDerKwast (1991)Androgenreceptorexpressioninhumantissues:animmunohistochemicalstudy J Histochem Cytochem 39 792736 252 N.Kimura,A.Mizokami,T.Oonuma,H.SasanoandH.Nagura(1993)Immunocytochemicallocalization ofandrogenreceptorwithpolyclonalantibodyinparaffinembeddedhumantissues J Histochem Cytochem 41 56718 253 S.Andersson,R.W.BishopandD.W.Russell(1989)Expressioncloningandregulationofsteroid5 alphareductase,anenzymeessentialformalesexualdifferentiation J Biol Chem 264 271624955 254 S.Andersson,D.M.Berman,E.P.JenkinsandD.W.Russell(1991)Deletionofsteroid5alphareductase 2geneinmalepseudohermaphroditism Nature 354 634915961 255 J.E.Karp,A.Chiarodo,O.BrawleyandG.J.Kelloff(1996)Prostatecancerprevention:investigational approachesandopportunities Cancer Res 56 24554756 256 P.W.Faber,G.G.Kuiper,H.C.VanRooij,J.A.VanDerKorput,A.O.BrinkmannandJ.Trapman (1989)TheNterminaldomainofthehumanandrogenreceptorisencodedbyone,largeexon Mol Cell Endocrinol 61 225762 257 G.G.Kuiper,P.W.Faber,H.C.VanRooij,J.A.VanDerKorput,C.RisStalpers,P.Klaassen,J. TrapmanandA.O.Brinkmann(1989)Structuralorganizationofthehumanandrogenreceptorgene J Mol Endocrinol 23R14 258 D.B.Lubahn,T.R.Brown,J.A.Simental,H.N.Higgs,C.J.Migeon,E.M.WilsonandF.S.French (1989)Sequenceoftheintron/exonjunctionsofthecodingregionofthehumanandrogenreceptorgene andidentificationofapointmutationinafamilywithcompleteandrogeninsensitivity Proc Natl Acad Sci U S A 86 2395348 259 C.S.Chang,J.KokontisandS.T.Liao(1988)MolecularcloningofhumanandratcomplementaryDNA encodingandrogenreceptors Science 240 48503246 260 D.B.Lubahn,D.R.Joseph,M.Sar,J.Tan,H.N.Higgs,R.E.Larson,F.S.FrenchandE.M.Wilson (1988)Thehumanandrogenreceptor:complementarydeoxyribonucleicacidcloning,sequenceanalysis andgeneexpressioninprostate Mol Endocrinol 212126575 261 J.Trapman,P.Klaassen,G.G.Kuiper,J.A.VanDerKorput,P.W.Faber,H.C.VanRooij,A.Geurts VanKessel,M.M.Voorhorst,E.MulderandA.O.Brinkmann(1988)Cloning,structureandexpression ofacDNAencodingthehumanandrogenreceptor Biochem Biophys Res Commun 153 12418 262 W.D.Tilley,M.Marcelli,J.D.WilsonandM.J.Mcphaul(1989)Characterizationandexpressionofa cDNAencodingthehumanandrogenreceptor Proc Natl Acad Sci U S A 86 132731 263 B.Gottlieb,L.K.Beitel,J.H.WuandM.Trifiro(2004)Theandrogenreceptorgenemutationsdatabase (ARDB):2004update Hum Mutat 23 652733 264 C.M.WilsonandM.J.Mcphaul(1994)AandBformsoftheandrogenreceptorarepresentinhuman genitalskinfibroblasts Proc Natl Acad Sci U S A 91 412348 265 C.M.WilsonandM.J.Mcphaul(1996)AandBformsoftheandrogenreceptorareexpressedinavariety ofhumantissues Mol Cell Endocrinol 120 1517 266 G.Jenster,H.A.VanDerKorput,J.TrapmanandA.O.Brinkmann(1995)Identificationoftwo transcriptionactivationunitsintheNterminaldomainofthehumanandrogenreceptor J Biol Chem 270 1373416 267 L.Callewaert,N.VanTilborghandF.Claessens(2006)Interplaybetweentwohormoneindependent activationdomainsintheandrogenreceptor Cancer Res 66 154353 268 N.L.Chamberlain,D.C.WhitacreandR.L.Miesfeld(1996)Delineationoftwodistincttype1activation functionsintheandrogenreceptoraminoterminaldomain J Biol Chem 271 43267728 269 J.Reid,S.M.Kelly,K.Watt,N.C.PriceandI.J.Mcewan(2002)Conformationalanalysisofthe androgenreceptoraminoterminaldomaininvolvedintransactivation.Influenceofstructurestabilizing solutesandproteinproteininteractions J Biol Chem 277 222007986 270 B.He,S.Bai,A.T.Hnat,R.I.Kalman,J.T.Minges,C.PattersonandE.M.Wilson(2004)Anandrogen receptorNH2terminalconservedmotifinteractswiththeCOOHterminusoftheHsp70interacting protein(CHIP) J Biol Chem 279 293064353 271 C.A.HeinleinandC.Chang(2002)Androgenreceptor(AR)coregulators:anoverview Endocr Rev 23 2 175200 272 S.Bai,B.HeandE.M.Wilson(2005)MelanomaantigengeneproteinMAGE11regulatesandrogen receptorfunctionbymodulatingtheinterdomaininteraction Mol Cell Biol25 4123857 273 G.Jenster,J.TrapmanandA.O.Brinkmann(1993)Nuclearimportofthehumanandrogenreceptor Biochem J 293(Pt3) 7618 274 Z.X.Zhou,M.Sar,J.A.Simental,M.V.LaneandE.M.Wilson(1994)Aliganddependentbipartite nucleartargetingsignalinthehumanandrogenreceptor.RequirementfortheDNAbindingdomainand modulationbyNH2terminalandcarboxylterminalsequences J Biol Chem 269 181311523

70 275 Q.Wang,J.LuandE.L.Yong(2001)Ligandandcoactivatormediatedtransactivationfunction(AF2)of theandrogenreceptorligandbindingdomainisinhibitedbythecognatehingeregion J Biol Chem 276 10 74939 276 A.Haelens,T.Tanner,S.Denayer,L.CallewaertandF.Claessens(2007)Thehingeregionregulates DNAbinding,nucleartranslocation,andtransactivationoftheandrogenreceptor Cancer Res 67 94514 23 277 J.S.Sack,K.F.Kish,C.Wang,R.M.Attar,S.E.Kiefer,Y.An,G.Y.Wu,J.E.Scheffler,M.E.Salvati, S.R.Krystek,Jr.,R.WeinmannandH.M.Einspahr(2001)Crystallographicstructuresoftheligand bindingdomainsoftheandrogenreceptoranditsT877Amutantcomplexedwiththenaturalagonist dihydrotestosterone Proc Natl Acad Sci U S A 98 949049 278 P.M.Matias,P.Donner,R.Coelho,M.Thomaz,C.Peixoto,S.Macedo,N.Otto,S.Joschko,P.Scholz, A.Wegg,S.Basler,M.Schafer,U.EgnerandM.A.Carrondo(2000)Structuralevidenceforligand specificityinthebindingdomainofthehumanandrogenreceptor.Implicationsforpathogenicgene mutations J Biol Chem 275 342616471 279 C.W.KuilandE.Mulder(1995)Effectsofandrogensandantiandrogensontheconformationofthe androgenreceptor Ann N Y Acad Sci 761 3514 280 J.Veldscholte,C.RisStalpers,G.G.Kuiper,G.Jenster,C.Berrevoets,E.Claassen,H.C.VanRooij,J. Trapman,A.O.BrinkmannandE.Mulder(1990)Amutationintheligandbindingdomainofthe androgenreceptorofhumanLNCaPcellsaffectssteroidbindingcharacteristicsandresponsetoanti androgens Biochem Biophys Res Commun 173 253440 281 M.E.Taplin,G.J.Bubley,T.D.Shuster,M.E.Frantz,A.E.Spooner,G.K.Ogata,H.N.KeerandS.P. Balk(1995)MutationoftheandrogenreceptorgeneinmetastaticandrogenindependentprostatecancerN Engl J Med 332 2113938 282 M.N.Patterson,I.A.Hughes,B.GottliebandL.Pinsky(1994)Theandrogenreceptorgenemutations database Nucleic Acids Res 22 1735602 283 J.Veldscholte,M.M.VoorhorstOgink,J.BoltDeVries,H.C.VanRooij,J.TrapmanandE.Mulder (1990)UnusualspecificityoftheandrogenreceptorinthehumanprostatetumorcelllineLNCaP:high affinityforprogestagenicandestrogenicsteroidsBiochim Biophys Acta 1052 118794 284 C.A.Berrevoets,P.Doesburg,K.Steketee,J.TrapmanandA.O.Brinkmann(1998)Functional interactionsoftheAF2activationdomaincoreregionofthehumanandrogenreceptorwiththeamino terminaldomainandwiththetranscriptionalcoactivatorTIF2(transcriptionalintermediaryfactor2) Mol Endocrinol 12 8117283 285 U.Karvonen,O.A.JanneandJ.J.Palvimo(2002)Pureantiandrogensdisrupttherecruitmentof coactivatorGRIP1tocolocalizewithandrogenreceptorinnuclei FEBS Lett 523 13437 286 D.Masiello,S.Cheng,G.J.Bubley,M.L.LuandS.P.Balk(2002)Bicalutamidefunctionsasan androgenreceptorantagonistbyassemblyofatranscriptionallyinactivereceptor J Biol Chem 277 29 263216 287 P.Farla,R.Hersmus,J.TrapmanandA.B.Houtsmuller(2005)AntiandrogenspreventstableDNA bindingoftheandrogenreceptor J Cell Sci 118 Pt18418798 288 H.Dotzlaw,U.Moehren,S.Mink,A.C.Cato,J.A.IniguezLluhiandA.Baniahmad(2002)Theamino terminusofthehumanARistargetforcorepressoractionandantihormoneagonism Mol Endocrinol 16 4 66173 289 B.He,J.T.Minges,L.W.LeeandE.M.Wilson(2002)TheFXXLFmotifmediatesandrogenreceptor specificinteractionswithcoregulators J Biol Chem 277 121022635 290 L.Callewaert,G.Verrijdt,V.Christiaens,A.HaelensandF.Claessens(2003)Dualfunctionofanamino terminalamphipatichelixinandrogenreceptormediatedtransactivationthroughspecificandnonspecific responseelements J Biol Chem 278 1082128 291 H.J.Dubbink,R.Hersmus,C.S.Verma,H.A.VanDerKorput,C.A.Berrevoets,J.VanTol,A.C.Ziel VanDerMade,A.O.Brinkmann,A.C.PikeandJ.Trapman(2004)Distinctrecognitionmodesof FXXLFandLXXLLmotifsbytheandrogenreceptor Mol Endocrinol 18 9213250 292 E.Hur,S.J.Pfaff,E.S.Payne,H.Gron,B.M.BuehrerandR.J.Fletterick(2004)Recognitionand accommodationattheandrogenreceptorcoactivatorbindinginterface PLoS Biol 29E274 293 P.Farla,R.Hersmus,B.Geverts,P.O.Mari,A.L.Nigg,H.J.Dubbink,J.TrapmanandA.B. Houtsmuller(2004)TheandrogenreceptorligandbindingdomainstabilizesDNAbindinginlivingcellsJ Struct Biol 147 15061 294 N.P.Mongan,J.Jaaskelainen,S.Bhattacharyya,R.M.LeuandI.A.Hughes(2003)Steroidreceptor coactivator3glutaminerepeatpolymorphismandtheandrogeninsensitivitysyndrome Eur J Endocrinol 148 22779 295 X.Ye,S.J.Han,S.Y.Tsai,F.J.Demayo,J.Xu,M.J.TsaiandW.O'malleyB(2005)Rolesofsteroid receptorcoactivator(SRC)1andtranscriptionalintermediaryfactor(TIF)2inandrogenreceptoractivity inmice Proc Natl Acad Sci U S A 102 27948792 296 P.Aarnisalo,J.J.PalvimoandO.A.Janne(1998)CREBbindingproteininandrogenreceptormediated signaling Proc Natl Acad Sci U S A 95 521227 297 J.Kamine,B.Elangovan,T.Subramanian,D.ColemanandG.Chinnadurai(1996)Identificationofa cellularproteinthatspecificallyinteractswiththeessentialcysteineregionoftheHIV1Tattransactivator Virology 216 235766 298 L.Gaughan,M.E.Brady,S.Cook,D.E.NealandC.N.Robson(2001)Tip60isacoactivatorspecific forclassInuclearhormonereceptors J Biol Chem 276 50468418 299 M.E.Brady,D.M.Ozanne,L.Gaughan,I.Waite,S.Cook,D.E.NealandC.N.Robson(1999)Tip60is anuclearhormonereceptorcoactivator J Biol Chem 274 2517599604

71 300 L.Gaughan,I.R.Logan,S.Cook,D.E.NealandC.N.Robson(2002)Tip60andhistonedeacetylase1 regulateandrogenreceptoractivitythroughchangestotheacetylationstatusofthereceptor J Biol Chem 277 292590413 301 I.R.Logan,L.Gaughan,S.R.Mccracken,V.Sapountzi,H.Y.LeungandC.N.Robson(2006)Human PIRH2enhancesandrogenreceptorsignalingthroughinhibitionofhistonedeacetylase1andis overexpressedinprostatecancer Mol Cell Biol 26 17650210 302 S.YehandC.Chang(1996)Cloningandcharacterizationofaspecificcoactivator,ARA70,forthe androgenreceptorinhumanprostatecells Proc Natl Acad Sci U S A 93 11551721 303 S.Yeh,H.Miyamoto,H.ShimaandC.Chang(1998)Fromestrogentoandrogenreceptor:anewpathway forsexhormonesinprostate Proc Natl Acad Sci U S A 95 10552732 304 H.Miyamoto,S.Yeh,G.WildingandC.Chang(1998)Promotionofagonistactivityofantiandrogensby theandrogenreceptorcoactivator,ARA70,inhumanprostatecancerDU145cells Proc Natl Acad Sci U S A95 13737984 305 S.Yeh,H.Y.Kang,H.Miyamoto,K.Nishimura,H.C.Chang,H.J.Ting,M.Rahman,H.K.Lin,N. Fujimoto,Y.C.Hu,A.Mizokami,K.E.HuangandC.Chang(1999)Differentialinductionofandrogen receptortransactivationbydifferentandrogenreceptorcoactivatorsinhumanprostatecancerDU145cells Endocrine 11 2195202 306 N.Fujimoto,S.Yeh,H.Y.Kang,S.Inui,H.C.Chang,A.MizokamiandC.Chang(1999)Cloningand characterizationofandrogenreceptorcoactivator,ARA55,inhumanprostate J Biol Chem 274 12831621 307 X.Wang,Y.Yang,X.Guo,E.R.Sampson,C.L.Hsu,M.Y.Tsai,S.Yeh,G.Wu,Y.GuoandC.Chang (2002)SuppressionofandrogenreceptortransactivationbyPyk2viainteractionandphosphorylationof theARA55coregulator J Biol Chem 277 181542631 308 S.M.Thomas,M.HagelandC.E.Turner(1999)Characterizationofafocaladhesionprotein,Hic5,that sharesextensivehomologywithpaxillin J Cell Sci 112(Pt2) 18190 309 M.Shibanuma,E.Mochizuki,R.Maniwa,J.Mashimo,N.Nishiya,S.Imai,T.Takano,M.Oshimuraand K.Nose(1997)Inductionofsenescencelikephenotypesbyforcedexpressionofhic5,whichencodesa novelLIMmotifprotein,inimmortalizedhumanfibroblasts Mol Cell Biol 17 3122435 310 X.Wang,S.Yeh,G.Wu,C.L.Hsu,L.Wang,T.Chiang,Y.Yang,Y.GuoandC.Chang(2001) IdentificationandcharacterizationofanovelandrogenreceptorcoregulatorARA267alphainprostate cancercells J Biol Chem 276 444041723 311 N.Huang,E.VomBaur,J.M.Garnier,T.Lerouge,J.L.Vonesch,Y.Lutz,P.ChambonandR.Losson (1998)TwodistinctnuclearreceptorinteractiondomainsinNSD1,anovelSETproteinthatexhibits characteristicsofbothcorepressorsandcoactivators Embo J 17 123398412 312 J.Briscoe,F.KohlhuberandM.Muller(1996)JAKsandSTATsbranchout Trends Cell Biol 6933640 313 A.M.Moilanen,U.Karvonen,H.Poukka,O.A.JanneandJ.J.Palvimo(1998)Activationofandrogen receptorfunctionbyanovelnuclearproteinkinase Mol Biol Cell 99252743 314 J.Tan,S.H.Hall,K.G.Hamil,G.Grossman,P.Petrusz,J.Liao,K.ShuaiandF.S.French(2000)Protein inhibitorofactivatedSTAT1(signaltransducerandactivatoroftranscription1)isanuclearreceptor coregulatorexpressedinhumantestis Mol Endocrinol 14 11426 315 A.M.Moilanen,U.Karvonen,H.Poukka,W.Yan,J.Toppari,O.A.JanneandJ.J.Palvimo(1999)A testisspecificandrogenreceptorcoregulatorthatbelongstoanovelfamilyofnuclearproteins J Biol Chem 274 637004 316 K.WillertandR.Nusse(1998)Betacatenin:akeymediatorofWntsignaling Curr Opin Genet Dev 81 95102 317 S.Terry,X.Yang,M.W.Chen,F.VacherotandR.Buttyan(2006)Multifacetedinteractionbetweenthe androgenandWntsignalingpathwaysandtheimplicationforprostatecancer J Cell Biochem 99 240210 318 X.Yang,M.W.Chen,S.Terry,F.Vacherot,D.L.Bemis,J.Capodice,J.Kitajewski,A.DeLaTaille,M. C.Benson,Y.GuoandR.Buttyan(2006)Complexregulationofhumanandrogenreceptorexpressionby Wntsignalinginprostatecancercells Oncogene 25 24343644 319 C.I.Truica,S.ByersandE.P.Gelmann(2000)Betacateninaffectsandrogenreceptortranscriptional activityandligandspecificity Cancer Res 60 17470913 320 M.VerrasandZ.Sun(2005)RolesandregulationofWntsignalingandbetacatenininprostatecancer Cancer Lett 321 K.Nishimura,H.J.Ting,Y.Harada,T.Tokizane,N.Nonomura,H.Y.Kang,H.C.Chang,S.Yeh,H. Miyamoto,M.Shin,K.Aozasa,A.OkuyamaandC.Chang(2003)Modulationofandrogenreceptor transactivationbygelsolin:anewlyidentifiedandrogenreceptorcoregulator Cancer Res 63 16488894 322 D.J.VanDeWijngaart,M.E.VanRoyen,R.Hersmus,A.C.Pike,A.B.Houtsmuller,G.Jenster,J. TrapmanandH.J.Dubbink(2006)NovelFXXFFandFXXMFmotifsinandrogenreceptorcofactors mediatehighaffinityandspecificinteractionswiththeligandbindingdomainJ Biol Chem 281 2819407 16 323 K.N.Pestonjamasp,R.K.Pope,J.D.WulfkuhleandE.J.Luna(1997)Supervillin(p205):Anovel membraneassociated,Factinbindingproteininthevillin/gelsolinsuperfamily J Cell Biol 139 5125569 324 D.M.Ozanne,M.E.Brady,S.Cook,L.Gaughan,D.E.NealandC.N.Robson(2000)Androgenreceptor nucleartranslocationisfacilitatedbythefactincrosslinkingproteinfilamin Mol Endocrinol 14 101618 26 325 S.M.Markus,S.S.Taneja,S.K.Logan,W.Li,S.Ha,A.B.Hittelman,I.RogatskyandM.J.Garabedian (2002)IdentificationandcharacterizationofART27,anovelcoactivatorfortheandrogenreceptorN terminus Mol Biol Cell 13 267082 326 S.S.Taneja,S.Ha,N.K.Swenson,I.P.Torra,S.Rome,P.D.Walden,H.Y.Huang,E.Shapiro,M.J. GarabedianandS.K.Logan(2004)ART27,anandrogenreceptorcoactivatorregulatedinprostate developmentandcancer J Biol Chem 279 141394452

72 327 J.M.Muller,U.Isele,E.Metzger,A.Rempel,M.Moser,A.Pscherer,T.Breyer,C.Holubarsch,R. BuettnerandR.Schule(2000)FHL2,anoveltissuespecificcoactivatoroftheandrogenreceptor Embo J 19 335969 328 Y.Wei,C.A.Renard,C.Labalette,Y.Wu,L.Levy,C.Neuveut,X.Prieur,M.Flajolet,S.PrigentandM. A.Buendia(2003)IdentificationoftheLIMproteinFHL2asacoactivatorofbetacatenin J Biol Chem 278 7518894 329 Z.Nawaz,D.M.Lonard,C.L.Smith,E.LevLehman,S.Y.Tsai,M.J.TsaiandB.W.O'malley(1999) TheAngelmansyndromeassociatedprotein,E6AP,isacoactivatorforthenuclearhormonereceptor superfamily Mol Cell Biol 19 211829 330 T.P.Yao,G.Ku,N.Zhou,R.ScullyandD.M.Livingston(1996)Thenuclearhormonereceptor coactivatorSRC1isaspecifictargetofp300 Proc Natl Acad Sci U S A 93 201062631 331 B.He,J.A.Kemppainen,J.J.Voegel,H.GronemeyerandE.M.Wilson(1999)Activationfunction2in thehumanandrogenreceptorligandbindingdomainmediatesinterdomaincommunicationwiththe NH(2)terminaldomain J Biol Chem 274 523721925 332 J.A.Tan,S.H.Hall,P.PetruszandF.S.French(2000)Thyroidreceptoractivatormolecule,TRAM1,is anandrogenreceptorcoactivator Endocrinology 141 9344050 333 H.Y.Kang,S.Yeh,N.FujimotoandC.Chang(1999)Cloningandcharacterizationofhumanprostate coactivatorARA54,anovelproteinthatassociateswiththeandrogenreceptor J Biol Chem 274 1385706 334 M.Shibanuma,J.Mashimo,T.KurokiandK.Nose(1994)CharacterizationoftheTGFbeta1inducible hic5genethatencodesaputativenovelzincfingerproteinanditspossibleinvolvementincellular senescence J Biol Chem 269 432676774 335 P.Alen,F.Claessens,E.Schoenmakers,J.V.Swinnen,G.Verhoeven,W.RombautsandB.Peeters (1999)InteractionoftheputativeandrogenreceptorspecificcoactivatorARA70/ELE1alphawithmultiple steroidreceptorsandidentificationofaninternallydeletedELE1betaisoform Mol Endocrinol 13 111728 336 T.Gao,K.Brantley,E.BoluandM.J.Mcphaul(1999)RFG(ARA70,ELE1)interactswiththehuman androgenreceptorinaliganddependentfashion,butfunctionsonlyweaklyasacoactivatorin cotransfectionassays Mol Endocrinol 13 10164556 337 P.W.HsiaoandC.Chang(1999)IsolationandcharacterizationofARA160asthefirstandrogenreceptor Nterminalassociatedcoactivatorinhumanprostatecells J Biol Chem 274 32223739 338 H.Poukka,P.Aarnisalo,U.Karvonen,J.J.PalvimoandO.A.Janne(1999)Ubc9interactswiththe androgenreceptorandactivatesreceptordependenttranscription J Biol Chem 274 27194416 339 M.L.Lu,M.C.Schneider,Y.Zheng,X.ZhangandJ.P.Richie(2001)Caveolin1interactswith androgenreceptor.Apositivemodulatorofandrogenreceptormediatedtransactivation J Biol Chem276 161344251 340 C.J.Loy,K.S.SimandE.L.Yong(2003)FilaminAfragmentlocalizestothenucleustoregulate androgenreceptorandcoactivatorfunctions Proc Natl Acad Sci U S A 100 845627 341 P.W.Hsiao,D.L.Lin,R.NakaoandC.Chang(1999)ThelinkageofKennedy'sneurondiseaseto ARA24,thefirstidentifiedandrogenreceptorpolyglutamineregionassociatedcoactivator J Biol Chem 274 292022934 342 S.Yeh,Y.C.Hu,M.Rahman,H.K.Lin,C.L.Hsu,H.J.Ting,H.Y.KangandC.Chang(2000)Increase ofandrogeninducedcelldeathandandrogenreceptortransactivationbyBRCA1inprostatecancercells Proc Natl Acad Sci U S A 97 211125661 343 S.ShinandI.M.Verma(2003)BRCA2cooperateswithhistoneacetyltransferasesinandrogenreceptor mediatedtranscription Proc Natl Acad Sci U S A 100 1272016 344 A.Yamamoto,Y.Hashimoto,K.Kohri,E.Ogata,S.Kato,K.IkedaandM.Nakanishi(2000)CyclinEas acoactivatoroftheandrogenreceptor J Cell Biol 150 487380 345 S.Yeh,H.Miyamoto,K.Nishimura,H.Kang,J.Ludlow,P.Hsiao,C.Wang,C.SuandC.Chang(1998) Retinoblastoma,atumorsuppressor,isacoactivatorfortheandrogenreceptorinhumanprostatecancer DU145cells Biochem Biophys Res Commun 248 23617 346 A.J.Caplan,E.Langley,E.M.WilsonandJ.Vidal(1995)Hormonedependenttransactivationbythe humanandrogenreceptorisregulatedbyadnaJprotein J Biol Chem 270 1052517 347 A.E.Fliss,J.Rao,M.W.Melville,M.E.CheethamandA.J.Caplan(1999)Domainrequirementsof DnaJlike(Hsp40)molecularchaperonesintheactivationofasteroidhormonereceptor J Biol Chem 274 483404552 348 D.Chakravarti,V.J.Lamorte,M.C.Nelson,T.Nakajima,I.G.Schulman,H.Juguilon,M.Montminyand R.M.Evans(1996)RoleofCBP/P300innuclearreceptorsignalling Nature 383 659599103 349 E.Treuter,T.Albrektsen,L.Johansson,J.LeersandJ.A.Gustafsson(1998)AregulatoryroleforRIP140 innuclearreceptoractivation Mol Endocrinol 12 686481 350 S.M.HuangandM.R.Stallcup(2000)MouseZac1,atranscriptionalcoactivatorandrepressorfor nuclearreceptors Mol Cell Biol 20 5185567 351 D.Knutti,A.KaulandA.Kralli(2000)Atissuespecificcoactivatorofsteroidreceptors,identifiedina functionalgeneticscreen Mol Cell Biol 20 7241122 352 R.B.Lanz,N.J.Mckenna,S.A.Onate,U.Albrecht,J.Wong,S.Y.Tsai,M.J.TsaiandB.W.O'malley (1999)Asteroidreceptorcoactivator,SRA,functionsasanRNAandispresentinanSRC1complex Cell 9711727 353 S.R.Kupfer,K.B.Marschke,E.M.WilsonandF.S.French(1993)Receptoraccessoryfactorenhances specificDNAbindingofandrogenandglucocorticoidreceptors J Biol Chem 268 231751927 354 V.Boonyaratanakornkit,V.Melvin,P.Prendergast,M.Altmann,L.Ronfani,M.E.Bianchi,L. Taraseviciene,S.K.Nordeen,E.A.AllegrettoandD.P.Edwards(1998)Highmobilitygroupchromatin proteins1and2functionallyinteractwithsteroidhormonereceptorstoenhancetheirDNAbindingin vitroandtranscriptionalactivityinmammaliancells Mol Cell Biol 18 8447187

73 355 H.Hong,C.Kao,M.H.Jeng,J.N.Eble,M.O.Koch,T.A.Gardner,S.Zhang,L.Li,C.X.Pan,Z.Hu,G. T.MaclennanandL.Cheng(2004)AberrantexpressionofCARM1,atranscriptionalcoactivatorof androgenreceptor,inthedevelopmentofprostatecarcinomaandandrogenindependentstatus Cancer 101 1839 356 S.S.Koh,H.Li,Y.H.Lee,R.B.Widelitz,C.M.ChuongandM.R.Stallcup(2002)Synergistic coactivatorfunctionbycoactivatorassociatedargininemethyltransferase(CARM)1andbetacateninwith twodifferentclassesofDNAbindingtranscriptionalactivators J Biol Chem 277 29260315 357 L.Wang,C.L.HsuandC.Chang(2005)Androgenreceptorcorepressors:anoverview Prostate 63 2117 30 358 S.Cheng,S.Brzostek,S.R.Lee,A.N.HollenbergandS.P.Balk(2002)Inhibitionofthe dihydrotestosteroneactivatedandrogenreceptorbynuclearreceptorcorepressor Mol Endocrinol 16 7 1492501 359 C.A.Berrevoets,A.Umar,J.TrapmanandA.O.Brinkmann(2004)Differentialmodulationofandrogen receptortranscriptionalactivitybythenuclearreceptorcorepressor(NCoR) Biochem J 379 Pt37318 360 M.C.Hodgson,I.Astapova,S.Cheng,L.J.Lee,M.C.Verhoeven,E.Choi,S.P.BalkandA.N. Hollenberg(2005)TheandrogenreceptorrecruitsnuclearreceptorCoRepressor(NCoR)inthepresence ofmifepristoneviaitsNandCterminirevealinganovelmolecularmechanismforandrogenreceptor antagonists J Biol Chem 280 865119 361 G.Liao,L.Y.Chen,A.Zhang,A.Godavarthy,F.Xia,J.C.Ghosh,H.LiandJ.D.Chen(2003) RegulationofandrogenreceptoractivitybythenuclearreceptorcorepressorSMRT J Biol Chem 278 7 505261 362 Y.Shang,M.MyersandM.Brown(2002)Formationoftheandrogenreceptortranscriptioncomplex Mol Cell 9360110 363 L.N.Song,M.CoghlanandE.P.Gelmann(2004)Antiandrogeneffectsofmifepristoneoncoactivator andcorepressorinteractionswiththeandrogenreceptor Mol Endocrinol18 17085 364 H.Dotzlaw,M.Papaioannou,U.Moehren,F.ClaessensandA.Baniahmad(2003)Agonistantagonist inducedcoactivatorandcorepressorinterplayonthehumanandrogenreceptor Mol Cell Endocrinol 213 1 7985 365 L.Wang,C.L.Hsu,J.Ni,P.H.Wang,S.Yeh,P.KengandC.Chang(2004)Humancheckpointprotein hRad9functionsasanegativecoregulatortorepressandrogenreceptortransactivationinprostatecancer cells Mol Cell Biol 24 5220213 366 T.P.Burris,W.GuoandE.R.Mccabe(1996)Thegeneresponsibleforadrenalhypoplasiacongenita, DAX1,encodesanuclearhormonereceptorthatdefinesanewclasswithinthesuperfamily Recent Prog Horm Res 51 24159;discussion25960 367 E.Holter,N.Kotaja,S.Makela,L.Strauss,S.Kietz,O.A.Janne,J.A.Gustafsson,J.J.PalvimoandE. Treuter(2002)Inhibitionofandrogenreceptor(AR)functionbythereproductiveorphannuclearreceptor DAX1 Mol Endocrinol 16 351528 368 J.Gobinet,G.Auzou,J.C.Nicolas,C.SultanandS.Jalaguier(2001)Characterizationoftheinteraction betweenandrogenreceptorandanewtranscriptionalinhibitor,SHP Biochemistry 40 501536977 369 J.Gobinet,S.Carascossa,V.Cavailles,F.Vignon,J.C.NicolasandS.Jalaguier(2005)SHPrepresses transcriptionalactivityviarecruitmentofhistonedeacetylases Biochemistry 44 16631220 370 G.Han,G.Buchanan,M.Ittmann,J.M.Harris,X.Yu,F.J.Demayo,W.TilleyandN.M.Greenberg (2005)Mutationoftheandrogenreceptorcausesoncogenictransformationoftheprostate Proc Natl Acad Sci U S A 102 411516 371 B.C.Jeong,C.Y.Hong,S.Chattopadhyay,J.H.Park,E.Y.Gong,H.J.Kim,S.Y.ChunandK.Lee (2004)Androgenreceptorcorepressor19kDa(ARR19),aleucinerichproteinthatrepressesthe transcriptionalactivityofandrogenreceptorthroughrecruitmentofhistonedeacetylase Mol Endocrinol 18 11325 372 T.Niki,K.TakahashiNiki,T.Taira,S.M.IguchiArigaandH.Ariga(2003)DJBP:anovelDJ1binding protein,negativelyregulatestheandrogenreceptorbyrecruitinghistonedeacetylasecomplex,andDJ1 antagonizesthisinhibitionbyabrogationofthiscomplex Mol Cancer Res 1424761 373 C.G.Korkmaz,K.Fronsdal,Y.Zhang,P.I.LorenzoandF.Saatcioglu(2004)Potentiationofandrogen receptortranscriptionalactivitybyinhibitionofhistonedeacetylationrescueoftranscriptionally compromisedmutants J Endocrinol 182 337789 374 M.Gross,R.Yang,I.Top,C.GasperandK.Shuai(2004)PIASymediatedrepressionoftheandrogen receptorisindependentofsumoylation Oncogene 23 17305966 375 M.SharmaandZ.Sun(2001)5'TG3'interactingfactorinteractswithSin3AandrepressesARmediated transcription Mol Endocrinol 15 11191828 376 S.Dedhar,P.S.Rennie,M.Shago,C.Y.Hagesteijn,H.Yang,J.Filmus,R.G.Hawley,N.Bruchovsky, H.Cheng,R.J.MatusikandEtAl.(1994)Inhibitionofnuclearhormonereceptoractivitybycalreticulin Nature 367 64624803 377 Y.Liu,B.O.Kim,C.Kao,C.Jung,J.T.DaltonandJ.J.He(2004)Tip110,thehumanimmunodeficiency virustype1(HIV1)Tatinteractingproteinof110kDaasanegativeregulatorofandrogenreceptor(AR) transcriptionalactivation J Biol Chem 279 212176673 378 M.Powzaniuk,S.McelweeWitmer,R.L.Vogel,T.Hayami,S.J.Rutledge,F.Chen,S.Harada,A. Schmidt,G.A.Rodan,L.P.FreedmanandC.Bai(2004)TheLATS2/KPMtumorsuppressorisa negativeregulatoroftheandrogenreceptor Mol Endocrinol 18 8201123 379 Y.Zhang,Y.Yang,S.YehandC.Chang(2004)ARA67/PAT1functionsasarepressortosuppress androgenreceptortransactivation Mol Cell Biol 24 3104457 380 S.R.Lee,S.M.Ramos,A.Ko,D.Masiello,K.D.Swanson,M.L.LuandS.P.Balk(2002)ARandER interactionwithap21activatedkinase(PAK6) Mol Endocrinol 16 18599

74 381 N.Schrantz,J.DaSilvaCorreia,B.Fowler,Q.Ge,Z.SunandG.M.Bokoch(2004)Mechanismofp21 activatedkinase6mediatedinhibitionofandrogenreceptorsignaling J Biol Chem 279 3192231 382 F.Yang,X.Li,M.Sharma,M.Zarnegar,B.LimandZ.Sun(2001)Androgenreceptorspecifically interactswithanovelp21activatedkinase,PAK6 J Biol Chem 276 181534553 383 H.K.Lin,S.Yeh,H.Y.KangandC.Chang(2001)Aktsuppressesandrogeninducedapoptosisby phosphorylatingandinhibitingandrogenreceptor Proc Natl Acad Sci U S A 98 1372005 384 B.Nan,T.Snabboon,E.Unni,X.J.Yuan,Y.E.WhangandM.Marcelli(2003)ThePTENtumor suppressorisanegativemodulatorofandrogenreceptortranscriptionalactivity J Mol Endocrinol 31 1 16983 385 H.K.Lin,Y.C.Hu,D.K.LeeandC.Chang(2004)RegulationofandrogenreceptorsignalingbyPTEN (phosphataseandtensinhomologdeletedonchromosome10)tumorsuppressorthroughdistinct mechanismsinprostatecancercells Mol Endocrinol 18 10240923 386 K.E.Knudsen,W.K.CaveneeandK.C.Arden(1999)Dtypecyclinscomplexwiththeandrogen receptorandinhibititstranscriptionaltransactivationability Cancer Res 59 102297301 387 C.E.Petre,Y.B.Wetherill,M.DanielsenandK.E.Knudsen(2002)CyclinD1:mechanismand consequenceofandrogenreceptorcorepressoractivity J Biol Chem 277 3220715 388 M.Sharma,M.Zarnegar,X.Li,B.LimandZ.Sun(2000)Androgenreceptorinteractswithanovel MYSTprotein,HBO1 J Biol Chem 275 45352008 389 L.Johansson,J.S.Thomsen,A.E.Damdimopoulos,G.Spyrou,J.A.GustafssonandE.Treuter(1999) TheorphannuclearreceptorSHPinhibitsagonistdependenttranscriptionalactivityofestrogenreceptors ERalphaandERbeta J Biol Chem 274 134553 390 J.E.Chipuk,S.C.Cornelius,N.J.Pultz,J.S.Jorgensen,M.J.Bonham,S.J.KimandD.Danielpour (2002)Theandrogenreceptorrepressestransforminggrowthfactorbetasignalingthroughinteractionwith Smad3 J Biol Chem 277 212408 391 S.A.Hayes,M.Zarnegar,M.Sharma,F.Yang,D.M.Peehl,P.TenDijkeandZ.Sun(2001)SMAD3 repressesandrogenreceptormediatedtranscriptionCancer Res 61 521128 392 H.Y.Kang,H.K.Lin,Y.C.Hu,S.Yeh,K.E.HuangandC.Chang(2001)Fromtransforminggrowth factorbetasignalingtoandrogenaction:identificationofSmad3asanandrogenreceptorcoregulatorin prostatecancercells Proc Natl Acad Sci U S A 98 6301823 393 X.Yuan,M.L.Lu,T.LiandS.P.Balk(2001)SRYinteractswithandnegativelyregulatesandrogen receptortranscriptionalactivity J Biol Chem 276 494664754 394 X.MuandC.Chang(2003)TR2orphanreceptorfunctionsasnegativemodulatorforandrogenreceptorin prostatecancercellsPC3 Prostate 57 212933 395 M.C.Louie,H.Q.Yang,A.H.Ma,W.Xu,J.X.Zou,H.J.KungandH.W.Chen(2003)Androgen inducedrecruitmentofRNApolymeraseIItoanuclearreceptorp160coactivatorcomplex Proc Natl Acad Sci U S A 100 5222630 396 Z.Kang,O.A.JanneandJ.J.Palvimo(2004)Coregulatorrecruitmentandhistonemodificationsin transcriptionalregulationbytheandrogenreceptor Mol Endocrinol 18 11263348 397 T.I.Klokk,P.Kurys,C.Elbi,A.K.Nagaich,A.Hendarwanto,T.Slagsvold,C.Y.Chang,G.L.Hager andF.Saatcioglu(2007)Ligandspecificdynamicsoftheandrogenreceptoratitsresponseelementin livingcells Mol Cell Biol 27 5182343 398 H.Inoue,T.Furukawa,S.Giannakopoulos,S.Zhou,D.S.KingandN.Tanese(2002)Largestsubunitsof thehumanSWI/SNFchromatinremodelingcomplexpromotetranscriptionalactivationbysteroid hormonereceptors J Biol Chem 277 444167485 399 T.W.Marshall,K.A.Link,C.E.PetreDraviamandK.E.Knudsen(2003)Differentialrequirementof SWI/SNFforandrogenreceptoractivity J Biol Chem 278 333060513 400 K.A.Link,C.J.Burd,E.Williams,T.Marshall,G.Rosson,E.Henry,B.WeissmanandK.E.Knudsen (2005)BAF57governsandrogenreceptoractionandandrogendependentproliferationthroughSWI/SNF Mol Cell Biol 25 6220015 401 C.Y.Hong,J.H.Suh,K.Kim,E.Y.Gong,S.H.Jeon,M.Ko,R.H.Seong,H.B.KwonandK.Lee (2005)ModulationofandrogenreceptortransactivationbytheSWI3relatedgeneproduct(SRG3)in multipleways Mol Cell Biol 25 12484152 402 N.Rouleau,A.Domans'kyi,M.Reeben,A.M.Moilanen,K.Havas,Z.Kang,T.OwenHughes,J.J. PalvimoandO.A.Janne(2002)NovelATPaseofSNF2likeproteinfamilyinteractswithandrogen receptorandmodulatesandrogendependenttranscription Mol Biol Cell 13 6210619 403 Q.Wang,D.Sharma,Y.RenandJ.D.Fondell(2002)AcoregulatoryrolefortheTRAPmediator complexinandrogenreceptormediatedgeneexpression J Biol Chem 277 45428528 404 I.J.McewanandJ.Gustafsson(1997)Interactionofthehumanandrogenreceptortransactivationfunction withthegeneraltranscriptionfactorTFIIF Proc Natl Acad Sci U S A 94 16848590 405 J.Reid,I.Murray,K.Watt,R.BetneyandI.J.Mcewan(2002)Theandrogenreceptorinteractswith multipleregionsofthelargesubunitofgeneraltranscriptionfactorTFIIF J Biol Chem 277 434124753 406 R.BetneyandI.J.Mcewan(2003)RoleofconservedhydrophobicaminoacidsinandrogenreceptorAF1 function J Mol Endocrinol 31342739 407 Q.Yan,R.J.Moreland,J.W.ConawayandR.C.Conaway(1999)DualrolesfortranscriptionfactorIIF inpromoterescapebyRNApolymeraseII J Biol Chem 274 503566875 408 D.K.Lee,H.O.DuanandC.Chang(2000)Fromandrogenreceptortothegeneraltranscriptionfactor TFIIH.Identificationofcdkactivatingkinase(CAK)asanandrogenreceptorNH(2)terminalassociated coactivator J Biol Chem 275 13930813 409 D.K.Lee,H.O.DuanandC.Chang(2001)Androgenreceptorinteractswiththepositiveelongation factorPTEFbandenhancestheefficiencyoftranscriptionalelongation J Biol Chem 276 13997884

75 410 D.K.Lee,M.LiandC.Chang(2003)ThesecondlargestsubunitofRNApolymeraseIIinteractswith andenhancestransactivationofandrogenreceptor Biochem Biophys Res Commun 302 11629 411 G.G.KuiperandA.O.Brinkmann(1995)Phosphotrypticpeptideanalysisofthehumanandrogen receptor:detectionofahormoneinducedphosphopeptide Biochemistry 34 618517 412 T.Ikonen,J.J.Palvimo,P.J.Kallio,P.ReinikainenandO.A.Janne(1994)Stimulationofandrogen regulatedtransactivationbymodulatorsofproteinphosphorylation Endocrinology 135 4135966 413 P.Reinikainen,J.J.PalvimoandO.A.Janne(1996)Effectsofmitogensonandrogenreceptormediated transactivation Endocrinology 137 1043517 414 D.Gioeli,S.B.Ficarro,J.J.Kwiek,D.Aaronson,M.Hancock,A.D.Catling,F.M.White,R.E. Christian,R.E.Settlage,J.Shabanowitz,D.F.HuntandM.J.Weber(2002)Androgenreceptor phosphorylation.Regulationandidentificationofthephosphorylationsites J Biol Chem 277 322930414 415 T.Kishino,M.LalandeandJ.Wagstaff(1997)UBE3A/E6APmutationscauseAngelmansyndrome Nat Genet 15 1703 416 T.Matsuura,J.S.Sutcliffe,P.Fang,R.J.Galjaard,Y.H.Jiang,C.S.Benton,J.M.RommensandA.L. Beaudet(1997)DenovotruncatingmutationsinE6APubiquitinproteinligasegene(UBE3A)in Angelmansyndrome Nat Genet 15 1747 417 L.Gaughan,I.R.Logan,D.E.NealandC.N.Robson(2005)Regulationofandrogenreceptorandhistone deacetylase1byMdm2mediatedubiquitylation Nucleic Acids Res 33 11326 418 J.A.IniguezLluhiandD.Pearce(2000)Acommonmotifwithinthenegativeregulatoryregionsof multiplefactorsinhibitstheirtranscriptionalsynergy Mol Cell Biol 20 16604050 419 M.Biel,V.WascholowskiandA.Giannis(2004)Afatalaffair:theubiquitinylationofproteins Angew Chem Int Ed Engl 43 4764146 420 V.G.WilsonandG.RosasAcosta(2005)WrestlingwithSUMOinanewarena Sci STKE 2005 290pe32 421 J.M.Desterro,M.S.RodriguezandR.T.Hay(1998)SUMO1modificationofIkappaBalphainhibits NFkappaBactivation Mol Cell 222339 422 M.J.PazinandJ.T.Kadonaga(1997)What'supanddownwithhistonedeacetylationandtranscription? Cell 89 33258 423 M.Fu,C.Wang,A.T.Reutens,J.Wang,R.H.Angeletti,L.SiconolfiBaez,V.Ogryzko,M.L. AvantaggiatiandR.G.Pestell(2000)p300andp300/cAMPresponseelementbindingproteinassociated factoracetylatetheandrogenreceptoratsitesgoverninghormonedependenttransactivation J Biol Chem 275 272085360 424 P.Doesburg,C.W.Kuil,C.A.Berrevoets,K.Steketee,P.W.Faber,E.Mulder,A.O.BrinkmannandJ. Trapman(1997)Functionalinvivointeractionbetweentheaminoterminal,transactivationdomainand theligandbindingdomainoftheandrogenreceptorBiochemistry 36 5105264 425 E.Langley,Z.X.ZhouandE.M.Wilson(1995)Evidenceforanantiparallelorientationoftheligand activatedhumanandrogenreceptordimer J Biol Chem 270 502998390 426 B.He,J.A.KemppainenandE.M.Wilson(2000)FXXLFandWXXLFsequencesmediatetheNH2 terminalinteractionwiththeligandbindingdomainoftheandrogenreceptor J Biol Chem 275 3022986 94 427 K.Steketee,C.A.Berrevoets,H.J.Dubbink,P.Doesburg,R.Hersmus,A.O.BrinkmannandJ.Trapman (2002)Aminoacids313andaminoacidsinandflankingthe23FxxLF27motifmodulatetheinteraction betweentheNterminalandligandbindingdomainoftheandrogenreceptor Eur J Biochem 269 235780 91 428 B.HeandE.M.Wilson(2003)ElectrostaticmodulationinsteroidreceptorrecruitmentofLXXLLand FXXLFmotifs Mol Cell Biol 23 6213550 429 C.L.Hsu,Y.L.Chen,S.Yeh,H.J.Ting,Y.C.Hu,H.Lin,X.WangandC.Chang(2003)Theuseof phagedisplaytechniquefortheisolationofandrogenreceptorinteractingpeptideswith(F/W)XXL(F/W) andFXXLYnewsignaturemotifs J Biol Chem 278 26236918 430 B.D.Darimont,R.L.Wagner,J.W.Apriletti,M.R.Stallcup,P.J.Kushner,J.D.Baxter,R.J.Fletterick andK.R.Yamamoto(1998)Structureandspecificityofnuclearreceptorcoactivatorinteractions Genes Dev 12 21334356 431 E.M.Mcinerney,D.W.Rose,S.E.Flynn,S.Westin,T.M.Mullen,A.Krones,J.Inostroza,J.Torchia, R.T.Nolte,N.AssaMunt,M.V.Milburn,C.K.GlassandM.G.Rosenfeld(1998)Determinantsof coactivatorLXXLLmotifspecificityinnuclearreceptortranscriptionalactivation Genes Dev 12213357 68 432 H.J.Dubbink,R.Hersmus,A.C.Pike,M.Molier,A.O.Brinkmann,G.JensterandJ.Trapman(2006) AndrogenreceptorligandbindingdomaininteractionandnuclearreceptorspecificityofFXXLFand LXXLLmotifsasdeterminedbyL/Fswapping Mol Endocrinol 20 8174255 433 E.EstebanezPerpina,J.M.Moore,E.Mar,E.DelgadoRodrigues,P.Nguyen,J.D.Baxter,B.M. Buehrer,P.Webb,R.J.FletterickandR.K.Guy(2005)Themolecularmechanismsofcoactivator utilizationinliganddependenttransactivationbytheandrogenreceptor J Biol Chem 280 980608 434 T.N.Alam,M.J.O'hare,I.Laczko,A.Freeman,F.AlBeidh,J.R.MastersandD.L.Hudson(2004) DifferentialexpressionofCD44duringhumanprostateepithelialcelldifferentiation J Histochem Cytochem 52 8108390 435 F.Schaufele,X.Carbonell,M.Guerbadot,S.Borngraeber,M.S.Chapman,A.A.Ma,J.N.MinerandM. I.Diamond(2005)Thestructuralbasisofandrogenreceptoractivation:intramolecularandintermolecular aminocarboxyinteractions Proc Natl Acad Sci U S A 102 2898027 436 E.Langley,J.A.KemppainenandE.M.Wilson(1998)IntermolecularNH2/carboxylterminal interactionsinandrogenreceptordimerizationrevealedbymutationsthatcauseandrogeninsensitivity J Biol Chem 273 192101

76 437 J.Jaaskelainen,A.Deeb,J.W.Schwabe,N.P.Mongan,H.MartinandI.A.Hughes(2006)Human androgenreceptorgeneligandbindingdomainmutationsleadingtodisruptedinteractionbetweentheN andCterminaldomains J Mol Endocrinol 36 23618 438 J.Thompson,F.Saatcioglu,O.A.JanneandJ.J.Palvimo(2001)Disruptedaminoandcarboxylterminal interactionsoftheandrogenreceptorarelinkedtoandrogeninsensitivity Mol Endocrinol 15 692335 439 J.Li,J.Fu,C.Toumazou,H.G.YoonandJ.Wong(2006)Aroleoftheaminoterminal(N)andcarboxyl terminal(C)interactioninbindingofandrogenreceptortochromatin Mol Endocrinol 20 477685 440 B.He,N.T.Bowen,J.T.MingesandE.M.Wilson(2001)AndrogeninducedNH2andCOOHterminal InteractionInhibitsp160coactivatorrecruitmentbyactivationfunction2 J Biol Chem 276 4542293301 441 C.L.Hsu,Y.L.Chen,H.J.Ting,W.J.Lin,Z.Yang,Y.Zhang,L.Wang,C.T.Wu,H.C.Chang,S.Yeh, S.W.PimplikarandC.Chang(2005)Androgenreceptor(AR)NH2andCOOHterminalinteractions resultinthedifferentialinfluencesontheARmediatedtransactivationandcellgrowth Mol Endocrinol 19 235061 442 T.Ikonen,J.J.PalvimoandO.A.Janne(1997)Interactionbetweentheaminoandcarboxylterminal regionsoftheratandrogenreceptormodulatestranscriptionalactivityandisinfluencedbynuclear receptorcoactivators J Biol Chem 272 47298218 443 W.L.Kraus,E.M.McinerneyandB.S.Katzenellenbogen(1995)Liganddependent,transcriptionally productiveassociationoftheaminoandcarboxylterminalregionsofasteroidhormonenuclearreceptor Proc Natl Acad Sci U S A 92 26123148 444 R.Michalides,A.Griekspoor,A.Balkenende,D.Verwoerd,L.Janssen,K.Jalink,A.Floore,A.Velds,L. Van'tVeerandJ.Neefjes(2004)Tamoxifenresistancebyaconformationalarrestoftheestrogenreceptor alphaafterPKAactivationinbreastcancer Cancer Cell 56597605 445 P.Webb,P.Nguyen,J.Shinsako,C.Anderson,W.Feng,M.P.Nguyen,D.Chen,S.M.Huang,S. Subramanian,E.Mckinerney,B.S.Katzenellenbogen,M.R.StallcupandP.J.Kushner(1998)Estrogen receptoractivationfunction1worksbybindingp160coactivatorproteins Mol Endocrinol 12 10160518 446 M.J.Tetel,P.H.Giangrande,S.A.Leonhardt,D.P.McdonnellandD.P.Edwards(1999)Hormone dependentinteractionbetweentheaminoandcarboxylterminaldomainsofprogesteronereceptorinvitro andinvivo Mol Endocrinol 13 691024 447 X.Dong,J.R.ChallisandS.J.Lye(2004)IntramolecularinteractionsbetweentheAF3domainandthe CterminusofthehumanprogesteronereceptoraremediatedthroughtwoLXXLLmotifs J Mol Endocrinol 32 384357 448 L.Tung,T.Shen,M.G.Abel,R.L.Powell,G.S.Takimoto,C.A.SartoriusandK.B.Horwitz(2001) Mappingtheuniqueactivationfunction3intheprogesteroneBreceptorupstreamsegment.TwoLXXLL motifsandatryptophanresiduearerequiredforactivity J Biol Chem 276 433984351 449 N.Yoshikawa,K.Yamamoto,N.Shimizu,S.Yamada,C.MorimotoandH.Tanaka(2005)Thedistinct agonisticpropertiesofthephenylpyrazolosteroidcortivazolrevealinterdomaincommunicationwithinthe glucocorticoidreceptor Mol Endocrinol 19 5111024 450 D.Shao,S.M.Rangwala,S.T.Bailey,S.L.Krakow,M.J.ReginatoandM.A.Lazar(1998)Interdomain communicationregulatingligandbindingbyPPARgamma Nature 396 670937780 451 T.Iwasaki,A.Takeshita,W.Miyazaki,W.W.ChinandN.Koibuchi(2006)TheinteractionofTRbeta1N terminuswithsteroidreceptorcoactivator1(SRC1)servesafulltranscriptionalactivationfunctionof SRC1 Endocrinology 147 314527 452 C.ObersteBerghaus,K.Zanger,K.Hashimoto,R.N.Cohen,A.N.HollenbergandF.E.Wondisford (2000)Thyroidhormoneindependentinteractionbetweenthethyroidhormonereceptorbeta2amino terminusandcoactivators J Biol Chem 275 3178792 453 A.Takeshita,P.M.Yen,M.Ikeda,G.R.Cardona,Y.Liu,N.Koibuchi,E.R.NorwitzandW.W.Chin (1998)Thyroidhormoneresponseelementsdifferentiallymodulatetheinteractionsofthyroidhormone receptorswithtworeceptorbindingdomainsinthesteroidreceptorcoactivator1 J Biol Chem 273 34 2155462 454 J.C.Chapman,S.Min,S.Kunaporn,S.Shah,A.KaikiAstaraandS.D.Michael(2001)Thedifferential effectofinjectingestradiol17beta,testosterone,andhydrocortisoneduringtheimmuneadaptiveperiodon thefertilityoffemalemice Am J Reprod Immunol 46 428897 455 B.He,R.T.Gampe,Jr.,A.J.Kole,A.T.Hnat,T.B.Stanley,G.An,E.L.Stewart,R.I.Kalman,J.T. MingesandE.M.Wilson(2004)Structuralbasisforandrogenreceptorinterdomainandcoactivator interactionssuggestsatransitioninnuclearreceptoractivationfunctiondominance Mol Cell 16 342538 456 Z.X.Zhou,B.He,S.H.Hall,E.M.WilsonandF.S.French(2002)Domaininteractionsbetween coregulatorARA(70)andtheandrogenreceptor(AR)Mol Endocrinol 16 2287300 457 C.Y.Chang,J.Abdo,T.HartneyandD.P.Mcdonnell(2005)Developmentofpeptideantagonistsforthe androgenreceptorusingcombinatorialpeptidephagedisplay Mol Endocrinol 19 10247890 458 K.Barbulescu,C.Geserick,I.Schuttke,W.D.SchleuningandB.Haendler(2001)Newandrogen responseelementsinthemurinepempromotermediateselectivetransactivation Mol Endocrinol 15 10 180316 459 D.Brochard,L.Morel,G.VeyssiereandC.Jean(1999)Structuralandfunctionalanalysisofthepromoter ofamousegeneencodinganandrogenregulatedprotein(MSVSP99) J Mol Endocrinol 23 328798 460 W.S.Cheng,V.Giandomenico,I.PastanandM.Essand(2003)Characterizationoftheandrogen regulatedprostatespecificTcellreceptorgammachainalternatereadingframeprotein(TARP)promoter Endocrinology 144 8343340 461 F.Claessens,L.Celis,B.Peeters,W.Heyns,G.VerhoevenandW.Rombauts(1989)Functional characterizationofanandrogenresponseelementinthefirstintronoftheC3(1)geneofprostaticbinding protein Biochem Biophys Res Commun 164 283340

77 462 K.B.Cleutjens,H.A.VanDerKorput,C.C.VanEekelen,H.C.VanRooij,P.W.FaberandJ.Trapman (1997)Anandrogenresponseelementinafarupstreamenhancerregionisessentialforhigh,androgen regulatedactivityoftheprostatespecificantigenpromoter Mol Endocrinol 11 214861 463 K.B.Cleutjens,C.C.VanEekelen,H.A.VanDerKorput,A.O.BrinkmannandJ.Trapman(1996)Two androgenresponseregionscooperateinsteroidhormoneregulatedactivityoftheprostatespecificantigen promoter J Biol Chem 271 11637988 464 M.Crossley,M.Ludwig,K.M.Stowell,P.DeVos,K.OlekandG.G.Brownlee(1992)Recoveryfrom hemophiliaBLeyden:anandrogenresponsiveelementinthefactorIXpromoter Science 257 50683779 465 A.Crozat,J.J.Palvimo,M.JulkunenandO.A.Janne(1992)Comparisonofandrogenregulationof ornithinedecarboxylaseandSadenosylmethioninedecarboxylasegeneexpressioninrodentkidneyand accessorysexorgans Endocrinology 130 3113144 466 J.L.DaiandK.L.Burnstein(1996)Twoandrogenresponseelementsintheandrogenreceptorcoding regionarerequiredforcellspecificupregulationofreceptormessengerRNA Mol Endocrinol 10 12 158294 467 A.Devos,F.Claessens,P.Alen,J.Winderickx,W.Heyns,W.RombautsandB.Peeters(1997) Identificationofafunctionalandrogenresponseelementintheexon1codingsequenceofthecystatin relatedproteingenecrp2 Mol Endocrinol 11 8103343 468 A.Devos,N.DeClercq,I.Vercaeren,W.Heyns,W.RombautsandB.Peeters(1993)Structureofrat genesencodingandrogenregulatedcystatinrelatedproteins(CRPs):anewmemberofthecystatin superfamily Gene 125 215967 469 J.Y.Dube,P.Chapdelaine,S.Guerin,S.Leclerc,P.S.Rennie,R.J.MatusikandR.R.Tremblay(1995) Searchforandrogenresponseelementsintheproximalpromoterofthecanineprostatearginineesterase gene J Androl 16 430411 470 S.Fabre,M.Manin,E.Pailhoux,G.VeyssiereandC.Jean(1994)Identificationofafunctionalandrogen responseelementinthepromoterofthegenefortheandrogenregulatedaldosereductaselikeprotein specifictothemousevasdeferens J Biol Chem 269 8585764 471 W.Gao,C.E.BohlandJ.T.Dalton(2005)Chemistryandstructuralbiologyofandrogenreceptor Chem Rev 105 9335270 472 N.B.Ghyselinck,I.Dufaure,J.J.Lareyre,N.Rigaudiere,M.G.MatteiandJ.P.Dufaure(1993) Structuralorganizationandregulationofthegenefortheandrogendependentglutathioneperoxidaselike proteinspecifictothemouseepididymis Mol Endocrinol 7225872 473 J.M.Grad,J.L.Dai,S.WuandK.L.Burnstein(1999)Multipleandrogenresponseelementsanda consensussiteintheandrogenreceptor(AR)codingregionareinvolvedinandrogenmediatedup regulationofARmessengerRNA Mol Endocrinol 13 111896911 474 J.M.Grad,L.S.Lyons,D.M.RobinsandK.L.Burnstein(2001)Theandrogenreceptor(AR)amino terminusimposesandrogenspecificregulationofARgeneexpressionviaanexonicenhancer Endocrinology 142 3110716 475 A.Haelens,G.Verrijdt,E.Schoenmakers,P.Alen,B.Peeters,W.RombautsandF.Claessens(1999)The firstexonofthehumanscgenecontainsanandrogenresponsiveunitandaninterferonregulatoryfactor elementMol Cell Endocrinol 153 1291102 476 H.Heemers,G.Verrijdt,S.Organe,F.Claessens,W.Heyns,G.VerhoevenandJ.V.Swinnen(2004) Identificationofanandrogenresponseelementinintron8ofthesterolregulatoryelementbindingprotein cleavageactivatingproteingeneallowingdirectregulationbytheandrogenreceptor J Biol Chem 279 29 308807 477 K.C.Ho,K.B.Marschke,J.Tan,S.G.Power,E.M.WilsonandF.S.French(1993)Acomplexresponse elementinintron1oftheandrogenregulated20kDaproteingenedisplayscelltypedependentandrogen receptorspecificity J Biol Chem 268 362722635 478 A.Jain,A.Lam,I.Vivanco,M.F.CareyandR.E.Reiter(2002)Identificationofanandrogendependent enhancerwithintheprostatestemcellantigengene Mol Endocrinol 16 10232337 479 H.Jeong,M.S.Kim,J.Kwon,K.S.KimandW.Seol(2006)Regulationofthetranscriptionalactivityof thetyrosinehydroxylasegenebyandrogenreceptorNeurosci Lett 396 15761 480 H.H.Juang,L.C.CostelloandR.B.Franklin(1995)Androgenmodulationofmultipletranscriptionstart sitesofthemitochondrialaspartateaminotransferasegeneinratprostate J Biol Chem 270 211262934 481 S.Kasper,P.S.Rennie,N.Bruchovsky,P.C.Sheppard,H.Cheng,L.Lin,R.P.Shiu,R.SnoekandR.J. Matusik(1994)CooperativebindingofandrogenreceptorstotwoDNAsequencesisrequiredfor androgeninductionoftheprobasingene J Biol Chem 269 50317639 482 J.J.Lareyre,K.Reid,C.Nelson,S.Kasper,P.S.Rennie,M.C.OrgebinCristandR.J.Matusik(2000) Characterizationofanandrogenspecificresponseregionwithinthe5'flankingregionofthemurine epididymalretinoicacidbindingproteingene Biol Reprod 63 6188192 483 S.D.Lund,P.M.Gallagher,B.Wang,S.C.PorterandR.E.Ganschow(1991)Androgenresponsiveness ofthemurinebetaglucuronidasegeneisassociatedwithnucleasehypersensitivity,proteinbinding,and haplotypespecificsequencediversitywithinintron9 Mol Cell Biol 11 11542634 484 J.A.Magee,L.W.Chang,G.D.StormoandJ.Milbrandt(2006)Direct,androgenreceptormediated regulationoftheFKBP5geneviaadistalenhancerelement Endocrinology 147 15908 485 S.H.Mitchell,P.E.Murtha,S.Zhang,W.ZhuandC.Y.Young(2000)Anandrogenresponseelement mediatesLNCaPcelldependentandrogeninductionofthehK2gene Mol Cell Endocrinol 168 128999 486 P.Murtha,D.J.TindallandC.Y.Young(1993)Androgeninductionofahumanprostatespecific kallikrein,hKLK2:characterizationofanandrogenresponseelementinthe5'promoterregionofthegene Biochemistry 32 25645964 487 X.M.Ou,K.ChenandJ.C.Shih(2006)GlucocorticoidandandrogenactivationofmonoamineoxidaseA isregulateddifferentlybyR1andSp1J Biol Chem 281 302151225

78 488 D.Phan,X.Sui,D.T.Chen,S.M.Najjar,G.JensterandS.H.Lin(2001)Androgenregulationofthecell celladhesionmolecule1(Ceacam1)gene Mol Cell Endocrinol 184 1211523 489 J.M.Rae,M.D.Johnson,K.E.Cordero,J.O.Scheys,J.M.Larios,M.M.Gottardis,K.J.PientaandM. E.Lippman(2006)GREB1isanovelandrogenregulatedgenerequiredforprostatecancergrowth Prostate 66 888694 490 P.S.Rennie,N.Bruchovsky,K.J.Leco,P.C.Sheppard,S.A.Mcqueen,H.Cheng,R.Snoek,A.Hamel, M.E.Bock,B.S.MacdonaldandEtAl.(1993)CharacterizationoftwocisactingDNAelements involvedintheandrogenregulationoftheprobasingene Mol Endocrinol 712336 491 P.H.Riegman,R.J.Vlietstra,J.A.VanDerKorput,A.O.BrinkmannandJ.Trapman(1991)The promoteroftheprostatespecificantigengenecontainsafunctionalandrogenresponsiveelement Mol Endocrinol 512192130 492 Z.Salah,M.Maoz,I.Cohen,G.Pizov,D.Pode,M.S.RungeandR.BarShavit(2005)Identificationofa novelfunctionalandrogenresponseelementwithinhPar1promoter:implicationstoprostatecancer progression Faseb J 19 16272 493 R.Shen,M.Sumitomo,J.Dai,D.O.Hardy,D.Navarro,B.Usmani,C.N.Papandreou,L.B.Hersh,M. A.Shipp,L.P.FreedmanandD.M.Nanus(2000)Identificationandcharacterizationoftwoandrogen responseregionsinthehumanneutralendopeptidasegene Mol Cell Endocrinol 170 1213142 494 K.Steketee,A.C.ZielVanDerMade,H.A.VanDerKorput,A.B.HoutsmullerandJ.Trapman(2004) AbioinformaticsbasedfunctionalanalysisshowsthatthespecificallyandrogenregulatedgeneSARG containsanactivedirectrepeatandrogenresponseelementinthefirstintron J Mol Endocrinol 33 2477 91 495 P.Val,A.Martinez,I.SahutBarnola,C.Jean,G.VeyssiereandA.M.LefrancoisMartinez(2002)A77 basepairLINElikesequenceelicitsandrogendependentmvdp/akr1b7expressioninmousevasdeferens, butisdispensableforadrenalexpressioninrats Endocrinology 143 9343548 496 G.Verrijdt,E.Schoenmakers,P.Alen,A.Haelens,B.Peeters,W.RombautsandF.Claessens(1999) Androgenspecificityofaresponseunitupstreamofthehumansecretorycomponentgeneismediatedby differentialreceptorbindingtoanessentialandrogenresponseelement Mol Endocrinol 13 9155870 497 D.C.Yu,G.T.SakamotoandD.R.Henderson(1999)Identificationofthetranscriptionalregulatory sequencesofhumankallikrein2andtheiruseintheconstructionofcalydonvirus764,anattenuated replicationcompetentadenovirusforprostatecancertherapy Cancer Res 59 71498504 498 S.E.Deprimo,M.Diehn,J.B.Nelson,R.E.Reiter,J.Matese,M.Fero,R.Tibshirani,P.O.BrownandJ. D.Brooks(2002)Transcriptionalprogramsactivatedbyexposureofhumanprostatecancercellsto androgen Genome Biol 37RESEARCH0032 499 J.Holzbeierlein,P.Lal,E.Latulippe,A.Smith,J.Satagopan,L.Zhang,C.Ryan,S.Smith,H.Scher,P. Scardino,V.ReuterandW.L.Gerald(2004)Geneexpressionanalysisofhumanprostatecarcinoma duringhormonaltherapyidentifiesandrogenresponsivegenesandmechanismsoftherapyresistance Am J Pathol 164 121727 500 F.JiangandZ.Wang(2003)Identificationofandrogenresponsivegenesintheratventralprostateby complementarydeoxyribonucleicacidsubtractionandmicroarray Endocrinology 144 4125765 501 P.S.Nelson,N.Clegg,H.Arnold,C.Ferguson,M.Bonham,J.White,L.HoodandB.Lin(2002)The programofandrogenresponsivegenesinneoplasticprostateepithelium Proc Natl Acad Sci U S A 99 18 118905 502 S.T.Pang,K.Dillner,X.Wu,A.Pousette,G.NorstedtandA.FloresMorales(2002)Geneexpression profilingofandrogendeficiencypredictsapathwayofprostateapoptosisthatinvolvesgenesrelatedto oxidativestress Endocrinology 143 124897906 503 A.M.Velasco,K.A.Gillis,Y.Li,E.L.Brown,T.M.Sadler,M.Achilleos,L.M.Greenberger,P.Frost, W.BaiandY.Zhang(2004)Identificationandvalidationofnovelandrogenregulatedgenesinprostate cancer Endocrinology 145 8391324 504 L.L.Xu,Y.P.Su,R.Labiche,T.Segawa,N.Shanmugam,D.G.Mcleod,J.W.MoulandS.Srivastava (2001)Quantitativeexpressionprofileofandrogenregulatedgenesinprostatecancercellsand identificationofprostatespecificgenes Int J Cancer 92 33228 505 S.M.DehmandD.J.Tindall(2006)Molecularregulationofandrogenactioninprostatecancer J Cell Biochem 99 233344 506 J.S.CarrollandM.Brown(2006)Estrogenreceptortargetgene:anevolvingconcept Mol Endocrinol 20 8170714 507 C.C.Nelson,S.C.Hendy,R.J.Shukin,H.Cheng,N.Bruchovsky,B.F.KoopandP.S.Rennie(1999) DeterminantsofDNAsequencespecificityoftheandrogen,progesterone,andglucocorticoidreceptors: evidencefordifferentialsteroidreceptorresponseelements Mol Endocrinol 13 122090107 508 A.Haelens,G.Verrijdt,L.Callewaert,B.Peeters,W.RombautsandF.Claessens(2001)Androgen receptorspecificDNAbindingtoanelementinthefirstexonofthehumansecretorycomponentgene Biochem J 353 Pt361120 509 E.Schoenmakers,P.Alen,G.Verrijdt,B.Peeters,G.Verhoeven,W.RombautsandF.Claessens(1999) DifferentialDNAbindingbytheandrogenandglucocorticoidreceptorsinvolvesthesecondZnfingerand aCterminalextensionoftheDNAbindingdomains Biochem J 341(Pt3) 51521 510 E.Schoenmakers,G.Verrijdt,B.Peeters,G.Verhoeven,W.RombautsandF.Claessens(2000) DifferencesinDNAbindingcharacteristicsoftheandrogenandglucocorticoidreceptorscandetermine hormonespecificresponses J Biol Chem 275 16122907 511 G.Verrijdt,E.Schoenmakers,A.Haelens,B.Peeters,G.Verhoeven,W.RombautsandF.Claessens (2000)Changeofspecificitymutationsinandrogenselectiveenhancers.Evidenceforaroleofdifferential DNAbindingbytheandrogenreceptor J Biol Chem 275 1612298305

79 512 Z.Zhou,J.L.CordenandT.R.Brown(1997)Identificationandcharacterizationofanovelandrogen responseelementcomposedofadirectrepeat J Biol Chem 272 13822735 513 A.M.Spence,P.C.Sheppard,J.R.Davie,Y.Matuo,N.Nishi,W.L.Mckeehan,J.G.DoddandR.J. Matusik(1989)RegulationofabifunctionalmRNAresultsinsynthesisofsecretedandnuclearprobasin Proc Natl Acad Sci U S A 86 2078437 514 J.G.Dodd,P.C.SheppardandR.J.Matusik(1983)Characterizationandcloningofratdorsalprostate mRNAs.AndrogenregulationoftwocloselyrelatedabundantmRNAs J Biol Chem 258 17107317 515 N.M.Greenberg,F.J.Demayo,P.C.Sheppard,R.Barrios,R.Lebovitz,M.Finegold,R.Angelopoulou, J.G.Dodd,M.L.Duckworth,J.M.RosenandEtAl.(1994)Theratprobasingenepromoterdirects hormonallyanddevelopmentallyregulatedexpressionofaheterologousgenespecificallytotheprostatein transgenicmice Mol Endocrinol 822309 516 R.J.Matusik,P.A.Cattini,K.J.Leco,P.C.Sheppard,B.E.Nickel,B.L.Neubauer,J.R.Davie,C. Chang,S.Liao,Y.MatuoandW.L.Mckeehan(1991)Regulationofgeneexpressionintheprostate. Molecular and cellular biology of . 299314J.P.Karr,D.S.Coffey,R.G.SmithandD.J. TindallNewYorkandLondonPlenumPress 517 S.Kasper,P.S.Rennie,N.Bruchovsky,L.Lin,H.Cheng,R.Snoek,K.DahlmanWright,J.A. Gustafsson,R.P.Shiu,P.C.SheppardandR.J.Matusik(1999)Selectiveactivationoftheprobasin androgenresponsiveregionbysteroidhormones J Mol Endocrinol 22 331325 518 J.Zhang,N.Gao,S.Kasper,K.Reid,C.NelsonandR.J.Matusik(2004)Anandrogendependent upstreamenhancerisessentialforhighlevelsofprobasingeneexpression Endocrinology 145 113448 519 K.J.Reid,S.C.Hendy,J.Saito,P.SorensenandC.C.Nelson(2001)Twoclassesofandrogenreceptor elementsmediatethroughallostericinteractions J Biol Chem 276 4294352 520 K.E.Mostov(1994)Transepithelialtransportofimmunoglobulins Annu Rev Immunol 12 6384 521 D.A.SullivanandM.R.Allansmith(1987)Hormonalinfluenceonthesecretoryimmunesystemofthe eye:endocrineinteractionsinthecontrolofIgAandsecretorycomponentlevelsintearsofrats Immunology 60 333743 522 H.Vanaken,F.Claessens,I.Vercaeren,W.Heyns,B.PeetersandW.Rombauts(1996)Androgenic inductionofcystatinrelatedproteinandtheC3componentofprostaticbindingproteininprimarycultures fromtheratlacrimalgland Mol Cell Endocrinol 121 2197205 523 J.B.StavenhagenandD.M.Robins(1988)Anancientprovirushasimposedandrogenregulationonthe adjacentmousesexlimitedproteingene Cell 55 224754 524 F.Loreni,J.Stavenhagen,M.KalffandD.M.Robins(1988)Acomplexandrogenresponsiveenhancer resides2kilobasesupstreamofthemouseSlpgeneMol Cell Biol 86235060 525 A.J.Adler,A.SchellerandD.M.Robins(1993)Thestringencyandmagnitudeofandrogenspecificgene activationarecombinatorialfunctionsofreceptorandnonreceptorbindingsitesequences Mol Cell Biol 13 10632635 526 A.J.Adler,M.DanielsenandD.M.Robins(1992)Androgenspecificgeneactivationviaaconsensus glucocorticoidresponseelementisdeterminedbyinteractionwithnonreceptorfactors Proc Natl Acad Sci U S A 89 24116603 527 S.A.NelsonandD.M.Robins(1997)Regulatorycapacityofanandrogenspecificenhancerofthemouse Slpgeneintransgenicmice Mol Cell Endocrinol 133 28997 528 Y.M.NingandD.M.Robins(1999)AML3/CBFalpha1isrequiredforandrogenspecificactivationofthe enhancerofthemousesexlimitedprotein(Slp)gene J Biol Chem 274 433062430 529 C.O.ScarlettandD.M.Robins(1995)Invivofootprintingofanandrogendependentenhancerrevealsan accessoryelementintegraltohormonalresponse Mol Endocrinol 9441323 530 S.Maiti,J.Doskow,S.Li,R.P.Nhim,J.S.LindseyandM.F.Wilkinson(1996)ThePemhomeobox gene.AndrogendependentandindependentpromotersandtissuespecificalternativeRNAsplicing J Biol Chem 271 291753646 531 C.B.Cleutjens,K.Steketee,C.C.VanEekelen,J.A.VanDerKorput,A.O.BrinkmannandJ.Trapman (1997)Bothandrogenreceptorandglucocorticoidreceptorareabletoinduceprostatespecificantigen expression,butdifferintheirgrowthstimulatingpropertiesofLNCaPcells Endocrinology 138 125293 300 532 A.Scheller,E.Hughes,K.L.GoldenandD.M.Robins(1998)Multiplereceptordomainsinteractto permit,orrestrict,androgenspecificgeneactivation J Biol Chem 273 372421622 533 B.He,L.W.Lee,J.T.MingesandE.M.Wilson(2002)Dependenceofselectivegeneactivationonthe androgenreceptorNH2andCOOHterminalinteraction J Biol Chem 277 28256319 534 C.Geserick,H.A.Meyer,K.BarbulescuandB.Haendler(2003)Differentialmodulationofandrogen receptoractionbydeoxyribonucleicacidresponseelements Mol Endocrinol 17 9173850 535 L.Callewaert,G.Verrijdt,A.HaelensandF.Claessens(2004)Differentialeffectofsmallubiquitinlike modifier(SUMO)ylationoftheandrogenreceptorinthecontrolofcooperativityonselectiveversus canonicalresponseelements Mol Endocrinol 18 6143849 536 J.E.Griffin,M.LeshinandJ.D.Wilson(1982)Androgenresistancesyndromes Am J Physiol 243 2E81 7 537 G.PetterssonandG.Bonnier(1937)Inheritedsexmosaicinman. Heriditas 23 4969 538 M.Adachi,R.Takayanagi,A.Tomura,K.Imasaki,S.Kato,K.Goto,T.Yanase,S.IkuyamaandH. Nawata(2000)Androgeninsensitivitysyndromeasapossiblecoactivatordisease N Engl J Med 343 12 85662 539 T.Arbizu,J.Santamaria,J.M.Gomez,A.QuilezandJ.P.Serra(1983)Afamilywithadultspinaland bulbarmuscularatrophy,Xlinkedinheritanceandassociatedtesticularfailure J Neurol Sci 59 337182 540 W.R.Kennedy,M.AlterandJ.H.Sung(1968)Progressiveproximalspinalandbulbarmuscularatrophy oflateonset.Asexlinkedrecessivetrait Neurology 18 767180

80 541 A.R.LaSpada,E.M.Wilson,D.B.Lubahn,A.E.HardingandK.H.Fischbeck(1991)Androgen receptorgenemutationsinXlinkedspinalandbulbarmuscularatrophy Nature 352 6330779 542 D.E.Merry(2001)Molecularpathogenesisofspinalandbulbarmuscularatrophy Brain Res Bull 56 34 2037 543 S.Simeoni,M.A.Mancini,D.L.Stenoien,M.Marcelli,N.L.Weigel,M.Zanisi,L.MartiniandA. Poletti(2000)Motoneuronalcelldeathisnotcorrelatedwithaggregateformationofandrogenreceptors containinganelongatedpolyglutaminetract Hum Mol Genet 9113344 544 A.Jemal,E.Ward,X.Wu,H.J.Martin,C.C.MclaughlinandM.J.Thun(2005)Geographicpatternsof prostatecancermortalityandvariationsinaccesstomedicalcareintheUnitedStates Cancer Epidemiol Biomarkers Prev 14 35905 545 J.Tremblay,G.Frenette,R.R.Tremblay,A.Dupont,M.ThabetandJ.Y.Dube(1987)Excretionofthree majorprostaticsecretoryproteinsintheurineofnormalmenandpatientswithbenignprostatic hypertrophyorprostatecancer Prostate 10 323543 546 G.R.CunhaandA.Donjacour(1987)Stromalepithelialinteractionsinnormalandabnormalprostatic development Prog Clin Biol Res239 25172 547 V.Kumar,A.K.Abbas,N.Faustoand(2004)Robbins&CotranPathologicBasisofDisease7thedition, Chapter21Saunders 548 A.Y.Liu,L.D.True,L.Latray,P.S.Nelson,W.J.Ellis,R.L.Vessella,P.H.Lange,L.HoodandG. VanDenEngh(1997)Cellcellinteractioninprostategeneregulationandcytodifferentiation Proc Natl Acad Sci U S A 94 201070510 549 T.J.Mcdonnell,P.Troncoso,S.M.Brisbay,C.Logothetis,L.W.Chung,J.T.Hsieh,S.M.TuandM.L. Campbell(1992)Expressionoftheprotooncogenebcl2intheprostateanditsassociationwithemergence ofandrogenindependentprostatecancer Cancer Res 52 2469404 550 M.AlHajjandM.F.Clarke(2004)Selfrenewalandsolidtumorstemcells Oncogene 23 43727482 551 D.BonnetandJ.E.Dick(1997)Humanacutemyeloidleukemiaisorganizedasahierarchythatoriginates fromaprimitivehematopoieticcell Nat Med 377307 552 M.Florek,M.Haase,A.M.Marzesco,D.Freund,G.Ehninger,W.B.HuttnerandD.Corbeil(2005) Prominin1/CD133,aneuralandhematopoieticstemcellmarker,isexpressedinadulthuman differentiatedcellsandcertaintypesofkidneycancer Cell Tissue Res 319 11526 553 R.Galli,E.Binda,U.Orfanelli,B.Cipelletti,A.Gritti,S.DeVitis,R.Fiocco,C.Foroni,F.Dimecoand A.Vescovi(2004)Isolationandcharacterizationoftumorigenic,stemlikeneuralprecursorsfromhuman glioblastoma Cancer Res 64 19701121 554 C.HirschmannJax,A.E.Foster,G.G.Wulf,J.G.Nuchtern,T.W.Jax,U.Gobel,M.A.GoodellandM. K.Brenner(2004)Adistinct"sidepopulation"ofcellswithhighdrugeffluxcapacityinhumantumor cells Proc Natl Acad Sci U S A 101 391422833 555 C.F.Kim,E.L.Jackson,A.E.Woolfenden,S.Lawrence,I.Babar,S.Vogel,D.Crowley,R.T.Bronson andT.Jacks(2005)Identificationofbronchioalveolarstemcellsinnormallungandlungcancer Cell 121 682335 556 S.K.Singh,I.D.Clarke,T.HideandP.B.Dirks(2004)Cancerstemcellsinnervoussystemtumors Oncogene 23 43726773 557 D.L.Hudson,M.O'hare,F.M.WattandJ.R.Masters(2000)Proliferativeheterogeneityinthehuman prostate:evidenceforepithelialstemcells Lab Invest 80 8124350 558 I.V.Litvinov,A.M.DeMarzoandJ.T.Isaacs(2003)IstheAchilles'heelforprostatecancertherapya gainoffunctioninandrogenreceptorsignaling? J Clin Endocrinol Metab 88 7297282 559 G.VanLeenders,H.Dijkman,C.HulsbergenVanDeKaa,D.RuiterandJ.Schalken(2000) Demonstrationofintermediatecellsduringhumanprostateepithelialdifferentiationinsituandinvitro usingtriplestainingconfocalscanningmicroscopyLab Invest 80 812518 560 J.T.IsaacsandD.S.Coffey(1989)EtiologyanddiseaseprocessofbenignprostatichyperplasiaProstate Suppl 23350 561 H.BonkhoffandK.Remberger(1996)Differentiationpathwaysandhistogeneticaspectsofnormaland abnormalprostaticgrowth:astemcellmodel Prostate 28 298106 562 A.T.Collins,P.A.Berry,C.Hyde,M.J.StowerandN.J.Maitland(2005)Prospectiveidentificationof tumorigenicprostatecancerstemcells Cancer Res 65 231094651 563 A.T.Collins,F.K.Habib,N.J.MaitlandandD.E.Neal(2001)Identificationandisolationofhuman prostateepithelialstemcellsbasedonalpha(2)beta(1)integrinexpression J Cell Sci 114 Pt21386572 564 R.Heer,C.N.Robson,B.K.ShentonandH.Y.Leung(2007)Theroleofandrogenindetermining differentiationandregulationofandrogenreceptorexpressioninthehumanprostaticepitheliumtransient amplifyingpopulation J Cell Physiol 212 35728 565 G.D.Richardson,C.N.Robson,S.H.Lang,D.E.Neal,N.J.MaitlandandA.T.Collins(2004)CD133, anovelmarkerforhumanprostaticepithelialstemcells J Cell Sci 117 Pt16353945 566 A.R.Uzgare,Y.XuandJ.T.Isaacs(2004)Invitroculturingandcharacteristicsoftransitamplifying epithelialcellsfromhumanprostatetissue J Cell Biochem 91 1196205 567 C.Huggins,R.E.StevensandC.V.Hodges(1941)StudiesonprostaticcancerII.Theeffectsofcastration onadvancedcarcinomaoftheprostategland Arch Surg 43 20925 568 E.Corey,J.E.Quinn,K.R.Buhler,P.S.Nelson,J.A.Macoska,L.D.TrueandR.L.Vessella(2003) LuCaP35:anewmodelofprostatecancerprogressiontoandrogenindependence Prostate 55 423946 569 C.W.Gregory,K.G.Hamil,D.Kim,S.H.Hall,T.G.Pretlow,J.L.MohlerandF.S.French(1998) Androgenreceptorexpressioninandrogenindependentprostatecancerisassociatedwithincreased expressionofandrogenregulatedgenes Cancer Res 58 24571824 570 J.L.Mohler,C.W.Gregory,O.H.Ford,3rd,D.Kim,C.M.Weaver,P.Petrusz,E.M.WilsonandF.S. French(2004)Theandrogenaxisinrecurrentprostatecancer Clin Cancer Res 10 24408

81 571 T.H.VanDerKwast,J.Schalken,J.A.RuizeveldDeWinter,C.C.VanVroonhoven,E.Mulder,W. BoersmaandJ.Trapman(1991)Androgenreceptorsinendocrinetherapyresistanthumanprostatecancer Int J Cancer 48 218993 572 I.E.Eder,Z.Culig,R.Ramoner,M.Thurnher,T.Putz,C.NesslerMenardi,M.Tiefenthaler,G.Bartsch andH.Klocker(2000)InhibitionofLncaPprostatecancercellsbymeansofandrogenreceptorantisense oligonucleotides Cancer Gene Ther 779971007 573 O.L.ZegarraMoro,L.J.Schmidt,H.HuangandD.J.Tindall(2002)Disruptionofandrogenreceptor functioninhibitsproliferationofandrogenrefractoryprostatecancercells Cancer Res 62 4100813 574 X.Liao,S.Tang,J.B.Thrasher,T.L.GrieblingandB.Li(2005)SmallinterferingRNAinduced androgenreceptorsilencingleadstoapoptoticcelldeathinprostatecancer Mol Cancer Ther 4450515 575 J.X.Chen,P.F.Fu,T.WangandX.Y.Cui(2004)EffectsofDNAmethylationinhibitorondown regulationofribonucleaseinhibitorexpressionincancercelllines Ai Zheng 23 11124956 576 P.Haag,J.Bektic,G.Bartsch,H.KlockerandI.E.Eder(2005)Androgenreceptordownregulationby smallinterferenceRNAinducescellgrowthinhibitioninandrogensensitiveaswellasinandrogen independentprostatecancercells J Steroid Biochem Mol Biol 96 342518 577 K.G.Hermans,R.VanMarion,H.VanDekken,G.Jenster,W.M.VanWeerdenandJ.Trapman(2006) TMPRSS2:ERGfusionbytranslocationorinterstitialdeletionishighlyrelevantinandrogendependent prostatecancer,butisbypassedinlatestageandrogenreceptornegativeprostatecancer Cancer Res 66 22 1065863 578 S.A.Tomlins,D.R.Rhodes,S.Perner,S.M.Dhanasekaran,R.Mehra,X.W.Sun,S.Varambally,X. Cao,J.Tchinda,R.Kuefer,C.Lee,J.E.Montie,R.B.Shah,K.J.Pienta,M.A.RubinandA.M. Chinnaiyan(2005)RecurrentfusionofTMPRSS2andETStranscriptionfactorgenesinprostatecancer Science 310 57486448 579 J.Clark,S.Merson,S.Jhavar,P.Flohr,S.Edwards,C.S.Foster,R.Eeles,F.L.Martin,D.H.Phillips,M. Crundwell,T.Christmas,A.Thompson,C.Fisher,G.KovacsandC.S.Cooper(2007)Diversityof TMPRSS2ERGfusiontranscriptsinthehumanprostate Oncogene 26 18266773 580 S.Perner,F.Demichelis,R.Beroukhim,F.H.Schmidt,J.M.Mosquera,S.Setlur,J.Tchinda,S.A. Tomlins,M.D.Hofer,K.G.Pienta,R.Kuefer,R.Vessella,X.W.Sun,M.Meyerson,C.Lee,W.R. Sellers,A.M.ChinnaiyanandM.A.Rubin(2006)TMPRSS2:ERGFusionAssociatedDeletionsProvide InsightintotheHeterogeneityofProstateCancer Cancer Res 66 17833741 581 M.J.Soller,M.Isaksson,P.Elfving,W.Soller,R.LundgrenandI.Panagopoulos(2006)Confirmationof thehighfrequencyoftheTMPRSS2/ERGfusiongeneinprostatecancer Genes Cancer 45 77179 582 K.Iljin,M.Wolf,H.Edgren,S.Gupta,S.Kilpinen,R.I.Skotheim,M.Peltola,F.Smit,G.Verhaegh,J. Schalken,M.NeesandO.Kallioniemi(2006)TMPRSS2fusionswithoncogenicETSfactorsinprostate cancerinvolveunbalancedgenomicrearrangementsandareassociatedwithHDAC1andepigenetic reprogramming Cancer Res 66 21102426 583 S.A.Tomlins,R.Mehra,D.R.Rhodes,L.R.Smith,D.Roulston,B.E.Helgeson,X.Cao,J.T.Wei,M. A.Rubin,R.B.ShahandA.M.Chinnaiyan(2006)TMPRSS2:ETV4genefusionsdefineathird molecularsubtypeofprostatecancer Cancer Res 66 73396400 584 J.M.Mosquera,S.Perner,F.Demichelis,R.Kim,M.D.Hofer,K.D.Mertz,P.L.Paris,J.Simko,C. Collins,T.A.Bismar,A.M.ChinnaiyanandM.A.Rubin(2007)MorphologicalfeaturesofTMPRSS2 ERGgenefusionprostatecancer J Pathol 212 191101 585 R.K.Nam,L.Sugar,Z.Wang,W.Yang,R.Kitching,L.H.Klotz,V.Venkateswaran,S.A.NarodandA. Seth(2007)ExpressionofTMPRSS2ERGGeneFusioninProstateCancerCellsisanImportant PrognosticFactorforCancerProgression Cancer Biol Ther 61 586 J.Wang,Y.Cai,C.RenandM.Ittmann(2006)ExpressionofVariantTMPRSS2/ERGFusionMessenger RNAsIsAssociatedwithAggressiveProstateCancerCancer Res 66 17834751 587 I.U.AgoulnikandN.L.Weigel(2006)Androgenreceptoractioninhormonedependentandrecurrent prostatecancer J Cell Biochem 99 236272 588 K.L.Burnstein(2005)Regulationofandrogenreceptorlevels:implicationsforprostatecancer progressionandtherapy J Cell Biochem 95 465769 589 Z.CuligandG.Bartsch(2006)Androgenaxisinprostatecancer J Cell Biochem 99 237381 590 J.EdwardsandJ.M.Bartlett(2005)Theandrogenreceptorandsignaltransductionpathwaysinhormone refractoryprostatecancer.Part2:Androgenreceptorcofactorsandbypasspathways BJU Int 95 9132735 591 J.EdwardsandJ.M.Bartlett(2005)Theandrogenreceptorandsignaltransductionpathwaysinhormone refractoryprostatecancer.Part1:Modificationstotheandrogenreceptor BJU Int 95 913206 592 L.Bubendorf,J.Kononen,P.Koivisto,P.Schraml,H.Moch,T.C.Gasser,N.Willi,M.J.Mihatsch,G. SauterandO.P.Kallioniemi(1999)Surveyofgeneamplificationsduringprostatecancerprogressionby highthroughoutfluorescenceinsituhybridizationontissuemicroarrays Cancer Res 59 48036 593 J.Edwards,N.S.Krishna,R.Mukherjee,A.D.Watters,M.A.UnderwoodandJ.M.Bartlett(2001) Amplificationoftheandrogenreceptormaynotexplainthedevelopmentofandrogenindependent prostatecancer BJU Int 88 66337 594 P.Koivisto,J.Kononen,C.Palmberg,T.Tammela,E.Hyytinen,J.Isola,J.Trapman,K.Cleutjens,A. Noordzij,T.VisakorpiandO.P.Kallioniemi(1997)Androgenreceptorgeneamplification:apossible molecularmechanismforandrogendeprivationtherapyfailureinprostatecancer Cancer Res 57 23149 595 P.A.Koivisto,J.Schleutker,H.Helin,C.EhrenVanEekelen,O.P.KallioniemiandJ.Trapman(1999) Androgenreceptorgenealterationsandchromosomalgainsandlossesinprostatecarcinomasappearing duringfinasteridetreatmentforbenignprostatichyperplasia Clin Cancer Res 511357882

82 596 M.J.Linja,K.J.Savinainen,O.R.Saramaki,T.L.Tammela,R.L.VessellaandT.Visakorpi(2001) Amplificationandoverexpressionofandrogenreceptorgeneinhormonerefractoryprostatecancer Cancer Res 61 935505 597 T.Visakorpi,E.Hyytinen,P.Koivisto,M.Tanner,R.Keinanen,C.Palmberg,A.Palotie,T.Tammela,J. IsolaandO.P.Kallioniemi(1995)Invivoamplificationoftheandrogenreceptorgeneandprogressionof humanprostatecancer Nat Genet 944016 598 J.Edwards,N.S.Krishna,K.M.GrigorandJ.M.Bartlett(2003)Androgenreceptorgeneamplification andproteinexpressioninhormonerefractoryprostatecancer Br J Cancer 89 35526 599 C.D.Chen,D.S.Welsbie,C.Tran,S.H.Baek,R.Chen,R.Vessella,M.G.RosenfeldandC.L.Sawyers (2004)Moleculardeterminantsofresistancetoantiandrogentherapy Nat Med 10 1339 600 M.E.Taplin,B.Rajeshkumar,S.Halabi,C.P.Werner,B.A.Woda,J.Picus,W.Stadler,D.F.Hayes,P. W.Kantoff,N.J.VogelzangandE.J.Small(2003)Androgenreceptormutationsinandrogen independentprostatecancer:CancerandLeukemiaGroupBStudy9663 J Clin Oncol 21 1426738 601 G.Buchanan,N.M.Greenberg,H.I.Scher,J.M.Harris,V.R.MarshallandW.D.Tilley(2001) Collocationofandrogenreceptorgenemutationsinprostatecancer Clin Cancer Res 75127381 602 E.R.Hyytinen,K.Haapala,J.Thompson,I.Lappalainen,M.Roiha,I.Rantala,H.J.Helin,O.A.Janne, M.Vihinen,J.J.PalvimoandP.A.Koivisto(2002)Patternofsomaticandrogenreceptorgenemutations inpatientswithhormonerefractoryprostatecancer Lab Invest 82 1115918 603 J.Thompson,E.R.Hyytinen,K.Haapala,I.Rantala,H.J.Helin,O.A.Janne,J.J.PalvimoandP.A. Koivisto(2003)Androgenreceptormutationsinhighgradeprostatecancerbeforehormonaltherapy Lab Invest 83 12170913 604 J.Ceraline,M.D.Cruchant,E.Erdmann,P.Erbs,J.E.Kurtz,B.Duclos,D.Jacqmin,D.ChopinandJ.P. Bergerat(2004)Constitutiveactivationoftheandrogenreceptorbyapointmutationinthehingeregion:a newmechanismforandrogenindependentgrowthinprostatecancer Int J Cancer 108 11527 605 L.V.Nazareth,D.L.Stenoien,W.E.Bingman,3rd,A.J.James,C.Wu,Y.Zhang,D.P.Edwards,M. Mancini,M.Marcelli,D.J.LambandN.L.Weigel(1999)AC619Ymutationinthehumanandrogen receptorcausesinactivationandmislocalizationofthereceptorwithconcomitantsequestrationofSRC1 (steroidreceptorcoactivator1) Mol Endocrinol 13 12206575 606 G.Buchanan,M.Yang,J.M.Harris,H.S.Nahm,G.Han,N.Moore,J.M.Bentel,R.J.Matusik,D.J. Horsfall,V.R.Marshall,N.M.GreenbergandW.D.Tilley(2001)Mutationsattheboundaryofthehinge andligandbindingdomainoftheandrogenreceptorconferincreasedtransactivationfunction Mol Endocrinol 15 14656 607 A.J.James,I.U.Agoulnik,J.M.Harris,G.Buchanan,W.D.Tilley,M.Marcelli,D.J.LambandN.L. Weigel(2002)Anovelandrogenreceptormutant,A748T,exhibitshormoneconcentrationdependent defectsinnuclearaccumulationandactivitydespitenormalhormonebindingaffinity Mol Endocrinol 16 122692705 608 J.S.Horoszewicz,S.S.Leong,T.M.Chu,Z.L.Wajsman,M.Friedman,L.Papsidero,U.Kim,L.S. Chai,S.Kakati,S.K.AryaandA.A.Sandberg(1980)TheLNCaPcelllineanewmodelforstudieson humanprostaticcarcinoma Prog Clin Biol Res 37 11532 609 J.S.Horoszewicz,S.S.Leong,E.Kawinski,J.P.Karr,H.Rosenthal,T.M.Chu,E.A.MirandandG.P. Murphy(1983)LNCaPmodelofhumanprostaticcarcinoma Cancer Res 43 4180918 610 J.P.Gaddipati,D.G.Mcleod,H.B.Heidenberg,I.A.Sesterhenn,M.J.Finger,J.W.MoulandS. Srivastava(1994)Frequentdetectionofcodon877mutationintheandrogenreceptorgeneinadvanced prostatecancers Cancer Res 54 1128614 611 H.Suzuki,K.Akakura,A.Komiya,S.Aida,S.AkimotoandJ.Shimazaki(1996)Codon877mutationin theandrogenreceptorgeneinadvancedprostatecancer:relationtoantiandrogenwithdrawalsyndrome Prostate 29 31538 612 H.Suzuki,N.Sato,Y.Watabe,M.Masai,S.SeinoandJ.Shimazaki(1993)Androgenreceptorgene mutationsinhumanprostatecancer J Steroid Biochem Mol Biol 46 675965 613 M.E.Taplin,G.J.Bubley,Y.J.Ko,E.J.Small,M.Upton,B.RajeshkumarandS.P.Balk(1999) Selectionforandrogenreceptormutationsinprostatecancerstreatedwithandrogenantagonist Cancer Res 59 1125115 614 X.Y.Zhao,B.Boyle,A.V.Krishnan,N.M.Navone,D.M.PeehlandD.Feldman(1999)Twomutations identifiedintheandrogenreceptorofthenewhumanprostatecancercelllineMDAPCa2a J Urol 162 6 21929 615 M.A.Fenton,T.D.Shuster,A.M.Fertig,M.E.Taplin,G.Kolvenbag,G.J.BubleyandS.P.Balk(1997) Functionalcharacterizationofmutantandrogenreceptorsfromandrogenindependentprostatecancer Clin Cancer Res 3813838 616 J.Tan,Y.Sharief,K.G.Hamil,C.W.Gregory,D.Y.Zang,M.Sar,P.H.Gumerlock,R.W.Devere White,T.G.Pretlow,S.E.Harris,E.M.Wilson,J.L.MohlerandF.S.French(1997) Dehydroepiandrosteroneactivatesmutantandrogenreceptorsexpressedintheandrogendependenthuman prostatecancerxenograftCWR22andLNCaPcells Mol Endocrinol 11 44509 617 J.Veldscholte,C.A.Berrevoets,C.RisStalpers,G.G.Kuiper,G.Jenster,J.Trapman,A.O.Brinkmann andE.Mulder(1992)TheandrogenreceptorinLNCaPcellscontainsamutationintheligandbinding domainwhichaffectssteroidbindingcharacteristicsandresponsetoantiandrogens J Steroid Biochem Mol Biol 41386659 618 J.Veldscholte,C.A.Berrevoets,N.D.Zegers,T.H.VanDerKwast,J.A.GrootegoedandE.Mulder (1992)Hormoneinduceddissociationoftheandrogenreceptorheatshockproteincomplex:useofanew monoclonalantibodytodistinguishtransformedfromnontransformedreceptors Biochemistry 31 327422 30

83 619 N.M.Navone,M.Olive,M.Ozen,R.Davis,P.Troncoso,S.M.Tu,D.Johnston,A.Pollack,S.Pathak, A.C.VonEschenbachandC.J.Logothetis(1997)Establishmentoftwohumanprostatecancercelllines derivedfromasinglebonemetastasis Clin Cancer Res 312Pt12493500 620 X.Y.Zhao,P.J.Malloy,A.V.Krishnan,S.Swami,N.M.Navone,D.M.PeehlandD.Feldman(2000) Glucocorticoidscanpromoteandrogenindependentgrowthofprostatecancercellsthroughamutated androgenreceptor Nat Med 667036 621 Z.Culig,A.Hobisch,M.V.Cronauer,A.C.Cato,A.Hittmair,C.Radmayr,J.Eberle,G.BartschandH. Klocker(1993)Mutantandrogenreceptordetectedinanadvancedstageprostaticcarcinomaisactivated byadrenalandrogensandprogesterone Mol Endocrinol 712154150 622 J.R.Newmark,D.O.Hardy,D.C.Tonb,B.S.Carter,J.I.Epstein,W.B.Isaacs,T.R.BrownandE.R. Barrack(1992)Androgenreceptorgenemutationsinhumanprostatecancer Proc Natl Acad Sci U S A 89 14631923 623 H.Peterziel,Z.Culig,J.Stober,A.Hobisch,C.Radmayr,G.Bartsch,H.KlockerandA.C.Cato(1995) Mutantandrogenreceptorsinprostatictumorsdistinguishbetweenaminoacidsequencerequirementsfor transactivationandligandbinding Int J Cancer 63 454450 624 K.Haapala,E.R.Hyytinen,M.Roiha,M.Laurila,I.Rantala,H.J.HelinandP.A.Koivisto(2001) Androgenreceptoralterationsinprostatecancerrelapsedduringacombinedandrogenblockadeby orchiectomyandbicalutamide Lab Invest 81 12164751 625 T.Hara,J.Miyazaki,H.Araki,M.Yamaoka,N.Kanzaki,M.KusakaandM.Miyamoto(2003)Novel mutationsofandrogenreceptor:apossiblemechanismofbicalutamidewithdrawalsyndrome Cancer Res 63 114953 626 C.E.Bohl,W.Gao,D.D.Miller,C.E.BellandJ.T.Dalton(2005)Structuralbasisforantagonismand resistanceofbicalutamideinprostatecancer Proc Natl Acad Sci U S A 102 1762016 627 C.E.Bohl,D.D.Miller,J.Chen,C.E.BellandJ.T.Dalton(2005)Structuralbasisforaccommodationof nonsteroidalligandsintheandrogenreceptor J Biol Chem 280 453774754 628 C.E.Bohl,Z.Wu,D.D.Miller,C.E.BellandJ.T.Dalton(2007)CrystalstructureoftheT877Ahuman androgenreceptorligandbindingdomaincomplexedtocyproteroneacetateprovidesinsightforligand inducedconformationalchangesandstructurebaseddrugdesign J Biol Chem 282 181364855 629 C.A.Marhefka,B.M.Moore,2nd,T.C.Bishop,L.Kirkovsky,A.Mukherjee,J.T.DaltonandD.D. Miller(2001)Homologymodelingusingmultiplemoleculardynamicssimulationsanddockingstudiesof thehumanandrogenreceptorligandbindingdomainboundtotestosteroneandnonsteroidalligands J Med Chem 4411172940 630 N.Poujol,J.M.Wurtz,B.Tahiri,S.Lumbroso,J.C.Nicolas,D.MorasandC.Sultan(2000)Specific recognitionofandrogensbytheirnuclearreceptor.Astructurefunctionstudy J Biol Chem 275 3124022 31 631 P.M.Matias,M.A.Carrondo,R.Coelho,M.Thomaz,X.Y.Zhao,A.Wegg,K.Crusius,U.EgnerandP. Donner(2002)Structuralbasisfortheglucocorticoidresponseinamutanthumanandrogenreceptor (AR(ccr))derivedfromanandrogenindependentprostatecancer J Med Chem 45 7143946 632 S.Mcdonald,L.Brive,D.B.Agus,H.I.ScherandK.R.Ely(2000)Ligandresponsivenessinhuman prostatecancer:structuralanalysisofmutantandrogenreceptorsfromLNCaPandCWR22tumors Cancer Res 60 9231722 633 M.S.Ozers,B.D.Marks,K.Gowda,K.R.Kupcho,K.M.Ervin,T.DeRosier,N.Qadir,H.C.Eliason, S.M.RiddleandM.S.Shekhani(2007)TheandrogenreceptorT877AmutantrecruitsLXXLLand FXXLFpeptidesdifferentlythanwildtypeandrogenreceptorinatimeresolvedfluorescenceresonance energytransferassay Biochemistry 46 368395 634 B.He,R.T.Gampe,Jr.,A.T.Hnat,J.L.Faggart,J.T.Minges,F.S.FrenchandE.M.Wilson(2006) Probingthefunctionallinkbetweenandrogenreceptorcoactivatorandligandbindingsitesinprostate cancerandandrogeninsensitivity J Biol Chem 281 10664863 635 H.F.AcevedoandJ.W.Goldzieher(1965)FurtherStudiesontheMetabolismof4(414c)Androstene 3,17DionebyNormalandPathologicalHumanProstateTissue Biochim Biophys Acta 97 56470 636 D.R.Bauman,S.Steckelbroeck,M.V.Williams,D.M.PeehlandT.M.Penning(2006)Identificationof themajoroxidative3alphahydroxysteroiddehydrogenaseinhumanprostatethatconverts5alpha androstane3alpha,17betadiolto5alphadihydrotestosterone:apotentialtherapeutictargetforandrogen dependentdisease Mol Endocrinol 20 244458 637 M.E.Harper,A.Pike,W.B.PeelingandK.Griffiths(1974)Steroidsofadrenaloriginmetabolizedby humanprostatictissuebothinvivoandinvitro J Endocrinol 60 111725 638 W.H.PearlmanandM.R.Pearlman(1961)ThemetabolisminvivoofDelta4androstene3,17dione7 H3;itslocalizationintheventralprostateandothertissuesoftherat J Biol Chem 236 13217 639 M.Stanbrough,G.J.Bubley,K.Ross,T.R.Golub,M.A.Rubin,T.M.Penning,P.G.FebboandS.P. Balk(2006)Increasedexpressionofgenesconvertingadrenalandrogenstotestosteroneinandrogen independentprostatecancer Cancer Res 66 5281525 640 A.Belanger,M.BrochuandJ.Cliche(1986)Levelsofplasmasteroidglucuronidesinintactandcastrated menwithprostaticcancer J Clin Endocrinol Metab 62 58125 641 F.Labrie,A.Dupont,A.Belanger,R.LachanceandM.Giguere(1985)Longtermtreatmentwith luteinisinghormonereleasinghormoneagonistsandmaintenanceofserumtestosteronetocastration concentrations Br Med J (Clin Res Ed) 291 649236970 642 S.T.Page,D.W.Lin,E.A.Mostaghel,D.L.Hess,L.D.True,J.K.Amory,P.S.Nelson,A.M. MatsumotoandW.J.Bremner(2006)Persistentintraprostaticandrogenconcentrationsaftermedical castrationinhealthymen J Clin Endocrinol Metab 91 1038506 643 M.A.Titus,M.J.Schell,F.B.Lih,K.B.TomerandJ.L.Mohler(2005)Testosteroneand dihydrotestosteronetissuelevelsinrecurrentprostatecancer Clin Cancer Res 11 1346537

84 644 N.Craft,Y.Shostak,M.CareyandC.L.Sawyers(1999)Amechanismforhormoneindependentprostate cancerthroughmodulationofandrogenreceptorsignalingbytheHER2/neutyrosinekinase Nat Med 53 2805 645 R.E.Bakin,D.Gioeli,E.A.BissonetteandM.J.Weber(2003)AttenuationofRassignalingrestores androgensensitivitytohormonerefractoryC42prostatecancercells Cancer Res 63 8197580 646 R.E.Bakin,D.Gioeli,R.A.Sikes,E.A.BissonetteandM.J.Weber(2003)Constitutiveactivationofthe Ras/mitogenactivatedproteinkinasesignalingpathwaypromotesandrogenhypersensitivityinLNCaP prostatecancercells Cancer Res 63 819819 647 T.Chen,R.W.Cho,P.J.StorkandM.J.Weber(1999)Elevationofcyclicadenosine3',5' monophosphatepotentiatesactivationofmitogenactivatedproteinkinasebygrowthfactorsinLNCaP prostatecancercells Cancer Res 59 12138 648 D.Gioeli,J.W.Mandell,G.R.Petroni,H.F.Frierson,Jr.andM.J.Weber(1999)Activationofmitogen activatedproteinkinaseassociatedwithprostatecancerprogression Cancer Res 59 227984 649 B.J.Park,J.I.Park,D.S.Byun,J.H.ParkandS.G.Chi(2000)Mitogenicconversionoftransforming growthfactorbeta1effectbyoncogenicHaRasinducedactivationofthemitogenactivatedprotein kinasesignalingpathwayinhumanprostatecancer Cancer Res 60 1130318 650 T.Putz,Z.Culig,I.E.Eder,C.NesslerMenardi,G.Bartsch,H.Grunicke,F.UberallandH.Klocker (1999)Epidermalgrowthfactor(EGF)receptorblockadeinhibitstheactionofEGF,insulinlikegrowth factorI,andaproteinkinaseAactivatoronthemitogenactivatedproteinkinasepathwayinprostate cancercelllines Cancer Res 59 122733 651 J.D.Debes,L.J.Schmidt,H.HuangandD.J.Tindall(2002)p300mediatesandrogenindependent transactivationoftheandrogenreceptorbyinterleukin6 Cancer Res 62 2056326 652 T.Matsuda,A.Junicho,T.Yamamoto,H.Kishi,K.Korkmaz,F.Saatcioglu,H.FuseandA.Muraguchi (2001)Crosstalkbetweensignaltransducerandactivatoroftranscription3andandrogenreceptor signalinginprostatecarcinomacells Biochem Biophys Res Commun 283 117987 653 S.Xie,H.K.Lin,J.Ni,L.Yang,L.Wang,P.A.DiSant'agneseandC.Chang(2004)Regulationof interleukin6mediatedPI3Kactivationandneuroendocrinedifferentiationbyandrogensignalingin prostatecancerLNCaPcells Prostate 60 1617 654 S.Kraus,D.Gioeli,T.Vomastek,V.GordonandM.J.Weber(2006)ReceptorforactivatedCkinase1 (RACK1)andSrcregulatethetyrosinephosphorylationandfunctionoftheandrogenreceptor Cancer Res 66 221104754 655 Z.Guo,B.Dai,T.Jiang,K.Xu,Y.Xie,O.Kim,I.Nesheiwat,X.Kong,J.Melamed,V.D.Handratta,V. C.Njar,A.M.Brodie,L.R.Yu,T.D.Veenstra,H.ChenandY.Qiu(2006)Regulationofandrogen receptoractivitybytyrosinephosphorylation Cancer Cell 10 430919 656 A.Migliaccio,M.DiDomenico,G.Castoria,M.Nanayakkara,M.Lombardi,A.DeFalco,A.Bilancio,L. Varricchio,A.CiociolaandF.Auricchio(2005)Steroidreceptorregulationofepidermalgrowthfactor signalingthroughSrcinbreastandprostatecancercells:steroidantagonistaction Cancer Res 65 22 1058593 657 E.Unni,S.Sun,B.Nan,M.J.Mcphaul,B.Cheskis,M.A.ManciniandM.Marcelli(2004)Changesin androgenreceptornongenotropicsignalingcorrelatewithtransitionofLNCaPcellstoandrogen independence Cancer Res 64 19715668 658 S.Lu,C.Ren,Y.LiuandD.E.Epner(2006)PI3KAktsignalingisinvolvedintheregulationof p21(WAF/CIP)expressionandandrogenindependentgrowthinprostatecancercells Int J Oncol 28 1 24551 659 H.K.Lin,Y.C.Hu,L.Yang,S.Altuwaijri,Y.T.Chen,H.Y.KangandC.Chang(2003)Suppression versusinductionofandrogenreceptorfunctionsbythephosphatidylinositol3kinase/Aktpathwayin prostatecancerLNCaPcellswithdifferentpassagenumbers J Biol Chem 278 51509027 660 S.S.Taneja,S.Ha,N.K.Swenson,H.Y.Huang,P.Lee,J.Melamed,E.Shapiro,M.J.GarabedianandS. K.Logan(2005)Cellspecificregulationofandrogenreceptorphosphorylationinvivo J Biol Chem 280 494091624 661 P.Li,H.Lee,S.Guo,T.G.Unterman,G.JensterandW.Bai(2003)AKTindependentprotectionof prostatecancercellsfromapoptosismediatedthroughcomplexformationbetweentheandrogenreceptor andFKHR Mol Cell Biol 23 110418 662 R.Kaaks,A.LukanovaandB.Sommersberg(2000)Plasmaandrogens,IGF1,bodysize,andprostate cancerrisk:asyntheticreview Prostate Cancer Prostatic Dis 33157172 663 G.Pandini,R.Mineo,F.Frasca,C.T.Roberts,Jr.,M.Marcelli,R.VigneriandA.Belfiore(2005) AndrogensupregulatetheinsulinlikegrowthfactorIreceptorinprostatecancercells Cancer Res 65 5 184957 664 J.I.Jones,M.E.DoerrandD.R.Clemmons(1995)Cellmigration:interactionsamongintegrins,IGFs andIGFBPs Prog Growth Factor Res 62431927 665 S.Kiyama,K.Morrison,T.Zellweger,M.Akbari,M.Cox,D.Yu,H.MiyakeandM.E.Gleave(2003) Castrationinducedincreasesininsulinlikegrowthfactorbindingprotein2promotesproliferationof androgenindependenthumanprostateLNCaPtumors Cancer Res 63 13357584 666 V.C.Russo,L.A.Bach,A.J.Fosang,N.L.BakerandG.A.Werther(1997)Insulinlikegrowthfactor bindingprotein2bindstocellsurfaceproteoglycansintheratbrainolfactorybulb Endocrinology 138 11 485867 667 R.Chmelar,G.Buchanan,E.F.Need,W.TilleyandN.M.Greenberg(2007)Androgenreceptor coregulatorsandtheirinvolvementinthedevelopmentandprogressionofprostatecancer Int J Cancer 120 471933

85 668 C.W.Gregory,B.He,R.T.Johnson,O.H.Ford,J.L.Mohler,F.S.FrenchandE.M.Wilson(2001)A mechanismforandrogenreceptormediatedprostatecancerrecurrenceafterandrogendeprivationtherapy Cancer Res 61 1143159 669 M.J.Linja,K.P.Porkka,Z.Kang,K.J.Savinainen,O.A.Janne,T.L.Tammela,R.L.Vessella,J.J. PalvimoandT.Visakorpi(2004)Expressionofandrogenreceptorcoregulatorsinprostatecancer Clin Cancer Res 10 3103240 670 I.U.Agoulnik,A.Vaid,W.E.Bingman,3rd,H.Erdeme,A.Frolov,C.L.Smith,G.Ayala,M.M. IttmannandN.L.Weigel(2005)RoleofSRC1inthepromotionofprostatecancercellgrowthandtumor progression Cancer Res 65 17795967 671 T.Ueda,N.BruchovskyandM.D.Sadar(2002)ActivationoftheandrogenreceptorNterminaldomain byinterleukin6viaMAPKandSTAT3signaltransductionpathways J Biol Chem 277 9707685 672 T.Ueda,N.R.Mawji,N.BruchovskyandM.D.Sadar(2002)Ligandindependentactivationofthe androgenreceptorbyinterleukin6andtheroleofsteroidreceptorcoactivator1inprostatecancercells J Biol Chem 277 413808794 673 C.W.Gregory,X.Fei,L.A.Ponguta,B.He,H.M.Bill,F.S.FrenchandE.M.Wilson(2004)Epidermal growthfactorincreasescoactivationoftheandrogenreceptorinrecurrentprostatecancer J Biol Chem 279 8711930 674 V.J.Gnanapragasam,H.Y.Leung,A.S.Pulimood,D.E.NealandC.N.Robson(2001)Expressionof RAC3,asteroidhormonereceptorcoactivatorinprostatecancer Br J Cancer 85 12192836 675 H.J.Zhou,J.Yan,W.Luo,G.Ayala,S.H.Lin,H.Erdem,M.Ittmann,S.Y.TsaiandM.J.Tsai(2005) SRC3isrequiredforprostatecancercellproliferationandsurvival Cancer Res 65 17797683 676 B.Comuzzi,L.Lambrinidis,H.Rogatsch,S.GodoyTundidor,N.Knezevic,I.Krhen,Z.Marekovic,G. Bartsch,H.Klocker,A.HobischandZ.Culig(2003)ThetranscriptionalcoactivatorcAMPresponse elementbindingproteinbindingproteinisexpressedinprostatecancerandenhancesandrogenandanti androgeninducedandrogenreceptorfunction Am J Pathol 162 123341 677 B.Comuzzi,C.Nemes,S.Schmidt,Z.Jasarevic,M.Lodde,A.Pycha,G.Bartsch,F.Offner,Z.Culigand A.Hobisch(2004)TheandrogenreceptorcoactivatorCBPisupregulatedfollowingandrogen withdrawalandishighlyexpressedinadvancedprostatecancer J Pathol 204 215966 678 J.D.Debes,T.J.Sebo,C.M.Lohse,L.M.Murphy,D.A.HaugenandD.J.Tindall(2003)p300in prostatecancerproliferationandprogression Cancer Res 63 22763840 679 C.Mestayer,M.Blanchere,F.Jaubert,B.DufourandI.Mowszowicz(2003)Expressionofandrogen receptorcoactivatorsinnormalandcancerprostatetissuesandculturedcelllines Prostate 56 3192200 680 Y.Miyoshi,H.Ishiguro,H.Uemura,K.Fujinami,H.Miyamoto,Y.Miyoshi,H.KitamuraandY.Kubota (2003)ExpressionofARassociatedprotein55(ARA55)andandrogenreceptorinprostatecancer Prostate 56 42806 681 Z.Culig,H.Klocker,G.BartschandA.Hobisch(2002)Androgenreceptorsinprostatecancer Endocr Relat Cancer 9315570 682 Y.C.Hu,S.Yeh,S.D.Yeh,E.R.Sampson,J.Huang,P.Li,C.L.Hsu,H.J.Ting,H.K.Lin,L.Wang,E. Kim,J.NiandC.Chang(2004)Functionaldomainandmotifanalysesofandrogenreceptorcoregulator ARA70anditsdifferentialexpressioninprostatecancer J Biol Chem 279 323343846 683 H.Miyamoto,S.Yeh,H.Lardy,E.MessingandC.Chang(1998)Delta5androstenediolisanatural hormonewithandrogenicactivityinhumanprostatecancercells Proc Natl Acad Sci U S A 95 19110838 684 M.C.Bosland(2000)Theroleofsteroidhormonesinprostatecarcinogenesis J Natl Cancer Inst Monogr 273966 685 M.Hiramatsu,I.Maehara,M.Ozaki,N.Harada,S.OrikasaandH.Sasano(1997)Aromatasein hyperplasiaandcarcinomaofthehumanprostate Prostate 31 211824 686 M.Krieg,R.NassandS.Tunn(1993)Effectofagingonendogenouslevelof5alphadihydrotestosterone, testosterone,estradiol,andestroneinepitheliumandstromaofnormalandhyperplastichumanprostate J Clin Endocrinol Metab 77 237581 687 H.MatzkinandM.S.Soloway(1992)Immunohistochemicalevidenceoftheexistenceandlocalizationof aromataseinhumanprostatictissues Prostate 21 430914 688 S.Tekur,K.M.Lau,J.Long,K.BurnsteinandS.M.Ho(2001)ExpressionofRFG/ELE1alpha/ARA70 innormalandmalignantprostaticepithelialcellculturesandlines:regulationbymethylationandsex steroids Mol Carcinog 30 1113 689 H.J.Voeller,C.I.TruicaandE.P.Gelmann(1998)Betacateninmutationsinhumanprostatecancer Cancer Res 58 1225203 690 H.J.Ting,S.Yeh,K.NishimuraandC.Chang(2002)Supervillinassociateswithandrogenreceptorand modulatesitstranscriptionalactivity Proc Natl Acad Sci U S A 99 26616 691 K.Halkidou,V.J.Gnanapragasam,P.B.Mehta,I.R.Logan,M.E.Brady,S.Cook,H.Y.Leung,D.E. NealandC.N.Robson(2003)ExpressionofTip60,anandrogenreceptorcoactivator,anditsrolein prostatecancerdevelopment Oncogene 22 16246677 692 J.H.Kim,B.Kim,L.Cai,H.J.Choi,K.A.Ohgi,C.Tran,C.Chen,C.H.Chung,O.Huber,D.W.Rose, C.L.Sawyers,M.G.RosenfeldandS.H.Baek(2005)Transcriptionalregulationofametastasis suppressorgenebyTip60andbetacatenincomplexes Nature 434 70359216 693 J.Edwards,N.S.Krishna,C.J.WittonandJ.M.Bartlett(2003)Geneamplificationsassociatedwiththe developmentofhormoneresistantprostatecancer Clin Cancer Res 914527181 694 N.Sato,M.D.Sadar,N.Bruchovsky,F.Saatcioglu,P.S.Rennie,S.Sato,P.H.LangeandM.E.Gleave (1997)Androgenicinductionofprostatespecificantigengeneisrepressedbyproteinproteininteraction betweentheandrogenreceptorandAP1/cJuninthehumanprostatecancercelllineLNCaP J Biol Chem 272 281748594

86 695 J.Edwards,N.S.Krishna,R.MukherjeeandJ.M.Bartlett(2004)TheroleofcJunandcFosexpression inandrogenindependentprostatecancer J Pathol 204 21538 696 N.Gao,Z.Zhang,B.H.JiangandX.Shi(2003)RoleofPI3K/AKT/mTORsignalinginthecellcycle progressionofhumanprostatecancer Biochem Biophys Res Commun 310 4112432 697 M.Sun,L.Yang,R.I.Feldman,X.M.Sun,K.N.Bhalla,R.Jove,S.V.NicosiaandJ.Q.Cheng(2003) Activationofphosphatidylinositol3kinase/Aktpathwaybyandrogenthroughinteractionofp85alpha, androgenreceptor,andSrc J Biol Chem 278 44429923000 698 H.J.MackayandC.J.Twelves(2003)ProteinkinaseC:atargetforanticancerdrugs? Endocr Relat Cancer 10 338996

87

88 Chapter2Aminoacids313andaminoacidsinand flanking the 23 FXXLF 27 motif modulate the interaction between the aminoterminal and ligand bindingdomainoftheandrogenreceptor Chapter2 Aminoacids313andaminoacidsinandflankingthe 23 FXXLF 27 motifmodulatetheinteractionbetweenthe aminoterminalandligandbindingdomainoftheandrogen receptor KarineSteketee 1, *,CorA.Berrevoets 2, *,HendrikusJ.Dubbink 1, *,Paul Doesburg 1,RemkoHersmus 1,AlbertO.Brinkmann 2andJanTrapman 1. 1DepartmentofPathology,JosephineNefkensInstitute,ErasmusMedicalCenter, and 2DepartmentofReproductionandDevelopment,ErasmusMedicalCenter, Rotterdam,TheNetherlands *Theseauthorscontributedequallytothisstudy EurJBiochem.2002Dec;269(23):57805791

89 SUMMARY The NH 2terminal domain (NTD) and the ligandbinding domain (LBD) of the androgen receptor(AR)exhibitaliganddependentinteraction(N/Cinteraction).Aminoacids3to36in theNTD(AR 336 )playadominantroleinthisinteraction.Previously,ithasbeenshownthata 23 27 Φxx ΦΦ motif in AR 336 , FxxLF , is essential for LBD interaction. We demonstrate in the currentstudythatAR 336 canbesubdividedintotwofunctionallydistinctfragments:AR 313 and AR 1636 . AR 313 does not directly interact with the AR LBD, but rather contributes to the transactivation function of the AR.NTDAR.LBD complex. AR 1636, encompassing the 23 FxxLF27 motif, is predicted to fold into a long amphipathic αhelix. A second Φxx ΦΦ candidateproteininteractionmotifwithinthehelicalstructure, 30 VREVI 34 ,showsnoaffinityto 23 27 the LBD. Within AR 1636 , amino acid residues in and flanking the FxxLF motif are demonstrated to modulate N/C interaction. Substitution of Q24 and N25 by alanine residues enhancesN/Cinteraction.Substitutionofaminoacidsflankingthe 23 FxxLF 27 motifbyalanines areinhibitorytoLBDinteraction. INTRODUCTION The androgen receptor (AR) is a member of the steroid receptor subgroup of the nuclear receptorfamilyoftranscriptionfactors.Nuclearreceptorshaveamodularstructure,composed of a moderately conserved carboxyterminal ligandbinding domain (LBD) folded in 12 α helices, a highly conserved centralDNAbindingdomain(DBD)andanonconservedamino terminaldomain(NTD).Mostnuclearreceptorscontaintwotransactivationfunctions:AF1in the NTD, and AF2 in the LBD. Ligandactivated nuclear receptors bind as homo or heterodimers to hormone response elements in the regulatory regions of their target genes. Together with coactivators, general transcription factors and RNA polymerase II they form a stabletranscriptioninitiationcomplex(seeforrecentreviews[14]). Upon ligand binding the LBD acquires a conformation that facilitates the interaction with coactivators.Beststudiedinthisregardaretheinteractionswiththep160coactivatorsSRC1, TIF2/GRIP1andACTR/RAC3.Thenuclearreceptorinteractiondomainsofp160coactivators containLxxLLmotifs(NRboxes),whichbindtoahydrophobiccleftintheagonistactivated LBD. Antagonists induce a different LBD conformation, which inhibits the interaction with coactivatorsandenablesthebindingofcorepressors[5](seeforreview[3]). P160coactivatorsnotonlybindtotheLBD,butalsototheNTD[6,7].Thisinteractionis independentoftheNRboxes.Asshownfortheestrogenreceptor α(ER α),simultaneousNTD andLBDbindingbyonecoactivatorcanconfersynergismofAF1andAF2activities,which mightbenecessaryforoptimalfunctioning[8]. Like shown for other nuclear receptors, p160 coactivators can bind the AR LBD by their LxxLL motifs, and they interact with the AR NTD, independent of these motifs [911]. In contrast to AR AF1, which is strong, AF2 needs overexpression of a p160 coactivator to become manifest [9,10,1215]. Many other proteins with known or unknown functions have beenfoundtointeractwiththeAR.AnoverviewofARinteractingproteinsispresentedinthe ARmutationsdatabase(http://www.mcgill.ca/androgendb)[16]. Previously,aliganddependentfunctionalinteractionbetweentheARsubdomainsNTDand LBD,hasbeendescribed[1719].ThisN/Cinteractionmightbeintraorintermolecular[15,17 19]. In vitro pulldownexperimentsindicatedthatARN/Cinteractionisdirect[11].TheAF2

90 coredomaininhelix12oftheARLBDwasshowntobeinvolvedthisinteraction[11,15].In theARNTDtworegionsareinvolvedinthefunctionalinteractionwiththeARLBD:AR 336 , 23 27 includingthe FxxLF motif,andAR 370494 ,whichencompassesatransactivationfunctionand apresumedsupplementaryproteininteractiondomain [15,20]. In the present study, AR 336 is subdividedintotwofragments:AR 313 andAR 1636, whicharefurthercharacterized. EXPERIMENTALPROCEDURES Materials and plasmid construction Dihydrotestosterone (DHT) was purchased from Steraloids (Wilton, NH), R1881 (methyltrienolone)wasfromNEN(Boston,MA). StandardprocedureswereutilizedforPCRandmolecular cloning [21]. PCR products were insertedinpGEMTEasy(Promega,Madison,WI).Allplasmidsweresequencedtoverifytheir correctconstruction.PrimersequencesareshowninTable1. ARnumberingcorrespondstoa lengthof919aminoacids,asemployedbyTheAndrogenReceptorGeneMutationsDatabase (http://www.mcgill.ca/androgendb) . Table1. Primersforconstructionofplasmids

Primername Primersequence pr14 5’TCTAGATTCCCGGGTCCGCCGTCCAAGACCTACCGAGG3’ pr1B 5’CAGCAGCAGCAAACTGGC3’ pr23/27RR 5’CTGGGGCCCGGGTTCTGGATCACTTCGCGGACGCTCTGGCG CAGATTCTGGCG AGCTCCT3’ pr30/33RR 5’CTGGGGCCCGGGTTCTGGATCCG TTCGCGGCG GCTCTGGAACAGATTCTGGAA3’ pr24/25AA 5’CTGGGGCCCGGGTTCTGGATCACTTCGCGGACGCTCTGGAACAGAGCCGC GAAAGCTCC3’ pr26/27AA 5’CTGGGGCCCGGGTTCTGGATCACTTCGCGGACGCTCTGGGCCGC ATTCTGGAAAGCTCC3’ pr236sense 5’AATTGGGGATCCGAGAAGTGCAGTTAGGGCTGGGAAGG3’ pr236antisense 5’GATCGAATTCGTTCTGGATCACTTCGCGCACGCTC3’ pr114sense 5’GATCGAAGTGCAGTTAGGGCTGGGAAGGGTCTACCCTCGGCCGG3’ pr114antisense 5’AATTCCGGCCGAGGGTAGACCCTTCCCAGCCCTAACTGCACTTC3’ 5’GATCTCCAAGACCTACCGAGGAGCTTTCCAGAATCTGTTCCAGAGCGTGCGCGAAGTGATC pr1636sense CAGAACG3’ 5’AATTCGTTCTGGATCACTTCGCGCACGCTCTGGAACAGATTCTGGAAAGCTCCTCGGTAGG pr1636antisense TCTTGGA3’ pr1732sense 5’GATCAAGACCTACCGAGGAGCTTTCCAGAATCTGTTCCAGAGCGTGCGCG3’ pr1732antisense 5’AATTCGCGCACGCTCTGGAACAGATTCTGGAAAGCTCCTCGGTAGGTCTT3’ pr2439sense 5’GATCCAGAATCTGTTCCAGAGCGTGCGCGAAGTGATCCAGAACCCGGGCCCCG3’ pr2439antisense 5’AATTCGGGGCCCGGGTTCTGGATCACTTCGCGCACGCTCTGGAACAGATTCTG3’ pr172B 5’CGGAGCAGCTGCTTAAGCCGGGG3’ pr242 5’AAGCTTCTGCAGGTCGACTCTAGG3’ PDsense 5’GATCCATATCGATAAGCTTAGATCTGAATTCA3’ PDantisense 5’AATTCAGATCTAAGCTTATCGATATG3’

91 Yeast expression constructs pGalADAR.NTDwt (AR 3503 ), originally derived from the yeast expression vector pACT2 (Clontech, Palo Alto, CA), and pGalDBDAR.LBD (AR 661919 ), originally derived from the yeast expression vector pGBT9 (Clontech), were previously described as AR.N8(high) and pGAL4(DBD)AR(LBD), respectively [15,18]. pGalADAR.NTD 113 was obtained by exchange of a 75 bp Sma I fragment of pGalADAR.NTDwt with a corresponding fragment derivedfromaPCRproductsynthesizedwithprimerspr14andpr1B,utilizingpSVAR 0[22]as template.pGalADAR.NTD 336wasobtainedbyexcisionofa117bp Sma I fragment from pGalADAR.NTDwt. For generation of pGalADAR.NTD23/27RR, pGalAD AR.NTD30/33RR,pGalADAR.NTD24/25AAandpGalADAR.NTD26/27AA,a117bp Sma I fragmentofpGalADAR.NTDwtwasexchangedwithcorrespondingfragmentscontainingthe indicated mutations, which were obtained by PCR on the template pGalADAR.NTDwt utilizingprimerG4AD1(Clontech)incombinationwithoneofthefollowingoligonucleotides: pr23/27RR,pr30/33RR,pr24/25AA,andpr26/27AA(mutatedcodonsareunderlinedinTable1). The AR peptide construct pGalADAR 236 was obtained by insertion of a 117 bp Bam HI/ Eco RIfragment,whichwassynthesizedbyPCRonthetemplatepSVAR 3[23],utilizing primerspr236senseandpr236antisense,intothe corresponding sites of pACT2 (Clontech). AllotherpGalADARpeptideconstructsweregeneratedby Bam HI/ Eco RIinframeinsertionof doublestranded oligonucleotides into the corresponding sites of pACT 2 (Clontech), yielding pGalADAR 114 , pGalADAR 1636 , pGalADAR 1732 , pGalADAR 2439 , pGalADAR 17 32 (18/19AA), pGalADAR 1732 (20/21AA), pGalADAR 1732 (23A), pGalADAR 1732 (24/25AA), pGalADAR 1732 (26/27AA), pGalADAR 1732 (28/29AA) and pGalADAR 1732 (30/31AA). Oligonucleotides for these AR peptide expression constructs were: pr114sense, pr114anti sense, pr1636sense, pr1636antisense, pr1732sense, pr1732antisense, pr2439sense, and pr2439antisense. Primers pr18/19AA, pr20/21AA, pr22A, pr24/25AA, pr26/27AA, pr28/29AA,andpr30/31AAsenseandantisenseoligonucleotidesweremodifiedpr1732sense andantisenseoligonucleotides,containingGCTGCA(sense)andTGCAGC(antisense)astwo adjacentalaninecodonsattheindicatedpositions. Mammalian cell expression constructs pMMTVLUC, pSVAR.NTDwt (AR 1503 ) (originally described as pSVAR(TAD 1494 )) and pSVAR.DBD.LBD(AR 537919 )(originallydescribedaspSVAR104)werepreviouslypublished [18,23,24].Insertionofa1.9kb Hind IIIfragmentfrompSVAR 3in Hind IIIdigestedpGAD 424 (Clontech) yielded pGAD 3. pGAD 3.NTD 313 was obtained by insertion of a 75 bp Sma I fragmentsynthesizedbyPCRonthepSVAR 0template,utilizingprimerspr14andpr172B,into the Xba I(Klenowfilled)/ Sma IsitesofpGAD 3.Exchangeofa1.5kb Hind III/ Bst EIIfragmentof pSVAR.NTDwt with the corresponding fragment of pGAD3.NTD 313 yielded pSVAR.NTD 313.pGAD 3337wasobtainedbyexcisionofa108bpfragmentfrompGAD 3 by Xba I(Klenowfilled)/ Sma Idigestion.pSVAR 8wasobtainedbyexchangeofa1.8kb Hind III fragment of pSVAR 3 with the corresponding fragment of pGAD 3337. For construction of pSVAR.NTD 337,a1.7kb Hind III/ Asp 718fragmentofpSVAR.NTDwtwasexchangedwith the corresponding fragment of pSVAR 8. pSVAR.NTD23/27RR, pSVAR.NTD30/33RR, pSVAR.NTD24/25AA and pSVAR.NTD26/27AA were obtained by exchange of a 348 bp Hind III /Sma I fragment of pSVAR.NTDwt with corresponding fragments synthesized by PCR on the pSVAR 0template,utilizingprimerpr242andoneofthemutant primers pr23/27RR, pr30/33RR,pr24/25AAorpr26/27AA.

92 Pull-down constructs For pSVAR.NTDwt and pSVAR.NTDmutant see Mammalian cell expression constructs . pCMVGSTAR.LBD(AR 664919 )wasgeneratedasfollows:pGEX2TKCHBwasobtainedby Bam HI/ Eco RIinframeinsertionofadoublestrandedoligonucleotideinthecorrespondingsites ofpGEX2TK(AmershamBiosciences,Uppsala,Sweden).OligonucleotideswerePDsenseand PDantisense. Insertion of the AR.LBD Cla I/ Bgl II fragment from pAR 34 [23] into the corresponding sites of pGEX2TKCHB yielded pGSTAR.LBD. Insertion of the AR LBD Bam HI/ Sal I fragment of pGSTAR.LBD into the corresponding sites of pCMVGST [25] yieldedpCMVGSTAR.LBD. Yeast growth, transformation and β-galactosidase assay Yeast strain Y190 (Clontech), containing an integrated Gal4 driven UAS GAL1 lacZ reporter gene, was utilized for twohybrid experiments. Yeast cells were grown in the appropriate selectivemedium(0.67%w/vyeastnitrogenbasewithoutaminoacids,2%w/vglucose,pH5.8), supplementedwiththerequiredaminoacids.Yeasttransformationwascarriedoutaccordingto thelithiumacetatemethod[26].Ayeastliquid βgalactosidaseassaywasperformedtoquantify theinteractionofGalADAR.NTDwt,GalADAR.NTDmutantandGalADARpeptideproteins withGalDBDAR.LBD.Inshort,stationaryphaseculturesofY190yeasttransformantsgrown inselectivemediumweredilutedinthesamemediumsupplementedwith1 MDHTorwithout hormone, and grown until an OD 600 between0.7and1.2.Next, βgalactosidase activity was determinedasdescribedpreviously[18]. Mammalian cell culture, transfection, and luciferase assay CHOcellsweremaintainedinDMEM/F12culturemedium,supplementedwith5%dextran coated charcoaltreated FCS (Life Technologies, Gaithersburg, MD). Cells were plated in 24 wellsplates at a density of 2 x 10 4 cells per well, in a total volume of 0.5 ml. Cells were transfected with MMTVLUC reporter plasmid (50 ng/well) and pSVAR.DBD.LBD (10 ng/well)togetherwithincreasingamountsofpSVAR.NTDwtorpSVAR.NTDmutant(10,30, 100,300ng/well),supplementedwithpTZ19ascarrierDNAtoatotalamountof300ng/well, utilizing0.5lFuGENEtransfectionreagent(RocheInc,Mannheim,Germany)perwell.After overnight incubation with or without 1 nM R1881, cells were harvested and luciferase measurementwasperformedasdescribedpreviously[27]. Protein extraction and Western blot analysis Yeastproteinextractswereobtainedbydirectlysisofyeastcellsin2xSDSgelloadingbuffer byafreeze/thawingcycleandboiling,accordingtoSambrookandRussell(2001)[21].Western blot analysis for detection of GalAD fusion proteins was performed as previously described, utilizingaGAL4ADmonoclonalantibody(Clontech)[18]. CHO cells were plated at a density of 1.5 x 10 6 cells per 80 cm 2 flask and the next day transfected with 1 g pSVAR.NTDwt or pSVAR.NTDmutant, utilizing 12 l FuGENE transfectionreagent.Afterovernightincubation,cellswereharvestedbyscrapingin1mlPBS andcentrifugation(5min.800xg).Proteinextractswereobtainedbylysisofthepelletedcells in60 llysisbufferA(20mMTris,1mMEDTA,0.1%NonidetP40,25%glycerol,20mM Namolybdate, pH 6.8), with addition of 0.3 M NaCl, followed by three cycles of freeze/thawingandcentrifugation(10min.at400,000xg).Westernblotanalysisfordetection of AR.NTD proteins was performed as previously described, utilizing AR antibody SP061 [18,28].

93 Pull-down assay CHOcellplating,transfection,harvesting,andproteinextractionweredoneasdescribedin the previous section, except that 3 g pCMVGSTAR.LBD and 1 g pSVAR.NTDwt or pSVAR.NTDmutantwereutilized,andthattransfectionandcelllysiswereintheabsenceor presenceof100nMR1881.5lproteinlysatewasdirectlyappliedona10%SDSPAGEgel (10%input).50llysatewasmixedwith150lbufferA,withorwithout100nMR1881, androtatedfor5hat4°Cwith25lglutathioneagarosebeads(SigmaAldrich,Deisenhofen, Germany).Next,agarosebeadswerewashed5timeswithbufferAsupplementedwith0.1M NaCl with or without 100 nM R1881, boiled in 30 l Laemmli sample buffer and 25 l supernatantwasseparatedovera10%SDSPAGEgel.AfterWesternblotting,visualizationof inputandprecipitatedAR.NTDproteinswasdoneasdescribedabove. RESULTS

Systems for detection of N/C interaction The liganddependent interaction between AR NTD and AR LBD, N/C interaction, was studiedinyeastandmammalian in vivo proteininteractionsystems,andinpulldownassays.In theyeasttwohybridsystem,vectorsencodingtheGal4transactivatingdomain(GalAD)fused to AR NTDwt, ARNTDmutant or ARpeptides derived from ARNTD, were transfected to a yeast strain, which expressed the Gal4 DNAbinding domain (GalDBD) linked to AR.LBD (Figure 1A). Upon incubation with DHT, N/C interaction mediated the expression of an integrated UAS GAL1 lacZ reporter gene, which was assessed in a βgalactosidase assay. Note thatinthisassaythetransactivatingfunctionisprovidedbybothARNTDandGalAD. Inthemammalianproteininteractionsystem,vectorsencodingwildtypeormutatedARNTD, andARDBDLBDwerecotransfectedtoCHOcells(Figure1B).R1881inducedactivityofa transientlytransfectedandrogeninducibleMMTVpromoterwasassessedinaluciferaseassay. NotethatinthisassaythetransactivatingfunctionissolelycontributedbyARNTD. In pull down assays the fusion protein GSTAR.LBD and wild type or mutated AR.NTD proteinsweretransientlyexpressedinCHOcells. AR 3-13 modulates the androgen receptor N/C interaction Asassayedintheyeastproteininteractionsystem,deletionofAR 336 (GalADAR.NTD 336) completelyabolishedtheliganddependentfunctionalN/Cinteraction(Figure2A).Deletionof the aminoterminal 13 amino acids (GalADAR.NTD 113) resulted in a slightlydiminished (approximately 20%) N/C interaction. Because GalADAR.NTD 113 was expressed at a higherlevelthanGalADAR.NTDwt(Figure2C),thedecreaseofARN/Cinteractioncausedby AR 113 deletionmightactuallybemorethanobserved. Similar to the yeast assay, in the mammalian protein interaction assay, deletion of AR 337 completelypreventedN/Cinteraction(Figure2B).AmuchmorepronouncedeffectofAR 313 deletiononN/Cinteractionwasobservedascompared to the yeast assay. The approximately 90% drop in activity is indicative of an important role of AR 313 in N/C interaction. The diminished interaction was not due to a lower expression level of AR.NTD 313. In fact, AR.NTD 313expressionwashigherthanAR.NTDwtexpression(Figure2C). ToinvestigatewhetherAR 313 directlybindstoARLBD,pulldownexperimentswerecarried out. The results are presented in Figure 3. In the absence of ligand, none of the AR NTD

94 proteins showed LBD interaction. However, in the presence of ligand, both AR.NTDwt and AR.NTD 313boundtoARLBDwithsimilaraffinity(Figure3).Incontrast,AR.NTD 337 didnotinteract. AR 2-14 cannot autonomously interact with the androgen receptor LBD To substantiate the modulating role of AR 214 in N/C interaction, as suggested by the experiments described above, the individual peptides AR 236 , AR 214 and AR 1636 coupled to GalAD (Figure 4A) were assayed in the yeast protein interaction system (Figure 4B). No substantial interaction with AR.LBD was found for GalADAR 214 . Activity was retained for approximately 60% in the GalADAR 1636 /AR.LBD complex. Because the GalADAR 236 expression level was lower than that of GalADAR 1636 (Figure 4C), the actual difference in activitybetweenGalADAR 236 andGalADAR 1636 ,mightbelarger. A yeast hormone GalAD AR.NTD GalDBD AR.LBD UAS Gal1 promoter βgalactosidase B CHO hormone AR. NTD AR. DBD.LBD MMTVpromoter luciferase Figure1.Schematicrepresentationof in vivo proteininteractionsystemsutilizedinthisstudy. (A) Yeast protein interaction (twohybrid) system. DHT dependent interaction between GalADAR.NTD and GalDBDAR.LBDinducesexpressionoftheUAS GAL1 regulatedlacZreportergene.CotransfectionofpGBT9and pACT2, which encode GalDBD and GalAD, respectively, does not induce reporter gene expression (data not shown).Similarly,individuallyexpressedGalDBDAR.LBDandGalADAR.NTDarenotactiveinthisassay.( B) Mammalian (CHO cells) protein interaction system. R1881 dependent interaction between AR.NTD and AR.DBD.LBD induces MMTVpromoter driven luciferase expression. Separately expressed AR.DBD.LBD and AR.NTDareunabletoactivatetheMMTVpromoter(datanotshown).

95 A βgalactosidase activity(%) 0 20 40 60 80 100 120 wt 336 GalAD

AR.NTD 113 yeast B luciferase activity(%) 0 20 40 60 80 100 120 2 1 wt 0 1 9 8 1 1 337 1

AR.NTD 1 2 3 313 2 1 CHO GalADAR.NTD C AR.NTD kDa wt 336 113 kDa wt 337 313 98 75 64 50 yeast CHO Figure2.AR 313 modulatesandrogenreceptorN/Cinteraction. (A)InteractionofAR.NTDwtandNH 2terminaldeletionmutantswithAR.LBDinthepresenceof1 MDHTin theyeastproteininteractionsystem.IneachexperimenttheactivityofGalADAR.NTDwtwassetat100%. Each bar represents the mean ( ±sem) βgalactosidase activity of three independent experiments. ( B) Interaction of AR.NTDwt and deletion mutants with AR.LBD in the presence of 1 nM R1881 in the mammalian protein interaction system. pSVAR.DBD.LBD was cotransfected with increasing amounts of pSVAR.NTDwt or mutant (seeExperimentalProcedures).Ineachexperiment,carriedoutintriplicate,themeanofthehighestAR.NTDwt valuewassetat100%.Eachbarrepresentsthemean( ±sem)luciferaseactivityofthreeindependentexperiments. Foldinductionisshowntotherightofeachbarandrepresentstheratioofactivitiesdeterminedinthepresenceand absence of R1881. ( C) Western analysis of indicated GalADAR.NTD proteins in the yeast protein interaction system(leftpanel)andofindicatedAR.NTDproteinsinthemammalianproteininteractionsystem(rightpanel). SeeExperimentalProceduresfordetails.

96 input pulldown + + wt 337

AR.NTD 313 Figure3.AR 313 isnotinvolvedindirectbindingofARNTDtoARLBD. InteractionofAR.NTDwtandNH 2terminaldeletionmutantswithGSTAR.LBDasstudiedbypulldownassays. Proteins were produced in CHO cells by cotransfection of pCMVAR.LBD and pSVAR.NTDwt or indicated deletionconstructs.CHOcellswereculturedintheabsence()orpresence(+)of100nMR1881.Inputis1/10of thelysateutilizedinapulldownexperiment.SeeExperimentalProceduresfordetails. Analysis of 30 VREVI 34 in androgen receptor N/C interaction Prediction programs of protein secondary structures (see http://npsapbil.ibcp.fr ) indicated a long αhelical structure for AR 2034 . A helical wheel drawing of this region predicted an amphipathic character of this helical structure (Figure 5A) [29]. At positions 15 and 37, the putative αhelixisflankedbyprolineresidues.Withinthehelix,twocandidate Φxx ΦΦprotein interactionmotifs( Φisanyhydrophobicaminoacidresidue;xisanyaminoacidresidue)are present: 30 VREVI 34 andthepreviouslyidentified 23 FQNLF 27 motif(Figure5B)[20,30,31].To investigate whether like 23 FQNLF 27 , 30 VREVI 34 could contribute to N/C interaction, two constructs were generated, expressing either the complete 30 VREVI 34 or the complete 23 FQNLF 27 motif linked to GalAD (Figure 5B). As expected, in the yeast protein interaction system,liganddependentinteractionwithARLBDcouldeasilybedetectedforGalADAR 1732 . However,theinteractionwasweakforGalADAR 2439 (Figure5C).Lowactivitywasnotdueto decreasedproteinexpression(Figure5D). In a complementary yeast protein interaction experiment, the 30 VREVI 34 motif in GalAD AR.NTDwtwasmodifiedbysubstitutionoftwohydrophobicaminoacidsbyarginineresidues, resultinginGalADAR.NTD30/33RR.Thesesubstitutionsmightcausestericalhindranceinthe interactionwiththeARLBDsurface,changethechargeanddisrupttheproposedamphipathic αhelicalstructureofAR 1636 .GalADAR.NTD23/27RRwasutilizedascontrol.Substitutionof V30 and V33 partially reduced the interaction, whereas the F23R,F27R mutation completely abolished the interaction (Figure 6A). Expression levels of GalADAR.NTDwt and GalAD AR.NTD30/33RRweresimilar(Figure6C). Resultsobtainedinthemammalianproteininteractionsystem,utilizingtheAR.NTD30/33RR mutantandAR.NTD23/27RR,wereessentiallyidenticaltotheobservationsmadeintheyeast

97 system (Figure 6B). A partial inhibition of AR N/C interaction was observed for AR.NTD30/33RR,andanalmostcompleteinhibitionforAR.NTD23/27RR. Pull down experiments confirmed and extended the in vivo protein interaction experiments (Figure6D).ARN/Cinteractionwasdiminisheddueto30/33RRsubstitutions,andcompletely abolishedby23/27RRsubstitutions. A GalADARpeptide GalAD 236 2 EVQLGLGRVYPRPPSKTYRGAFQNLFQSVREV IQN36 214 2 EVQLGLGRVYPRP14 1636 16 SKTYRGAFQNLFQSVREVIQN36 B 236 214

GalADARpeptide 1636 yeast 0 25 50 75 100 125 βgalactosidase activity(%) C GalADARpeptide kDa 236 214 1636 36 30 yeast Figure4.AR 214 cannotautonomouslyinteractwithARLBD. (A) AR peptides utilized in GalADARpeptide fusion proteins in the yeast protein interaction system. ( B) InteractionofindicatedGalADARpeptideswithGalDBDAR.LBDinyeastinthepresenceof1 MDHT.Ineach experimenttheactivityofGalADAR 236 wassetat100%(seealsolegendtoFigure2A).( C)Westernanalysisof indicatedGalADARpeptideproteinsinyeast.Fordetails,seeExperimentalProcedures.

98 A I34 F23 F27 V30 R20 Y19 R31 L26 Q24 V33 Q35 A22 Q28 S29 G21 T18 E32 N25 B GalADARpeptide GalAD 1636 16 SKTYRGAFQNLF QS VREVI QN36 1732 17 KTYRGAFQNLF QSVRE32 2439 24 QNLFQSVREVI QNPGP39 C 1636 1732 GalADARpeptide 2439 yeast 0 50 100 150 200 βgalactosidase activity(%) D GalADARpeptide kDa 1636 1732 2439 36 30 yeast

Figure5.Analysisofapredictedlongamphipathic αααhelixofAR 1835 inARN/Cinteraction. (A)AhelicalwheeldrawingofAR 1835 predictsalongamphipathic αhelicalstructure.Greycirclesrepresent hydrophobicaminoacids.( B))GalADARpeptidefusionproteinsutilizedintheyeastproteininteractionsystem. The Φxx ΦΦmotifs 23 FQNLF 27 and 30 VREVI 34 areunderlined.( C)InteractionofGalADARpeptideswith

GalDBDAR.LBDinyeastinthepresenceof1 MDHT.IneachexperimenttheactivityofGalADAR 1636 was setat100%(seealsolegendtoFigure2A).( D)WesternanalysisofindicatedGalADARpeptideproteinsinthe yeastsystem.Fordetails,seeExperimentalProcedures.

99 A βgalactosidase activity(%) 0 20 40 60 80 100 120 wt 23/27RR 30/33RR GalADAR.NTD yeast luciferase activity(%) 0 20 40 60 80 100 120 2 wt 10 B 18 9 1 1 23/27RR 1 AR.NTD 4 5 30/33RR 12 9 2 CHO C GalADAR.NTD D input pulldown wt 23/27 30/33 + + kDa RR RR wt 98 64 yeast 23/27RR AR.NTD

AR.NTD wt 23/27 30/33 kDa RR RR 30/33RR 75 50 CHO Figure6. 30 VREVI 34 isnotessentialforARN/Cinteraction. (A)InteractionofGalADAR.NTDwtandmutantswithAR.LBDinthepresenceof1 MDHTintheyeastprotein interactionsystem.IneachexperimentGalADAR.NTDwtactivitywassetat100%(seelegendtoFigure2A).( B) Interaction of AR.NTDwt and mutants with AR.LBD in the presenceof1nMR1881inthemammalianprotein interactionsystem.pSVAR.DBD.LBDwascotransfectedwithincreasingamountsofpSVAR.NTDwtorindicated mutants (see Experimental Procedures and legend to Figure 2B). ( C) Western analysis of indicated GalAD AR.NTDproteinsintheyeastsystem(leftpanel)andindicatedAR.NTDproteinsinthemammaliansystem(right panel).SeealsoExperimentalProcedures.( D)PulldownassaysshowinginteractionofAR.NTDwtandmutants withGSTAR.LBD(seealsolegendtoFigure3).

100 residues flanking F23, L26 and F27 modulate androgen receptor N/C interaction Tostudyinmoredetailtheroleof24/25QNinthe 23 FQNLF 27 motifinARN/Cinteraction, these amino acids were substituted by 24/25AA. In both the yeast and mammalian protein interaction assay, GalADAR.NTD24/25AA and AR.NTD24/25AA formed even more active complexes with AR LBD than wildtype AR NTD (Figures 7A and 7B) (note the low expression levels of the 24/25AA mutants in both systems; Figure 7C). As expected, AR.NTD26/27AAwasincapabletointeractwithAR.LBD. A βgalactosidase activity(%) 0 20 40 60 80 100 120 140 wt 24/25AA GalADAR.NTD 26/27AA yeast B luciferase activity(%) 0 20 40 60 80 100 120 2 10 wt 18 9 17 22 24/25AA 35

AR.NTD 19 1 26/27AA 1 1 1 CHO C GalADAR.NTD AR.NTD wt 24/25 26/27 wt 24/25 26/27 AA AA AA AA kDa kDa 98 75 64 50 yeast CHO Figure7.AlaninesubstitutionsofQ24andN25stimulateARN/Cinteraction. (A) Interaction of GalADAR.NTDwt andmutantswithGalDBDAR.LBDinthepresenceof1 MDHTinthe yeastproteininteractionsystem.IneachexperimentGalADAR.NTDwtactivitywassetat100%. Seealsolegend to Figure 2A. ( B) Interaction of AR.NTDwt and mutants with AR.LBD in the presence of 1 nM R1881 in the mammalian protein interaction system. pSVAR.DBD.LBD was cotransfected with increasing amounts of pSVAR.NTDwt or mutants (see Experimental Procedures and legend to Figure 2B). ( C) Western analysis of indicatedGalADAR.NTDproteinsintheyeastproteinsystem(leftpanel)andindicatedAR.NTDproteinsinthe mammaliansystem(rightpanel).Fordetails,seeExperimentalProcedures.

101 Toextendthesefindings,analaninescanwascarriedoutforpeptideGalADAR 1732 (Figure 8A).ResultsoftheyeastproteininteractionassayareshowninFigure8B.Substitutionofamino acids23,26and27completelyabolishedinteraction with GalDBDAR.LBD and alanines at positions24and25increasedtheinteractioncapacity.Allalaninesubstitutionsofaminoacids flanking 23 FQNLF 27 reducedthebindingtoARLBD.Mostprominentinhibitoryeffectswere foundforaminoacidresiduesdirectlyflanking 23 FQNLF 27 .Notethatexpressionlevelsofthe peptideconstructsweresimilar(Figure8C). A GalAD ARpeptide GalAD 1732wt 17 -K T Y R G A F Q N L F Q S V R E -32 18/19AA 17 -K A A R G A F Q N L F Q S V R E -32 20/21AA 17 -K T Y A A A F Q N L F Q S V R E -32 23A 17 -K T Y R G A A Q N L F Q S V R E -32 24/25AA 17 -K T Y R G A F A A L F Q S V R E -32 26/27AA 17 -K T Y R G A F Q N A A Q S V R E -32 28/29AA 17 -K T Y R G A F Q N L F A A V R E -32 30/31AA 17 -K T Y R G A F Q N L F Q S A A E -32 B βgalactosidase activity(%) 0 50 100 150 200 250 300 350 1732wt 18/19AA 20/21AA 23A

24/25AA GalADARpeptide 26/27AA 28/29AA 30/31AA yeast C GalADARpeptide 23 24/25 26/27 28/29 30/31 kDa wt 18/19 20/21 AA AA A AA AA AA AA

30 16 yeast Figure8.AlaninescanningofAR 1732 :aminoacidsflankingF23,L26andF27modulateARN/C interaction. (A) GalADARpeptide fusion proteins in the yeast protein interaction system . (B) Interaction of GalAD ARpeptideswithAR.LBDinthepresenceof1 MDHTintheyeastproteininteractionsystem.Ineachexperiment theactivityofGalADAR 1732 wassetat100%.SeealsolegendtoFigure2A.( C)Westernanalysisofindicated GalADARpeptideproteinsintheyeastassay.Fordetails,seeExperimentalProcedures.

102 DISCUSSION Previously,weandothersdemonstratedaliganddependentfunctionalinteractionbetweenAR 23 27 NTDandARLBD.Aminoacids336intheNTD(AR 336 ),includingthe FxxLF motif,play apivotalroleinN/Cinteraction[15,20].HerewestudiedthefunctionoftheAR 336 subdomain AR 313 inN/Cinteractionandtheroleofindividualamino acid residues in and flanking the 23 27 FQNLF motifinAR 1636 inN/Cinteraction. Yeast protein interaction assays indicated that AR 313 contributed to the ligandinduced transactivation function of the AR.NTD/AR.LBD complex (Figures 2 and 4). Pull down experimentsprovidedevidencethatAR 313 doesnotdirectlyinteractwithARLBD(Figure3). Onfirstsight,conflictingresultswereobtainedintheyeastandmammalianproteininteraction assays (Figure 2). In the yeast assay, reporter gene activity, which monitored the N/C interaction,waspartlyreducedbyAR 313 deletion,whereasinthemammalianassayalmostall reportergeneactivitywaslost.Themostobviousdifferencebetweenbothassaysisthecoupling ofAR.NTDtoGalADintheyeastassay,andtheabsenceofasecondtransactivationdomain linkedtoARNTDinthemammalianassay.Thelatterassaycompletelydependsontheintrinsic transactivating function of AR NTD and thus does not allow discrimination between loss of AR.NTDAR.LBD binding and loss of AR.NTD transactivating function. In the yeast assay, lossoftransactivationfunctionofARNTDmutants,whichretainARLBDinteractingcapacity, like AR.NTD 313, willbe maskedby the GalADtransactivatingfunction.So,AR 313 isnot essential, but rather modulates N/C interaction, most likely by affecting the transactivation function of AR.NTD. Alternative explanations might be induction of amore favorable NTD conformationorstabilizationofthe in vivo N/Cinteraction,whicharenotreflectedinthepull downassaysandpeptideinteractionexperiments.Unfortunately,theprimarystructureandthe predictedsecondarystructureofAR 313 donotgiveacluetoamoreprecisedescriptionofits function(datanotshown).However,thefactthat,betweenspecies,AR 313 isoneofthemost conservedregionsofARNTD,underscoresapresumedimportantroleinARfunction[32]. The second domain that was studied, AR 1636, is essential in N/C interaction. The predicted structureindicatedthatAR 1636 canfoldinaremarkablylongamphipathic αhelicalstructure, suggestinganimportantproteininteractioninterface[29].AR 1636 containstwo Φxx ΦΦputative proteininteractionmotifs: 23 FxxLF 27 ,whichwasfoundtobepivotalfordirectN/Cinteraction [20, this study], and 30 VxxVI 34 (Figures 5 and 6). The latter sequence modulates N/C interaction. Amino acid residues in this sequence might contribute to the stability of the predicted αhelix.Alternatively,theymightmakeadditionalcontactstotheLBDsurface.This isalsotrueforotheraminoacidresiduesflankingthe 23 FxxLF 27 motif(Figure8).Remarkably, substitutionofQ24andN25byalaninesincreasedN/Cinteraction(Figures7and8). TheARFxxLFmotifshowssimilaritiestoLxxLLmotifs[5,33,34]presentinnuclearreceptor interaction domains (NR boxes) of p160 coactivators. LxxLL motifs are essential in the interactionwithLBDs[33].TheybindtoahydrophobiccleftinnuclearreceptorLBDs,which ismarkedbyachargedclampcomposedofahighlyconservedlysineandglutamateresiduein helix3andhelix12oftheLBD,respectively(K720andE897inAR)[3537].ARK720and E897 are both involved in the liganddependent interaction between AR LBD and the coactivator TIF2 [9,11,15]. However, in the FxxLFmediated AR N/C interaction, E897 is essential, but K720 can be replaced by many other amino acids, without affecting N/C interaction[9,11,15,38].So,theARN/Cinteractioniscomparable,butnotidenticaltoLxxLL mediatedcoactivatorLBDinteraction.

103 The 3D structures of agonist bound LBD/LxxLL peptide complexes of several nuclear receptorshavebeenelucidated,andinteractionsofthepeptidebackboneanditsaminoacidside chainswiththeLBDsurfacehavebeenidentified[5,36,37,39].Itispresumedthatuponbinding totheLBDsurface,theLxxLLmotifadaptsashort αhelicalstructure,whichisstabilizedby interaction with the charged clamp [5,36,37]. The firstandlastleucineresidueintheLxxLL motifenterthehydrophobiccleftintheLBD,anddirectlycontactaminoacidresidueswithin thecleft.Thevariableaminoacids(xx)intheLxxLLmotifpointawayfromthecleftandseem nottointeractdirectlywiththeLBDsurface.StructuraldataforAR.LBD/LxxLLpeptidesare notavailable,but,becauseAR.LBD/coactivatorinteractionalsodependsonK720andE897,it mightbepredictedthattheywillbesimilartoLBD/LxxLLpeptidecomplexesstudiedsofar [9,11,15].BecauseK720isnotessentialforAR 23 FxxLF 27 /AR.LBDinteraction,thestructureof this complex might be different. A different complex would also explain the stimulation of AR 23 FxxLF 27 /AR.LBD interaction by substitution of Q24 and N25 by alanine residues. Structural analyses of AR.LBD/AR 1636 complexeshavetorevealthefunctionofaminoacid residues flanking F23, L26 and F27 and answer the question whether or not the entire long amphipathicAR 1636 αhelixisrequiredforastableARNTD/LBDcomplex. The LxxLLlike motifs LxxIL, FxxLL, and L/IxxI/VI, have been found in LBD binding coactivatorsorcorepressors[4043].FxxLFmotifsthatareabletocontactARLBD,haveonly been found in AR NTD and most recently in the AR coactivators ARA54 and ARA70, suggesting a specific role of these motifs in AR function [4447]. The increasing number of proteinsfoundtointeractwiththeARLBDraisesthequestionofthephysiologicalrelevanceof themanyinteractions.Itremainstobeestablishedwhetherallinteractionstakeplaceinliving cells under physiological conditions, whether interactions with different proteins are simultaneousorconsecutiveevents,andwhichinteractionsaremoststableandmostspecific. Recently,astarthasbeenmadetotheidentificationoffactors,includingtheAR,presentinthe transcription initiation complex of the prostate specific antigen enhancer/promoter, using chromatinimmunoprecipitation(ChIP)[48]. AnotherquestionconcernstheinteractionofAR 1636 withotherproteins.Onecandidatemight betheTFIIDTATAboxbindingproteinassociatedfactor31,TAF II 31,whichhasbeenfoundto interactwithFxx ΦΦmotifsinacidictranscriptionactivationdomainsofp65(NFκB),VP16, p53andrelatedproteins[31,4951]. ARNTDhaspreviouslybeenproposedtoaccommodatemorethanoneARLBDinteracting domain[9,15,20].Acandidateseconddomainis 433 WHTLF 437 ,whichwasfoundtomodulate 23 FxxLF 27 function [20]. Another candidate motif is 179 LxxIL 183 [9]. However, peptides containing these motifs were unable to interact with AR LBD intheyeastproteininteraction assay, excluding their role as a second autonomous interaction motif in AR NTD (data not shown). N/C interaction is not unique for the AR, but has also been described for other nuclear receptors. ER α liganddependent direct N/C interaction has been demonstrated, which was disrupted by amino acid substitutions that affect receptor function [52,53]. The ER α N/C interactioncouldbeinducedbytheagonistestradiol(E 2),butnotbytheantagonistICI164,384 [53]. Recently, it was found that the ER α N/C interaction was required for SRC1 mediated synergism between AF1 and AF2 function [8,53]. The progesterone receptor (PR) showed directN/CinteractioninthepresenceofagonistR5020,butnotinthepresenceofantagonist RU486[54].LxxLLmotifsinthePRBformweremostlikelynotinvolved,becausetheshorter PRAform,lackingthesemotifs,alsoshowedN/Cinteraction[55].

104 The role of N/C interaction in fulllength AR function is not well understood. Ligand dependentARN/Cinteractionaffectsliganddissociation[11,20,56].Whetherthisisadirector anindirecteffectisunknown.DisruptionoftheN/Cinteractionbymutationofthe 23 FxxLF 27 motifhasalimitedeffectonfulllengthARtransactivationfunction[20,Steketeeunpublished]. However,severalARLBDmutantswithreducedorcompletelyabolishedN/Cinteractionhave beenfoundinandrogeninsensitivitypatients[11,56,57].Additionally,bothN/Cinteractionand transactivatingfunctionoftheARprostatecancermutantT877Acanbeinducedbynaturallow affinityligandslikeprogesteroneorE 2ortheARantagonistcyproteroneacetate[18]. Inconclusion,weproposethatAR 336 isinvolvedinadynamicsequenceofproteininteraction events,includingN/Cinteraction,inregulationofARfunction.Detailedknowledgeontherole oftheARN/Cinteractionwouldrequiretheelucidationofitsfunctionundermorephysiological conditions, including the study of mouse models carrying AR mutants defective in N/C interaction. ACKNOWLEDGEMENT ThisstudywassupportedbyagrantoftheDutchCancerSocietyKWF. Abbreviations: AF, transactivation function; AR, androgen receptor; DBD, DNAbinding domain; DHT, dihydrotestosterone;E 2,estradiol;ER α,estrogenreceptor α;GalAD,Gal4transactivatingdomain;GAlDBD,Gal4 DNAbinding domain; LBD, ligandbinding domain; N/C interaction, interaction between NTD and LBD; NR, nuclearreceptor;NTD,NH 2terminaldomain;PR,progesteronereceptor;R1881,methyltrienolone.

105 REFERENCES 1. Mangelsdorf,D.J.,Thummel,C.,Beato,M.,Herrlich,P.,Schutz,G.,Umesono,K.,Blumberg,B., Kastner,P.,Mark,M.&Chambon,P.(1995)Thenuclearreceptorsuperfamily:theseconddecade. Cell 83 ,835839. 2. McKenna,N.J.,Lanz,R.B.&O'Malley,B.W.(1999)Nuclearreceptorcoregulators:cellularand molecularbiology. Endocr. Rev. 20 ,321344. 3. Glass,C.K.&Rosenfeld,M.G.(2000)Thecoregulatorexchangeintranscriptionalfunctionsofnuclear receptors. Genes Dev. 14 ,121141. 4. Lee,K.C.&LeeKraus,W.(2001)Nuclearreceptors,coactivatorsandchromatin:newapproaches,new insights. Trends Endocrinol. Metab. 12 ,191197. 5. Darimont,B.D.,Wagner,R.L.,Apriletti,J.W.,Stallcup,M.R.,Kushner,P.J.,Baxter,J.D.,Fletterick,R.J. &Yamamoto,K.R.(1998)Structureandspecificityofnuclearreceptorcoactivatorinteractions. Genes Dev. 12 ,33433356. 6. Onate,S.A.,Boonyaratanakornkit,V.,Spencer,T.E.,Tsai,S.Y.,Tsai,M.J.,Edwards,D.P.&O'Malley, B.W.(1998)Thesteroidreceptorcoactivator1containsmultiplereceptorinteractingandactivation domainsthatcooperativelyenhancetheactivationfunction1(AF1)andAF2domainsofsteroidreceptors. J. Biol. Chem. 273 ,1210112108. 7. Webb,P.,Nguyen,P.,Shinsako,J.,Anderson,C.,Feng,W.,Nguyen,M.P.,Chen,D.,Huang,S.M., Subramanian,S.,McKinerney,E.,Katzenellenbogen,B.S.,Stallcup,M.R.&Kushner,P.J.(1998) Estrogenreceptoractivationfunction1worksbybindingp160coactivatorproteins. Mol. Endocrinol. 12 , 16051618. 8. Benecke,A.,Chambon,P.&Gronemeyer,H.(2000)Synergybetweenestrogenreceptoralphaactivation functionsAF1andAF2mediatedbytranscriptionintermediaryfactorTIF2. EMBO Rep. 1,151157. 9. Alen,P.,Claessens,F.,Verhoeven,G.,Rombauts,W.&Peeters,B.(1999)Theandrogenreceptoramino terminaldomainplaysakeyroleinp160coactivatorstimulatedgenetranscription. Mol. Cell. Biol. 19 , 60856097. 10. Bevan,C.L.,Hoare,S.,Claessens,F.,Heery,D.M.&Parker,M.G.(1999)TheAF1andAF2domainsof theandrogenreceptorinteractwithdistinctregionsofSRC1. Mol. Cell. Biol. 19 ,83838392 11. He,B.,Kemppainen,J.A.,Voegel,J.J.,Gronemeyer,H.&Wilson,E.M.(1999)Activationfunction2in thehumanandrogenreceptorligandbindingdomainmediatesinterdomaincommunicationwiththe NH(2)terminaldomain. J. Biol. Chem. 274 ,3721937225. 12. Jenster,G.,vanderKorput,H.A.,vanVroonhoven,C.,vanderKwast,T.H.,Trapman,J.&Brinkmann, A.O.(1991)Domainsofthehumanandrogenreceptorinvolvedinsteroidbinding,transcriptional activation,andsubcellularlocalization. Mol. Endocrinol. 5,13961404. 13. Simental,J.A.,Sar,M.,Lane,M.V.,French,F.S.&Wilson,E.M.(1991)Transcriptionalactivationand nucleartargetingsignalsofthehumanandrogenreceptor. J. Biol. Chem. 266 ,510518. 14. Palvimo,J.J.,Kallio,P.J.,Ikonen,T.,Mehto,M.&Janne,O.A.(1993)Dominantnegativeregulationof transactivationbytheratandrogenreceptor:rolesoftheNterminaldomainandheterodimerformation. Mol. Endocrinol. 7,13991407. 15. Berrevoets,C.A.,Doesburg,P.,Steketee,K.,Trapman,J.&Brinkmann,A.O.(1998)Functional interactionsoftheAF2activationdomaincoreregionofthehumanandrogenreceptorwiththeamino terminaldomainandwiththetranscriptionalcoactivatorTIF2(transcriptionalintermediaryfactor2).Mol. Endocrinol. 12 ,11721183. 16. Gottlieb,B.,Beitel,L.K.&Trifiro,M.A.(2001)Variableexpressivityandmutationdatabases:The androgenreceptorgenemutationsdatabase. Hum. Mutat. 17 ,382388. 17. Langley,E.,Zhou,Z.X.&Wilson,E.M.(1995)Evidenceforanantiparallelorientationoftheligand activatedhumanandrogenreceptordimer. J. Biol. Chem. 270 ,2998329990. 18. Doesburg,P.,Kuil,C.W.,Berrevoets,C.A.,Steketee,K.,Faber,P.W.,Mulder,E.,Brinkmann,A.O.& Trapman,J.(1997)Functionalinvivointeractionbetweentheaminoterminal,transactivationdomainand theligandbindingdomainoftheandrogenreceptor. Biochemistry 36 ,10521064. 19. Ikonen,T.,Palvimo,J.J.&Janne,O.A.(1997)Interactionbetweentheaminoandcarboxylterminal regionsoftheratandrogenreceptormodulatestranscriptionalactivityandisinfluencedbynuclear receptorcoactivators. J. Biol. Chem. 272 ,2982129828. 20. He,B.,Kemppainen,J.A.&Wilson,E.M.(2000)FXXLFandWXXLFsequencesmediatetheNH2 terminalinteractionwiththeligandbindingdomainoftheandrogenreceptor. J. Biol. Chem. 275 ,22986 22994. 21. Sambrook,J.&Russell,D.W.(2001) Molecular Cloning a laboratory manual. ThirdeditionColdSpring HarborLaboratoryPressColdSpringHarbor,NY 22. Brinkmann,A.O.,Faber,P.W.,vanRooij,H.C.,Kuiper,G.G.,Ris,C.,Klaassen,P.,vanderKorput,J.A., Voorhorst,M.M.,vanLaar,J.H.&Mulder,E.(1989)Thehumanandrogenreceptor:domainstructure, genomicorganizationandregulationofexpression.J. Steroid. Biochem. 34 ,307310 23. Jenster,G.,vanderKorput,H.A.,Trapman,J.&Brinkmann,A.O.(1995)Identificationoftwo transcriptionactivationunitsintheNterminaldomainofthehumanandrogenreceptor. J. Biol. Chem. 270 ,73417346. 24. deRuiter,P.E.,Teuwen,R.,Trapman,J.,Dijkema,R.&Brinkmann,A.O.(1995)Synergismbetween androgensandproteinkinaseConandrogenregulatedgeneexpression. Mol. Cell. Endocrinol. 110 ,R16. 25. Tsai,R.Y.&Reed,R.R.(1997)UsingaeukaryoticGSTfusionvectorforproteinsdifficulttoexpressin E.coli. Biotechniques 23 ,794796,798,800.

106 26. Gietz,D.,StJean,A.,Woods,R.A.&Schiestl,R.H.(1992)Improvedmethodforhighefficiency transformationofintactyeastcells. Nucleic. Acids. Res. 20 ,1425. 27. Kuil,C.W.,Berrevoets,C.A.&Mulder,E.(1995)Ligandinducedconformationalalterationsofthe androgenreceptoranalyzedbylimitedtrypsinization.Studiesonthemechanismofantiandrogenaction. J. Biol. Chem. 270 ,2756927576. 28. Zegers,N.D.,Claassen,E.,Neelen,C.,Mulder,E.,vanLaar,J.H.,Voorhorst,M.M.,Berrevoets,C.A., Brinkmann,A.O.,vanderKwast,T.H.&RuizevelddeWinter,J.A.(1991)Epitopepredictionand confirmationforthehumanandrogenreceptor:generationofmonoclonalantibodiesformultiassay performancefollowingthesyntheticpeptidestrategy. Biochim. Biophys. Acta. 1073 ,2332. 29. Segrest,J.P.,DeLoof,H.,Dohlman,J.G.,Brouillette,C.G.&Anantharamaiah,G.M.(1990)Amphipathic helixmotif:classesandproperties. Proteins 8,103117 30. Nagy,L.,Kao,H.Y.,Love,J.D.,Li,C.,Banayo,E.,Gooch,J.T.,Krishna,V.,Chatterjee,K.,Evans,R.M. &Schwabe,J.W.(1999)Mechanismofcorepressorbindingandreleasefromnuclearhormonereceptors. Genes Dev. 13 ,32093216. 31. Uesugi,M.&Verdine,G.L.(1999)ThealphahelicalFXXPhiPhimotifinp53:TAFinteractionand discriminationbyMDM2. Proc. Natl. Acad. Sci. U S A 96 ,1480114806. 32. Thornton,J.W.&Kelley,D.B.(1998)Evolutionoftheandrogenreceptor:structurefunctionimplications. Bioessays 20 ,860869. 33. Heery,D.M.,Kalkhoven,E.,Hoare,S.&Parker,M.G.(1997)Asignaturemotifintranscriptionalco activatorsmediatesbindingtonuclearreceptors. Nature 387 ,733736. 34. McInerney,E.M.,Rose,D.W.,Flynn,S.E.,Westin,S.,Mullen,T.M.,Krones,A.,Inostroza,J.,Torchia,J., Nolte,R.T.,AssaMunt,N.,Milburn,M.V.,Glass,C.K.&Rosenfeld,M.G.(1998)Determinantsof coactivatorLXXLLmotifspecificityinnuclearreceptortranscriptionalactivation. Genes Dev. 12 ,3357 3368 35. Feng,W.,Ribeiro,R.C.,Wagner,R.L.,Nguyen,H.,Apriletti,J.W.,Fletterick,R.J.,Baxter,J.D.,Kushner, P.J.&West,B.L.(1998)Hormonedependentcoactivatorbindingtoahydrophobiccleftonnuclear receptors. Science 280 ,17471749. 36. Nolte,R.T.,Wisely,G.B.,Westin,S.,Cobb,J.E.,Lambert,M.H.,Kurokawa,R.,Rosenfeld,M.G., Willson,T.M.,Glass,C.K.&Milburn,M.V.(1998)Ligandbindingandcoactivatorassemblyofthe peroxisomeproliferatoractivatedreceptorgamma.Nature 395 ,137143. 37. Shiau,A.K.,Barstad,D.,Loria,P.M.,Cheng,L.,Kushner,P.J.,Agard,D.A.&Greene,G.L.(1998)The structuralbasisofestrogenreceptor/coactivatorrecognitionandtheantagonismofthisinteractionby tamoxifen. Cell 95 ,927937. 38. Slagsvold,T.,Kraus,I.,Bentzen,T.,Palvimo,J.&Saatcioglu,F.(2000)Mutationalanalysisofthe androgenreceptorAF2(activationfunction2)coredomainrevealsfunctionalandmechanisticdifferences ofconservedresiduescomparedwithothernuclearreceptors. Mol. Endocrinol. 14 ,16031617. 39. Gampe,R.T.,Jr.,Montana,V.G.,Lambert,M.H.,Miller,A.B.,Bledsoe,R.K.,Milburn,M.V.,Kliewer, S.A.,Willson,T.M.&Xu,H.E.(2000)AsymmetryinthePPARgamma/RXRalphacrystalstructure revealsthemolecularbasisofheterodimerizationamongnuclearreceptors. Mol. Cell. 5,545555. 40. Huang,N.,vomBaur,E.,Garnier,J.M.,Lerouge,T.,Vonesch,J.L.,Lutz,Y.,Chambon,P.&Losson,R. (1998)TwodistinctnuclearreceptorinteractiondomainsinNSD1,anovelSETproteinthatexhibits characteristicsofbothcorepressorsandcoactivators. EMBO J. 17 ,33983412. 41. Li,D.,DesaiYajnik,V.,Lo,E.,Schapira,M.,Abagyan,R.&Samuels,H.H.(1999)NRIF3isanovel coactivatormediatingfunctionalspecificityofnuclearhormonereceptors. Mol. Cell. Biol. 19 ,71917202. 42. Johansson,L.,Bavner,A.,Thomsen,J.S.,Farnegardh,M.,Gustafsson,J.A.&Treuter,E.(2000)The orphannuclearreceptorSHPutilizesconservedLXXLLrelatedmotifsforinteractionswithligand activatedestrogenreceptors. Mol. Cell. Biol. 20 ,11241133. 43. Gobinet,J.,Auzou,G.,Nicolas,J.C.,Sultan,C.&Jalaguier,S.(2001)Characterizationoftheinteraction betweenandrogenreceptorandanewtranscriptionalinhibitor,SHP. Biochemistry 40 ,1536915377. 44. Yeh,S.&Chang,C.(1996)Cloningandcharacterizationofaspecificcoactivator,ARA70,forthe androgenreceptorinhumanprostatecells. Proc. Nat.l Acad. Sci. U S A 93 ,55175521. 45. Kang,H.Y.,Yeh,S.,Fujimoto,N.&Chang,C.(1999)Cloningandcharacterizationofhumanprostate coactivatorARA54,anovelproteinthatassociateswiththeandrogenreceptor. J. Biol. Chem. 274 ,8570 8576. 46. He,B.,Minges,J.T.,Lee,L.W.&Wilson,E.M.(2002)TheFXXLFMotifMediatesAndrogenReceptor specificInteractionswithCoregulators. J. Biol. Chem. 277 ,1022610235. 47. Zhou,Z.X.,He,B.,Hall,S.H.,Wilson,E.M.&French,F.S.(2002)Domaininteractionsbetween coregulatorARA(70)andtheandrogenreceptor(AR). Mol. Endocrinol. 16 ,287300 48. Shang,Y.,Myers,M.&Brown,M.(2002)Formationoftheandrogenreceptortranscriptioncomplex. Mol. Cell. 9,601610. 49. Burley,S.K.&Roeder,R.G.(1996)BiochemistryandstructuralbiologyoftranscriptionfactorIID (TFIID). Annu. Rev. Biochem. 65 ,769799 50. Uesugi,M.,Nyanguile,O.,Lu,H.,Levine,A.J.&Verdine,G.L.(1997)InducedalphahelixintheVP16 activationdomainuponbindingtoahumanTAF. Science 277 ,13101313. 51. Yoon,J.W.,Liu,C.Z.,Yang,J.T.,Swart,R.,Iannaccone,P.&Walterhouse,D.(1998)GLIactivates transcriptionthroughaherpessimplexviralprotein16likeactivationdomain. J. Biol. Chem. 273 ,3496 3501. 52. Kraus,W.L.,McInerney,E.M.&Katzenellenbogen,B.S.(1995)Liganddependent,transcriptionally productiveassociationoftheaminoandcarboxylterminalregionsofasteroidhormonenuclearreceptor. Proc. Natl. Acad. Sci. U S A 92 ,1231412318.

107 53. Metivier,R.,Penot,G.,Flouriot,G.&Pakdel,F.(2001)SynergismbetweenERalphatransactivation function1(AF1)andAF2mediatedbysteroidreceptorcoactivatorprotein1:requirementfortheAF1 alphahelicalcoreandforadirectinteractionbetweentheNandCterminaldomains. Mol. Endocrinol. 15 ,19531970. 54. Tetel,M.J.,Giangrande,P.H.,Leonhardt,S.A.,McDonnell,D.P.&Edwards,D.P.(1999)Hormone dependentinteractionbetweentheaminoandcarboxylterminaldomainsofprogesteronereceptorinvitro andinvivo. Mol. Endocrinol. 13 ,910924. 55. Tung,L.,Shen,T.,Abel,M.G.,Powell,R.L.,Takimoto,G.S.,Sartorius,C.A.&Horwitz,K.B.(2001) Mappingtheuniqueactivationfunction3intheprogesteroneBreceptorupstreamsegment.TwoLXXLL motifsandatryptophanresiduearerequiredforactivity. J. Biol. Chem. 276 ,3984339851. 56. Langley,E.,Kemppainen,J.A.&Wilson,E.M.(1998)IntermolecularNH2/carboxylterminal interactionsinandrogenreceptordimerizationrevealedbymutationsthatcauseandrogeninsensitivity. J. Biol. Chem. 273 ,92101. 57. Thompson,J.,Saatcioglu,F.,Janne,O.A.&Palvimo,J.J.(2001)Disruptedaminoandcarboxylterminal interactionsoftheandrogenreceptorarelinkedtoandrogeninsensitivity. Mol. Endocrinol. 15 ,923935.

108 Chapter3Abioinformaticsbasedfunctionalanalysis shows that the specifically androgenregulated gene SARG contains an active direct repeat androgen responseelementinthefirstintron. Chapter3 Abioinformaticsbasedfunctionalanalysisshowsthat thespecificallyandrogenregulatedgene SARG containsanactivedirectrepeatandrogenresponse elementinthefirstintron. KarineSteketee,AngeliqueC.J.ZielvanderMade,HettyA.G.M.van derKorput,AdriaanB.HoutsmullerandJanTrapman DepartmentofPathology,JosephineNefkensInstitute,ErasmusMedicalCenter, Rotterdam,TheNetherlands . JMolEndocrinol.2004,33:47791

109 ABSTRACT We characterized the specifically androgenregulated gene SARG ,whichisexpressedinthe androgen receptor and glucocorticoid receptor positive cell line LNCaP1F5. SARG mRNA expression can be upregulated by androgens, but not by glucocorticoids. SARG mRNA expressionishighinprostatetissue. SARG iscomposedof4exonsandspansaregionof14.5 kbp on chromosome 1q32.2. Transcripts of 5.5, 3.3 and 2.3 kb are the result of alternative polyadenylation.SARGmRNAsplicevariantslackexon2andvaryinlengthofexon1.The SARGproteinhasalengthof601aminoacidsandislocatedinthecytoplasm.Byscreening18 kbp genomic sequence flanking the transcription start site we identified the imperfect direct repeat5’TGTGCTaacTGTTCT3’inintron1asanactiveandrogenresponseelement(ARE SARG+4.6). A 569 bp genomic DNA fragment, containing this element functioned as an androgenspecific enhancer in transiently transfected LNCaP1F5 cells. ARESARG+4.6 cooperated with flanking sequences for optimal activity. Inactivation of ARESARG+4.6 completely abolished the androgen response of the enhancer. ChIP experiments showed chromatin structural changes oftheenhancerinthepresenceofR1881.ARESARG+4.6was abletobindtotheandrogenreceptor,butnottotheglucocorticoidreceptor,correlatingwithits androgenspecificactivityintransfections. INTRODUCTION Androgens are essential in the development and maintenance of the male phenotype. They mediatetheirfunctionbyactivationoftheandrogenreceptor(AR),whichisamemberofthe nuclear receptor family of ligandactivated transcription factors. Nuclear receptors have a modular structure composed of a moderately conserved carboxylterminal ligandbinding domain (LBD),ahighlyconservedcentralDNAbindingdomain(DBD)andanonconserved aminoterminaldomain(NTD).Mostligandactivatednuclearreceptorsbindashomodimersor heterodimers to hormone response elements (HREs) in the regulatory regions of their target genes.HREsarecomposedofaninvertedordirectrepeatoftwo6bphalfsitesseparatedbya spacer of variable size (Khorasanizadeh and Rastinejad 2001). Together with coactivators, chromatinremodellingcomplexes,generaltranscriptionfactorsandRNApolymeraseII,nuclear receptors initiate the transcription of target genes in a tightly controlled fashion (Glass and Rosenfeld2000,LeeandLeeKraus2001,McKennaandO'Malley2002). An important class of nuclear receptors is the family of steroid hormone receptors, which is composed of AR, glucocorticoid receptor (GR), mineralocorticoid receptor (MR), progesterone receptor (PR) and estrogen receptors alpha and beta (ER α and ER β) (Thornton 2001). Steroid hormone receptors display distinct physiological functions, reflected in their tissuespecific expressionpatternandtosomeextentintheirspectrumoftargetgenes.However,AR,GR,MR and PR all bind with high affinity to the same inverted repeat consensus sequence 5’ AGAACAnnnTGTTCT3’ (Nordeen et al. 1990, Roche et al. 1992, Lieberman et al. 1993, Lombes et al. 1993).Asaresult,theactivityofseveralpromoterscanberegulatedbymorethan oneofthesereceptors.ExamplesaretheMMTVpromoter,andthepromotersofthe C3 ,the CRP andthe PSA gene(Ham et al. 1988,Claessens et al. 1989,DeVos et al. 1994,Cleutjens et al. 1997, Devos et al. 1997). The consensus highaffinitybindingsiteofER αandER βisslightly different, 5’AGGTCAnnnTGACCT3’ (KleinHitpass et al. 1989). Therefore, ER α and ER β directtheexpressionofadifferentpaneloftargetgenes.BecauseGR,MR,PRandARrecognize

110 the same DNA sequence, it has been postulated that additional mechanisms are necessary to explaintheirspecificity.Theseincludedifferencesinexpressionlevelsofthevariousreceptorsin specific cell types (Strahle et al. 1989), selective interaction with specific transcription factors, coactivators and corepressors, and ligand availability (Glass and Rosenfeld 2000, Aranda and Pascual2001,HeinleinandChang2002). In spite of the identical highaffinity recognition sequence for AR, PR, GR and MR, steroid responseelementscanalsodirectreceptorspecificity.Innaturalpromoterssteroidreceptorbinding sitescandeviateconsiderablyfromtheconsensushighaffinitybindingsite.Thesesequencesmight have a different affinity to the various receptors. Additionally, sequences directly flanking the responseelementcancontributetoreceptoraffinityandpreference(Nelson et al. 1999,Haelens et al. 2003).Ontopofthis,theARseemstohaveadoptedanexclusivemechanismofspecificity.A fewgenesareknowntobepreferentiallyregulatedbyAR(Claessens et al. 2001).Thestructuresof the androgen response elements (AREs) that direct androgenspecificity to these genes more resemble direct repeats of the sequence 5’TGTTCT3’ than classic inverted repeats of this sequence. TheandrogensensitivehumanprostatecarcinomacelllineLNCaPexpressesAR,butlacksGR and PR (Horoszewicz et al. 1983, Berns et al. 1986). It was previously shown that growth of LNCaP cells, and PSA mRNA expression in these cells can be stimulated by androgens (Schuurmans et al. 1988,Riegman et al. 1991,Young et al. 1991).Inordertocomparedirectlythe molecular and biological function of AR and GR, the LNCaP1F5 subline, containing a stably integratedGRexpressionvector,wasgenerated(Cleutjens et al. 1997).PSAmRNAexpressionin LNCaP1F5canbeinducedbybothandrogensandglucocorticoids,butcellgrowthisselectively induced by androgens. We identified in LNCaP1F5 cells a novel gene that is specifically regulatedbyandrogens(Cleutjens et al. 1997).Inthepresentstudyanintegratedexperimental andbioinformaticsbasedapproachwasappliedtocharacterizethegene,designated SARG ,and todecipherthemolecularmechanismofandrogenspecificregulationofthegene. MATERIALSANDMETHODS Materials Methyltrienolone(R1881)waspurchasedfromNEN(Boston,MA),(Dex)was obtainedfromSteraloids(Wilton,NH).CellculturemediawerefromBioWhittaker(Verviers, Belgium),fetalcalfserum(FCS)wasfromRocheDiagnostics(Almere,TheNetherlands). Plasmid construction pLUCandpPSA4LUChavebeendescribedpreviously(Cleutjens et al. 1996).pHisXpress cSARG, expressing (His) 6XpressSARG protein, contains the SARG cDNA fragment 209 2579 (SARG ORF is from 251 to 2053) inserted in the eukaryotic expression vector pcDNA3.1His(Invitrogen,Carlsbad,CA). The SARG genomic fragments SARG8.5, SARG7.3 and SARG+4.6, withsizesof510bp, 476bpand569bp,respectively,wereobtainedbyPCRonPAC90L18DNA(GenomeSystems, StLouis,MO)astemplatewiththeprimersets: 8.5F:5'GATCAGCTGGATCCCAGGGACATGGATGAAGCTG3' 8.5R:5'GATCAGCTGGATCCTGCCTCAACCTCCCAAGTAG3' 7.3F:5'GATCAGCTGGATCCGTCATAATGACTTGGCCATG3' 7.3R:5'GATCAGCTGGATCCTGTCCAACATTTGAGGCCAG3'

111 +4.6F:5'GATCAGCTGGATCCGTATCGTAGCGGTGGTTGTG3' +4.6R:5'GATCAGCTGGATCCTGGAGAGGCAGTCTAGTCAG3' The resulting amplified fragments were inserted in pGEMT Easy (Promega, Madison, WI), sequenced and subsequently inserted as Bam HI/ Bam H1 fragments in pPSA4LUC, yielding pSARG8.5PSALUC,pSARG7.3PSALUCandpSARG+4.6PSALUC,respectively. The 55 to +168 genomic fragment SARGS was obtained by PCR on PAC90L18 DNA, utilizing the primers SARGA: 5'GCTAAGAGGGAACAGCACCAC3' and SARGB: 5' CCCGGGAGATCTACTAGTCCACTGGGTTG3'.ThePCRproductwasinsertedinpGEMT Easy,verifiedbysequencingandinsertedasa240bp Pvu II/ Bgl IIfragmentinpLUC,yielding pSARGSLUC.TogeneratepSARGLLUC,the–3012to1559 Hind III/ Pvu II SARG genomic fragment was isolated from PAC90L18 and inserted inthecorrespondingsitesofpSARGS LUC, yielding pSARGLLUC. Subsequently, the 1559 to –55 Pvu II/ Pvu II genomic SARG fragmentwasinsertedintothe Pvu IIsiteofpSARGLLUC.TheresultingconstructpSARG LLUCcontainsSARGbp3012to+168. SARG+4.6wasinsertedasa Bam HI/ Bam H1fragmentupstreamoftheSARGSpromoteror SARGLpromoterinpSARGSLUCandpSARGLLUC,respectively,yieldingpSARG+4.6 SARGSLUC and pSARG+4.6SARGLLUC. pSARG+4.6mSARGSLUC was generated by mutagenesis utilizing the QuikChange SiteDirected Mutagenesis Kit (Stratagene, LaJolla, CA) on pSARG+4.6SARGSLUC as template. Primers: mut4603S: 5’ CAACTAAACTATGATAACTATTATCTCATTTAATC3’ and its complementary strand: mut4603AS. SARG+4.6(+4447/+4659)SLUCandSARG+4.6(+4548/4659)SLUCwereconstructedby insertionoftherespective Bam H1/ Bam H1fragmentsupstreamoftheSpromoterinpSARGS LUC.ThefragmentsSARG+4.6(+4447/+4659)andSARG+4.6(+4548/+4659)weregenerated byPCRutilizingtheprimers S+4.6A(5’GATCAGCTGGATCCCCTTCTTTTCTGAGATCCTG3’)and S+4.6B (5’GATCAGCTGGATCCCTCATGAGGTCTTAGGGTAT3’) as respective forwardprimers,andS+4.6C(5’GATCAGATGGATCCGGCAAATTACTCTGAGTCTG3’) asreverseprimer.AmplifiedfragmentsweresequencedpriortoinsertionintopSARGSLUC as Bam H1/ Bam H1fragments. pRIT2TAR, encoding rat AR DBD, was described previously (De Vos et al. 1991). prGR DBDPRIT2T, encoding rat GR DBD, was constructed by Bam HI/ Sal I insertion of a PCR fragment, synthesized with primers rGRDBD1: 5' CAGCGGATCCGCAGCCACGGGACCACCTCCC3' and rGRDBD2: 5' CTATTGTCGACTAAGGATTTTCCGAAGTGTCTTG3' on pSTCGR3795 (Rusconi and Yamamoto1987)astemplate,inpRIT2T(AmershamBiosciences,Bucks,UK). Screening of a prostate cDNA library Screeningofa λgt10humanprostatecDNAlibrary(BDBiosciencesClontech,PaloAlto,CA) wasperformedaccordingtothemanufacturer'sprotocol.HybridizationprobesweretheSARG differential display PCR (DDPCR) fragment (GenBank Accession Number AF007835) and SARGcDNAfragment8551957(seeGenBankAccessionNumberAY352640) . RACE-PCR ForRACEPCRweappliedtheMarathonReadyprostatecDNAcloningkit(BDBiosciences Clontech). Primers: SARGRACE: 5'CCTGAAGTTCTGGCTTCTGGCAATGTG3' and the standardAP1primerofthe

112 kit.AmplifiedcDNAfragmentswereinsertedinpGEMTEasyandsequenced. Analysis of of mRNA by RT-PCR cDNAwassynthesizedfrom1 gtotalRNAisolatedfromLNCaPcellsincubatedfor24hin RPMI 1640 supplemented with 5% (v/v) dextrancoated charcoal treated FCS (FCSDCC), antibioticsand1nMR1881.cDNAsynthesiswasperformedat55 °CutilizingMMuLVreverse transcriptase and an oligodT primer. Subsequently, PCR was carried out under standard conditions on the LNCaP cDNA template utilizing either forward primer SARGF1A: 5’ CCAGGCAGCACAGATGAAGC3’ or SARGF1B: 5’AGCCTCTGTCTCCATCTCTGC3’ incombinationwiththereverseprimerSARGR:5’CTTCAGTGGACAGGAAGTCG3’.RT PCRproductswereinsertedinpGEMTEasyandsequenced. RNA isolation and Northern analysis Total RNA from LNCaP and LNCaP1F5 cells was isolated by the guanidinium thiocyanate method(SambrookandRussell2001).RNA(10 gperlane)wasseparatedbyelectrophoresisona 1%(w/v)agaroseformaldehydegelinTBE.FollowingelectrophoresisRNAwastransferredtoa HybondN+ membrane (Amersham Biosciences). The blot was hybridized under standard conditionsat65 °Cutilizingthe 32 Plabelled Hind III/ Hind IIISARGcDNAfragment(8541957) as a probe (Sambrook and Russell 2001). Actin cDNAwas utilized as a hybridization control. BlotswereexposedtoXrayfilmwithintensifyingscreensat80 °C. Analysis of tissue specific expression of mRNA by PCR TissuespecificityofSARGmRNAwasassayedbysemiquantitativePCRonHumanMTCPanel II cDNA (BD Biosciences, Clontech), containing cDNAs from spleen, , prostate, testis, ovary, small intestine, colon and peripheral blood lymphocytes, essentially according to the procedure described in the User Manual. G3PDH primers from the cDNA kit were used as a control (30 amplification cycles). SARG primers utilized were 5’ AGTCTGAGCCAGCCACAACT3’(Fex3)and5’TGTGGATATTCCTAGGGAGG3’(Rex4) (30amplificationcycles;primerannealingwasat55 °C). Immunocytochemistry LNCaPcellswereseededatadensityof3x10 5cellsperwellonsterilemicroslidesinfourwell tissue culture plates (Heraeus Instruments, Hanau, Germany), cultured until 50% confluence in RPMI1640,supplementedwith5%(v/v)FCSandantibiotics,andsubsequentlytransfectedwith5 gpHisXpresscSARG.Afterovernightincubation,cellswerewashedtwiceinphosphatebuffered saline(PBS),andfixedinacetonefor10min.Next,slideswererinsedtwiceinPBS,followedby overnightincubationinmouseantiXpressantibodysolution(Invitrogen)diluted1:500inPBSat 4°C.IncubationwasstoppedbyfourPBSwashes.Next,slideswereincubatedfor30minatroom temperature in goat antimouse peroxidase conjugate antibody (DAKO, Glostrup, Denmark) solution (1:100 dilution in PBS). After four PBS washes, immunoreactivity was visualized by diaminobenzidine(DAB)staining.Thereactionwasstoppedinwater.Cellswerecounterstained withMayersHematoxylin. Isolation of genomic DNA fragments The SARG DDPCR fragment was randomly 32 Plabelled and utilized to screen a genomic human PAC library on gridded filters (GenomeSystems, St. Louis, MO) according to the manufacturer's protocol. DNA was isolated from positive PACs by standard procedure

113 (SambrookandRussell2001).ForSouthernblotanalysis10 gPAC90L18DNAwas Hind III, Pst Ior Eco RIdigested,electrophoresedona0.8%TAEagarosegelandsubsequentlytransferred toaHybondN+membrane.Filterswerehybridizedathighstringencywithrandomly 32 Plabelled SARG probes under standard conditions (Sambrook and Russell 2001). Hind III, Pst I or Eco RI digestedPACDNAwasshotgunclonedinthecorrespondingsitesofpBSKS +/(Stratagene). Clones were utilized for isolation of genomic fragments by screening with randomly 32 P labelledSARGcDNAfragmentsandfor SARG genewalkingwithoverlapping Hind III, Pst Iand Eco RIfragments.Hybridizinginsertsweresequenced. Search for candidate androgen response elements TheMatInspectorprofessionalprogram(www.genomatix.de/mat_fam)(Quandt et al. 1995)was utilized for detection of candidate AREs with queries for the inverted repeat 5’ RGWACANNNTGTTCT3’(R=A/G,W=G/T)andthedirectrepeat5’TGTTCTNNNTGTTCT 3’.ThethresholdforcandidateAREswassetat9outof12matches.TheMatinspectorprogram searchedboththesenseandantisensestrand.Identifiedsequencesweremanuallyfurtherselected according to additional criteria. Candidate invertedrepeatAREsshouldcontainGandCatthe doubleunderlinedpositionsinthesequenceabove,andatleastoneofeithersingleunderlinedCor G. Candidate direct repeat AREs should contain three out of four singleunderlined C and G residues. Cell culture, transfection and luciferase assay LNCaPandLNCaP1F5cellswereculturedinRPMI1640supplementedwith5%(v/v)FCS andantibiotics.Fourhourpriortotransfection,mediumwassubstitutedbyDulbecco's ModificationofEagle'sMedium(DMEM)supplementedwith5%(v/v)FCSDCC.Transient transfectionswereperformedaccordingtothecalciumphosphateprecipitationmethod (SambrookandRussell2001)utilizing1x10 6cellsper25cm 2flaskand5 gofoneofthe pLUCconstructs.After4hthemediumwasremovedandcellswereincubatedfor90secat roomtemperatureinPBScontaining15%(v/v)glycerol.Next,transfectedcellswereculturedin DMEMFCSDCCmediumfor24hintheabsenceorpresenceof1nMR1881or10nMDex. TransfectedcellswerewashedinPBS,andsubsequentlyincubatedin300 llysisbuffer(25 mMTrisphosphate,pH7.8/8mMMgCl 2/1mMDTT/1%(v/v)TritonX100/15%(v/v) glycerol).Next,100 l0.25mMluciferin(Sigma,St.Louis,MO)/0.25mMATPinlysisbuffer wasaddedto150 llysate,andluciferaseactivitywasmeasuredinaLUMAC2500M Biocounter(LUMAC,Landgraaf,TheNetherlands). Electrophoretic mobility shift assay ARDBDandGRDBDwereproducedin Escherichia coli ,andpurifiedasdescribed previously(DeVos et al. 1991).ARDBDandGRDBDwereexpressedfrompRIT2TARand pRIT2TrGRDBD,respectively. Oligonucleotideelectrophoresismobilityshiftassay(EMSA)probes: PSAAREI: 5'-GATCCTTGCAGAACAGCAAGTGCTAGCTG-3' 3'-GAACGTCTTGTCGTTCACGATCGACCTAG-5' ProbasinAREII: 5'-TCGACTAGGTTCTTGGAGTACTTTG-3' 3'-GATCCAAGAACCTCATGAAACAGCT-5' ARESARG+4.6: 5’-TCGACACTGTGCTAACTGTTCTCTG-3’ 3’-GTGACACGATTGACAAGAGACAGCT-5’ DR: 5’-TCGACACTGTTCTAACTGTTCTCTG-3’ 3’-GTGACAAGATTGACAAGAGACAGCT-5’

114 AREmSARG+4.6: 5’-TCGACACTATGATAACTATTATCTG-3’ 3’-GTGATACTATTGATAATAGACAGCT-5’ ProbeswerefilledinbystandardMMuLVRTreactioninthepresenceof α32 PdATP,and subsequentlypurifiedonanondenaturingpolyacrylamidegel.ForEMSA,50x10 3cpmprobe wasaddedto20 lreactionmixture,containing2 gpolydIdC,2 gBSA,10 MZnCl 2,1 mMDTTand2 l10xbindingbuffer(100mMHepes,pH7.6/300mMKCl/62.5mMMgCl 2/ 4%(v/v)ficoll400),and5pmolARDBDorGRDBD.Incubationwasfor30minonice. Sampleswereelectrophoresedona4%(w/v)polyacrylamide(19:1mono/bisacrylratio)gelin a25mMTris.HCl/41.5mMboricacid/0.5mMEDTAbufferfor2hat150Vatroom temperature.Subsequently,gelswerefixed,driedandexposedtoXrayfilm. Chromatin immunoprecipitation Chromatinimmunoprecipitations(ChIP)weredoneessentiallyaccordingtothemethod describedintheAcetylHistoneH3ChIPassaykit(UpstateBiotechnology,Chicago,Il).In short,LNCaPcellsweregrownforatleast3dayson5%FCSDCCsupplementedRPMI1640 medium.TohalfoftheculturesR1881wasaddedtoafinalconcentrationof10nM.After1h cellswerecrosslinkedwithformaldehyde(1%finalconcentration)at22 oCfor10min.Cross linkingwasstoppedbyadditionofglycinetoafinalconcentrationof125mM.Next,cellswere washedinicecoldPBSandharvestedinPBSsupplementedwithproteaseinhibitors(Roche Diagnostics).CellpelletswereresuspendedinSDSlysisbufferandsonicatedtosheartheDNA. Sonicatedsampleswerecentrifuged,dilutedinChipDilutionBufferandpreclearedby incubationwithsalmonspermDNA/ProteinAagaroseslurryfor1hat4 oCwithrotation.After centrifugation,immunoprecipitationofthesupernatantwasperformedovernightat4 oCwith AcetylHistoneH3antibody.Next,salmonspermDNA/ProteinAagaroseslurrywasadded,and theincubationwascontinuedforanotherhour.Agarosebeadswerewashedaccordingtothe proceduredescribedbythemanufacturer.Eluateswereheatedovernightat65 oCtoreversethe crosslinking.DNAfragmentswerepurifiedwithaQIAquickSpinKit(QIAGEN,Hilden, Germany).Onelfrom50lDNAsolutionwasusedinastandardPCR(35amplification cycles).Primersequenceswere: 8.5F:5’CAGGGACATGGATGAAGCTG3’ 8.5R:5’GAACCCGTCATCTACATTAG3’ 7.3F:5’GTAAGTCCAACACAGCTAGTC3’ 7.3R:5’CTGAGATGCTGAGAGGCTGA3’ +4.6F:5’CAAGTCTACAGTCTCCCATC3’ +4.6R:5’CTCAAATCCCAGTTTAGCCA3’. PCRfragmentswereseparatedoveranagarosegel. RESULTS SARG mRNA expression in LNCaP-1F5 cells Utilizing DDPCR technology,wepreviouslyidentifiedinLNCaP1F5prostatecancercells, whichexpressbothARandGR,anovelandrogenspecificregulatedgene,denoted21.1inthe initialstudyand SARG inthepresentstudy(Cleutjens et al. 1997).SARGmRNAexpression was found to be upregulated by the synthetic androgen R1881, but not by the synthetic glucocorticoidDex.UtilizingtheDDPCRfragmentashybridizationprobe,a5.5kbtranscript wasidentifiedinR1881incubatedLNCaP1F5cells.

115 A SARGcDNA +1 ATG TAG * * * 5.5kb DDPCR * cDNA3.6kb * cDNA2.7kb RACE1 RACE2

1 8 B 8 x 1 e — R D kb 5.5 3.3 SARG 2.3 ACTIN C SARG G3PDH 1 2 3 4 5 6 7 8 Figure1. SARGcDNA,andandrogenregulatedandprostatespecificSARGmRNAexpression. (A)SchematicoverviewoftheisolationofthecompleteSARGcDNA.Thestartandstopcodonsareindicated.An asteriskindicatesapolyadenylationsignal.DDPCRindicatestheoriginaldifferentialdisplayfragment(Cleutjens et al. 1997).RACE1,RACE2aretworelated5'endsofSARGcDNA.(B)NorthernblotofSARGmRNAexpressionin LNCaP1F5 cells incubated for 24 h without hormone (), with 1 nM R1881 or 10 nM Dex. Transcript sizes are indicated.Actinwasutilizedasaloadingcontrol.(C)RTPCRanalysisofSARGmRNAexpressioninspleen(1), thymus (2), prostate (3), testis (4), ovary (5), small intestine (6), colon (7) and lymphocytes (8). cDNAs were normalizedforG3PDHexpressionasloadingcontrol. For further characterization of SARG we first isolated fulllength SARG mRNA. Overlapping SARGcDNAfragmentswereobtainedbyrepeatedscreeningofahumanprostatecDNAlibrary. In the first screen the DDPCR fragment was utilized as hybridization probe (Figure 1A). The longestcDNA,containingapolyadenylationsignalandapolyAtail,was3.6kbp.Screeningofthe cDNA library with a 5' fragment of this cDNA as a probe resulted in the detection of an overlapping 2.7 kbp cDNA with a secondpolyadenylation signal and apolyA tail. This cDNA fragment extended the cDNA sequence to approximately 4.9 kbp. Further 5' SARG cDNA sequencewasobtainedbyRACEPCR,utilizingaprimerinthe2.7kbpcDNA.Tworelated5'

116 cDNAfragmentsof665bpand537bp,respectively,werefound.Theshorterfragment(RACE2) lackednucleotides42169ofthelongerfragment(RACE1)(Figure1A).ThelongestSARGcDNA sequenceof5487bpwasdepositedinGenBankunderAccessionNumberAY352640. A BLAST search of the EST database (www.ncbi.nlm.nih.gov/) identified two EST clusters overlappingtheSARGcDNAsequence.Thefirstgrouprepresentedthe3’partsofthe5.5kband 3.3kbtranscripts,asdetectedinthecDNAlibrary(UnigeneclusterHs.32417),thesecondcluster represented a 2.3 kb transcript, which contained SARG 5’ cDNA sequences, and a third polyadenylationsequenceandpolyAtail(UnigeneclusterHs.223394).Weconfirmedthepresence of threepolyadenylation signals in the 5.5 kbp SARGcDNAsequence(Figure1A).A1.1kbp SARG cDNA fragment (nucleotides 854 to 1957) hybridized with all three predicted SARG mRNAsinaNorthernblotofLNCaP1F5RNA(Figure1B).The3.3kbtranscriptshowedthe highestexpression.AllSARGtranscriptswereupregulatedbyR1881,buttheirexpressioncould notbe inducedby Dex. Semiquantitative RTPCR indicated highSARGmRNAexpressionin prostatetissue(Figure1C,lane3)ascomparedtospleen,thymus,testis,ovary,smallintestine, colonandlymphocytes. SARG protein TheSARGopenreadingframe(ORF)encodesa601aminoacidprotein(Figure2A).ThisORF is identical to that of the hypothetical protein MGC2742 (Genbank). Because Unigene cluster Hs.23417encompassesthe3’partofthetwolongestSARGtranscripts,apredictedproteinfrom thisESTcluster(MGC4309)isunlikely. Todetermineitscellularlocalization,SARGproteinwasXpresstaggedandtransientlyexpressed in LNCaP cells. Immunocytochemical staining with antiXpress antibody showed that SARG proteinwasexclusivelypresentinthecytoplasm(Figure2B). SARG gene structure and splice variants Thecomplete SARG genewasisolatedinonePAC(90L18)byscreeningofahumangenomic PAClibrarywiththeSARGDDPCRfragment(seeFigure1A)asprobe.Tocharacterize SARG , subcloned overlapping Hind III, Pst I and Eco RI fragments of PAC 90L18 were hybridized with appropriate cDNA fragments. Comparison with the cDNA sequence revealed that SARG was composedof4exons,andspanned14.5kbp(Figure3A).ThetwocDNAfragmentsobtainedby RACEPCRrepresentedtwoformsofexon1,theshortexon1A,andtheextendedexon1AB.All splicejunctionswereconsistentwiththeGT/AGrule(Figure3B).TheSARGORFstartedinexon 2 and ended in the large exon 4 (Figure 3A). SARG is part of BAC RP11564A8 (Genbank AccessionNumberAC098935.2).Thetranscriptionstartsiteisatposition184,776inthisclone. SARG mapsatchromosomeband1q32.2. RACEPCRandRTPCRrevealedfourdifferentSARGsplicevariants(Figure3C).Thelargest variantcontainedall4exons,smallervariantslackedeitherpartBofexon1AB,exon2orboth. Thesplicevariantslackingexon2,whichformedaminority,arepredictedtoencodeaproteinof 355aminoacids,startingatmethionine247(Figure2A).ThecorrespondingATGcodonisinexon 4,inframewiththelongSARGORF(Figure3C). A

117 251 ATGCCCGAGAGGGAGCTGTGGCCAGCGGGGACTGGCTCAGA ACCCGTGACCCGTGTCGGC A 1 M P E R E L W P A G T G S E P V T R V G 311 AGCTGTGACAGCATGATGAGCAGCACCTCCACCCGCTCTGG ATCTAGTGATAGCAGCTAC 21 S C D S M M S S T S T R S G S S D S S Y 371 GACTTCCTGTCCACTGAAGAGAAGGAGTGTCTGCTCTTCCT GGAGGAGACCATTGGCTCA 41 D F L S T E E K E C L L F L E E T I G S 431 CTGGACACGGAGGCTGACAGCGGACTGTCCACTGACGAGTC TGAGCCAGCCACAACTCCC 61 L D T E A D S G L S T D E S E P A T T P

491 AGAGGTTTCCGAGCACTGCCCATAACCCAACCCACTCCCCG GGGAGGTCCAGAGGAGACC 81 R G F R A L P I T Q P T P R G G P E E T

551 ATCACTCAGCAAGGACGAACGCCAAGGACAGTAACTGAGTC CAGCTCATCCCACCCTCCT 101 I T Q Q G R T P R T V T E S S S S H P P

611 GAGCCCCAGGGCCTAGGCCTCAGGTCTGGCTCCTACAGCCT CCCTAGGAATATCCACATT 121 E P Q G L G L R S G S Y S L P R N I H I

671 GCCAGAAGCCAGAACTTCAGGAAAAGCACCACCCAGGCTAG CAGTCACAACCCTGGAGAA 141 A R S Q N F R K S T T Q A S S H N P G E

731 CCGGGGAGGCTTGCGCCAGAGCCTGAGAAAGAACAGGTCAG CCAGAGCAGCCAACCCAGG 161 P G R L A P E P E K E Q V S Q S S Q P R

791 CAGGCACCTGCCAGCCCCCAGGAGGCTGCCCTTGACTTGGA CGTGGTGCTCATCCCTCCG 181 Q A P A S P Q E A A L D L D V V L I P P

851 CCAGAAGCTTTCCGGGACACCCAGCCAGAGCAGTGTAGGGA AGCCAGCCTGCCCGAGGGG 201 P E A F R D T Q P E Q C R E A S L P E G

911 CCAGGACAGCAGGGCCACACACCCCAGCTCCACACACCATC CAGCTCCCAGGAAAGAGAG 221 P G Q Q G H T P Q L H T P S S S Q E R E

971 CAGACTCCTTCAGAAGCCATGTCCCAAAAAGCCAAGGAAAC AGTCTCAACCAGGTACACA 241 Q T P S E A M S Q K A K E T V S T R Y T

1031 CAACCCCAGCCTCCTCCTGCAGGGTTGCCTCAGAATGCAAG AGCTGAAGATGCTCCCCTC 261 Q P Q P P P A G L P Q N A R A E D A P L

1091 TCATCAGGGGAGGACCCAAACAGCCGACTAGCTCCCCTCAC AACCCCTAAGCCCCGGAAG 281 S S G E D P N S R L A P L T T P K P R K

1151 CTGCCACCTAATATTGTTCTGAAGAGCAGCCGAAGCAGTTT CCACAGTGACCCCCAGCAC 301 L P P N I V L K S S R S S F H S D P Q H

1211 TGGCTGTCCCGCCACACTGAGGCTGCCCCTGGAGATTCTG GCCTGATCTCCTGTTCACTG 321 W L S R H T E A A P G D S G L I S C S L

1271 CAAGAGCAGAGAAAAGCACGTAAAGAAGCTCTAGAGAAGCT GGGGCTACCCCAGGATCAA 341 Q E Q R K A R K E A L E K L G L P Q D Q

1331 GATGAGCCTGGACTCCACTTAAGTAAGCCCACCAGCTCCAT CAGACCCAAGGAGACACGG 361 D E P G L H L S K P T S S I R P K E T R 1391 GCCCAGCATCTGTCCCCAGCTCCAGGTCTGGCTCAGCCTGC AGCTCCAGCCCAGGCCTCA 381 A Q H L S P A P G L A Q P A A P A Q A S 1451 GCAGCTATTCCTGCTGCTGGGAAGGCTCTGGCTCAAGCTCC GGCTCCAGCTCCAGGTCCA 401 A A I P A A G K A L A Q A P A P A P G P 1511 GCTCAGGGACCTTTGCCAATGAAGTCTCCAGCTCCAGGCAA TGTTGCAGCTAGCAAATCT 421 A Q G P L P M K S P A P G N V A A S K S 1571 ATGCCAATTCCTATCCCTAAGGCCCCAAGGGCAAACAGTGC CCTGACTCCACCGAAGCCA 441 M P I P I P K A P R A N S A L T P P K P 1631 GAGTCAGGGCTGACTCTCCAGGAGAGCAACACCCCTGGCCT GAGACAGATGAACTTCAAG 461 E S G L T L Q E S N T P G L R Q M N F K 1691 TCCAACACTCTGGAGCGCTCAGGCGTGGGACTGAGCAGCTA CCTTTCAACTGAGAAAGAT 481 S N T L E R S G V G L S S Y L S T E K D 1751 GCCAGCCCCAAAACCAGCACTTCTCTGGGAAAGGGCTCCTT CTTGGACAAGATCTCGCCC 501 A S P K T S T S L G K G S F L D K I S P

1811 AGTGTCTTACGTAATTCTCGGCCCCGCCCGGCCTCCCTGGG CACGGGGAAAGATTTTGCA 521 S V L R N S R P R P A S L G T G K D F A

1871 GGTATCCAGGTAGGCAAGCTGGCTGACCTGGAGCAGGAGCA GAGCTCCAAGCGCCTGTCC 541 G I Q V G K L A D L E Q E Q S S K R L S

1931 TACCAAGGACAGAGCCGTGACAAGCTTCCTCGCCCCCCCTG TGTCAGTGTCAAGATCTCC 561 Y Q G Q S R D K L P R P P C V S V K I S

1991 CCAAAGGGTGTCCCCAATGAACACAGAAGGGAGGCCCTGAA GAAGCTGGGACTGTTGAAG P K G V P N E H R R E A L K K L G L L K

2051 GAGTAG B 601 E * Figure2.TheSARGopenreadingframeandthecellularlocalizationoftheSARGprotein. (A)TheSARGORFencodesaproteinof601aminoacids.Methionine247(inbold)isthefirstaminoacidresidue of the shorter SARG protein translated from mRNA lacking exon 1B and/or exon 2 sequences. (B) The SARG protein is located in the cytoplasm. LNCaP cells were transfected with pcHisXpresscSARG encoding Xpress taggedSARGprotein.XpressSARGwasvisualizedbyimmunostainingwithantiXpressantibody.

118 A +1 ATG TAG ** * 1A 2 3 4 B 1kb B …………CAGTGGCAGG exon1A GT AAGTCAGG……….. +1…41 ……….…CAGTGGCAGG exon1AB GT GAGTTAAT………… +1…169 …………..CTCTTTTC AG exon2 GT ACGTAATA………… 5068…5253 ……….…AACCCAAC AG exon3 GT AAGGCAGA……….. 7683…7860 ……….…ACCCTCAC AG exon4 CTTCTGGGTC………… 9271…14224 C ATG TAG 1A 2 3 4 B ATG TAG 1 2 3 4 A ATG TAG 1A 3 4 B ATG TAG 1A 3 4 Figure3. SARG genestructureandsplicevariants. (A)Schematicpresentationofthe SARG gene.TheATGstartcodoninexon2andtheTAGstopcodoninexon4are indicated.Thethreeasterisksindicatepolyadenylationsignals.(B)Splicedonorandacceptorsitesattheexon/intron boundaries in the SARG gene. Numbering is according to the genomic SARG sequence. (C) Four different splice variantsofthe SARG gene.Startandstopcodonsareindicated. Functional and bioinformatics-based selection of candidate androgen response elements Toestablishandrogenresponseof SARG ,thepromoterfragmentsSARGL(3012to+168)and SARGS (55 to +168) were inserted in front of the luciferase reporter gene in the constructs pSARGLLUC and pSARGSLUC, respectively. Transient transfection of these constructs to LNCaPcellsshowedinbothcasesaveryweakandrogenresponse,indicativeoftheabsenceof strong ARbinding sites (see Figure 4D). ThispromptedustoscreenforcandidateAREsina regionofapproximately18kbp,from9kbpupstreamto9kbpdownstreamofthetranscription startsite,byabioinformaticsbasedapproach.ThissequenceispresentinBACsAC098935.2and AC023534. The MatInspector program was applied to search both DNA strands for sequences homologoustothedirectrepeat5’TGTTCTnnnTGTTCT3’ortotheinvertedrepeatconsensus ARE sequence 5’A/GGA/TACAnnnTGTTCT3’ (see Materials and Methods). We selected sequences that showed at least 9 out of 12 matchesin the two halfsites.Outofthesequences obtainedcandidateAREswerefurtherselectedmanually,basedonthecriteriaofpresenceofat

119 least3outof4underlinedCorGresiduesinthedirectrepeat,orpresenceofthedoubleunderlined CandGresidue,andatleastoneofthetwosingleunderlinedCandGresiduesintheinverted repeat.Utilizingthisapproachweidentified34candidateAREsinthe18kbpregion,12inverted repeatsand22directrepeats.Noneofthesewascompletelyidenticaltotheconsensusinverted repeat.Onewasaperfectdirectrepeatandtwosequencesdeviatedatonepositionfromaperfect direct repeat. Four sequences matched the inverted or direct repeat at 10 out of 12 positions. Several candidate AREs clustered in the genome. At approximately –8.5 kbp a cluster of 4 candidateAREswaspresent,includingtheimperfectdirectrepeat5’TGAACAatgAGAACA3’ (11/12matches);at+4.6kbpaclusterof5candidateAREswasdetected,includingtheimperfect directrepeat5’TGTGCTaacTGTTCT3’(11/12matches).Thelatterclusterislocatedin SARG intron1.Theperfectdirectrepeat5’TGTTCTcctTGTTCT3’mappedat7.3kbp,oneARElike sequencewasclosetothisrepeat(Figure4A,B). Next,itwasinvestigatedwhetherthreegenomicfragmentscontainingtheindicateddirectrepeats andflankingcandidateAREscouldfunctionasenhancerregions.Genomicfragmentswithasize of approximately 500 bp, SARG8.5, SARG7.3 and SARG+4.6, respectively, were coupled to PSA4LUC, containing the 600 bp promoter of the PSA gene. This promoter was weakly responsivetoandrogens,butcombinationwithanupstreamPSAenhancerfragmentresultedina strongandrogeninduciblepromoter(Cleutjens et al. 1997).IntransfectedLNCaPcells,SARG8.5 andSARG7.3hadnosignificanteffectontheweakR1881inductionofthePSA4promoter.In contrast,SARG+4.6clearlyincreasedR1881inducedPSA4activity(Figure4C).Next,SARG+4.6 was linked to SARGS (55 to +168) and SARGL (3012 to +168), which both showed, as mentionedabove,averylowandrogeninduction.SimilartothePSApromoterexperiment,linkage of SARG+4.6 to both SARGL and SARGS showed androgen response in transfected LNCaP cells(Figure4D). SARG intron 1 contains a functional direct repeat androgen response element To determine whether the imperfect direct repeat 5’TGTGCTaacTGTTCT3’ in SARG+4.6 was responsible for androgen induction, it was mutated to 5’TATGATaacTATTAT3’. The mutatedfragmentwascoupledtoSARGSandtestedinLNCaPcellsforitsresponsetoR1881. AsshowninFigure5A,theandrogeninductionofSARG+4.6wascompletelyabolishedbythe mutations. Next,thedirectrepeat5’TGTGCTaacTGTTCT3’inSARG+4.6,designatedARESARG+4.6, wastestedinanEMSAforitsabilitytobindtoARDBD(Figure5B).ControlAREswerePSA AREI(5’AGAACAgcaAGTGCT3’),whichhasbeenshowntobindstronglytotheARDBD, and ratprobasinAREII(5’AGTACTccaAGAACC3’),whichisconsideredasadirectrepeat, stronglyinteractingwithARDBD(Riegman et al. 1991,Rennie et al. 1993,Claessens et al. 1996, Cleutjens et al. 1996). ARESARG+4.6 bound to AR DBD, albeit weaker than the PSA and probasin AREs. The change of ARESARG+4.6 into the perfect direct repeat 5’ TGTTCTaacTGTTCT3’(DR)didnotaffectitscapacitytobindARDBD.ARDBDwasunable tobindinactivemutantAREmSARG+4.6(5’TATGATaacTATTAT3’).

120 A 1AB 2    2 8.5 7.3 +4.6 1kb B -8802…..…... atg ………….-8293 SARG -8.5 TGAACA AGAACA (direct repeat 11/12) SARG -7.3 -7580……...…TGTTCT cct TGTTCT ………..….-7105 (direct repeat 12/12) SARG +4.6 +4297…….…TGTGCT aac TGTTCT ….…..…..+4865 (direct repeat 11/12) C -632 +12 PSA4 LUC -8802 -8293 -632 +12 SARG8.5 PSA4 LUC

-7580 -7105 -632 +12 SARG7.3 PSA4 LUC

+4297 +4865 -632 +12 SARG+4.6 PSA4 LUC D -55 +168 LUC +4297 +4865 -55 +168 +4.6 LUC -3012 +168 L LUC +4297 +4865 -3012 +168 +4.6 L LUC Figure4.Threedirectrepeatcandidateandrogenresponseelementsinthe SARG gene. (A)Positions(kbp)ofthe3directrepeatcandidateAREs(♦)inthe SARG gene.(B)Sequencesandlocationofthe 3 direct repeat candidate AREs in the SARG gene. Numbering is according to the genomic SARG sequence. Matchingtothedirectrepeat5’TGTTCTnnnTGTTCT3'isindicatedbelowthesequences.(C)Androgeninduced activityofthe SARG fragments,containingadirectrepeatcandidateARE,coupledtothePSA4promoter.LNCaP cells were transiently transfected with pPSA4LUC, pSARG8.5PSALUC, pSARG7.3PSALUC or pSARG+4.6PSALUC.Luciferaseactivitywasmeasuredafter24hincubationwithorwithout1nMR1881.(D) Androgeninduced activity of SARG+4.6 coupled to SARGS and SARGL, respectively. LNCaP cells were transfected with pSARGSLUC, pSARG+4.6SARGSLUC, pSARGLLUC or pSARG+4.6SARGLLUC. After24hincubationwithorwithout1nMR1881luciferaseactivitywasmeasured.Value+/SEMin(C)and(D) arefromtwoexperimentscarriedoutinduplicate.Foldinductionistheratioofluciferaseactivitymeasuredinthe presenceandabsenceofR1881.

121 A -55 +168 S LUC

+4297 +4865 -55 +168 +4.6 S LUC +4297 +4865 -55 +168 +4.6 S LUC X X 0 2 4 6 8 10 12 FOLDINDUCTION .6 B I I .6 4 4 + E G R + I A G R E R A in A S R s A a -S -m A b E E S ro R R R P P A D A – + – + – + – + – + PSA ARE I: AGAACAgcaAGTGCT Probasin AREII: GGTTCTtggAGTACT ARE-SARG+4.6: TGTGCTaacTGTTCT DR: TGTTCTaacTGTTCT ARE-mSARG+4.6:TATGATaacTATTAT Figure5ThedirectrepeatinSARG+4.6isafunctionalandrogenresponseelement. (A) Effect of mutation of ARESARG+4.6 on the transcriptional activity of SARG+4.6. LNCaP cells were transfected with pSARGSLUC, pSARG+4.6SARGSLUC or pSARG+4.6mSARGSLUC and incubated for 24hwithorwithout1nMR1881.Transcriptionalactivitywasmeasuredinaluciferaseassay.Values+/SEMare from two experiments carried out in duplicate. Fold induction is the ratio of luciferase activity measured in the presenceandabsenceofR1881.(B)EMSAofindicatedAREsandARDBD.AREsequencesareshownbelowthe figure.ThearrowheadindicatesthepositionoftheARDBDAREcomplex.

122 Characterization of enhancer SARG+4.6 To further decipher the role of the 569 bp enhancer SARG+4.6(+4297/+4865) in androgen regulation,twodeletionconstructsofSARG+4.6SLUCweregenerated.ConstructSARG+4.6 (+4447/4659) lacked all four candidate weak ARE sequences present in the SARG+4.6 enhancer, but contained the imperfect direct repeat ARE (ARESARG+4.6). The 112 bp enhancer fragment SARG+4.6(+4548/4659) lacked even more upstream sequences, but also stillcontainedARESARG+4.6.IntransfectionexperimentstheshortenedenhancerSARG+4.6 (4447/4659) was less active than the 569 bp fragment, suggesting that clustering of ARE SARG+4.6withweakARElikesequencesisimportantforfullenhanceractivity(Figure6A). Interestingly,furthershorteningoftheenhancercompletelyabolisheditsactivityalthoughARE SARG+4.6 was still present. However, in the deleted region we could not detectanobvious ARElikesequence. WecarriedoutChIPassaysinordertoinvestigatethe in vivo functionofenhancerSARG+4.6. Utilizing an antibody directed against acetylated histone H3 we observed a difference in H3 acetylation over SARG+4.6between LNCaP cells grown in thepresence and in theabsenceof R1881,showingadifferenceinchromatinstructureonthispartofthegene(Figure6B).Thehigher signalwithAcH3antibodyinthepresenceofR1881indicatedanactivestructureoftheenhancer region.SuchadifferencewasnotdetectedforthegenomicfragmentsSARG8.5andSARG7.3. Thesefindingswereinaccordancewiththetransienttransfectionstudies,asshowninFigure4C. Unfortunately, ChIP assays with a large series of different antibodies against the AR were not successful,probablyduetothelowaffinityofARforARESARG+4.6. ARE-SARG+4.6 is androgen receptor specific To address the question whether ARESARG+4.6 is involved in androgen specificity, SARG+4.6 coupled to both SARGSLUC and PSA4LUC was tested for activation by Dex. TheconstructsweretransfectedtoLNCaP1F5cellsculturedinthepresenceof1nMR1881or 10 nM Dex, or in the absence of hormone (Figure 7A,B). SARG+4.6 did not significantly stimulateDexinducedactivityofSARGSandPSA4.Incontrast,R1881inducedactivityof thesetwopromoterswasclearlyincreasedbySARG+4.6. ARESARG+4.6 was also tested in an EMSA for itsabilitytobindtoGRDBD(Figure7C). ControlPSAAREIdidbindtoGRDBD,butratprobasinAREIIdidnot.Importantly,ARE SARG+4.6wasalsonotabletobindtoGRDBD,whichcorrelatedwiththeR1881specificityof SARG+4.6inthetransfectionassay.

123 -55 +168 A S LUC +4297 +4865 -55 +168 +4.6 S LUC

+4447 +4659 -55 +168 +4.6 S LUC

+4548 +4659 -55 +168 +4.6 S LUC 0 5 10 15 20 25 FOLDINDUCTION B INPUT αAcH3 R1881 – + – + 8.5 7.3 +4.6 Figure6.CharacterizationofenhancerSARG+4.6. (A)DeletionmappingofenhancerSARG+4.6intransientlytransfectedLNCaPcells.SeelegendtoFigure5Aand Materials and Methods for experimental details. (B)ChIPassayofthecandidate–8.5kb,7.3kband+4.6 kb enhancer regions of SARG in the presence and absence of R1881. AcetylHistone H3 antibody was used for immunoprecipitation. Experimental details are described in Materials and Methods. Input: DNA prior to immunoprecipitation.

124 A -55 +168 R1881 S LUC Dex +4297 +4865 -55 +168 +4.6 S LUC 0 2 4 6 8 10 RELATIVEINDUCTION

B -632 +12 R1881 PSA4 LUC Dex

+4297 +4865 -632 +12

+4.6 PSA4 LUC 0 2 4 6 8 10 RELATIVEINDUCTION C PSA Probasin SARG – + – + – + PSA ARE I Probasin ARE II ARE-SARG+4.6 Figure7.ARESARG+4.6isandrogenreceptorspecific. LNCaP1F5cellsweretransfectedwithpSARGSLUCandpSARG+4.6SARGSLUC(A)andpPSA4LUCand pSARG+4.6PSALUC(B).Luciferaseactivitywasmeasuredafter24hincubationwith1nMR1881or10nMDex or without hormone. R1881 and Dex induced activities of SARGSLUC (A) and PSA4LUC (B) were set at 1. Relativeinductions+/SEMarefrom2experimentscarriedoutinduplicate.(C) EMSAofAREswithGRDBD. SequencesoftheDNAfragmentsanalysedareshowninfigure5(B).GRDBDAREcomplexesareindicatedby thearrowhead.

125 DISCUSSION The androgenspecific regulated SARG gene was identified in the LNCaP1F5 subline that expressesendogenousAR,andGRfromastableintegratedcDNAexpressionvector(Cleutjens et al. 1997).WeshowedthatSARG mRNAexpressioncouldbeupregulatedbyandrogens,butnot by glucocorticoids. SARG is a 4 exon gene of 14.5 kbp mapping to chromosomeband 1q32.2. Exon1canappearinashortorlongform,1Aand1AB,respectively.The2.3,3.3and5.5kb transcriptsresultfromalternativepolyadenylation.Splicevariantsmightlackeitherexon2,partB ofexon1orboth.Thepredictedgenes MGC2742 and MGC4309 arebothpartof SARG . SARG is preferentiallyexpressedintheprostate(Figure1C).Ourfindingsaresubstantiatedbydatainthe expression profile database GeneNote ( http://bioinformatics/weizmann.ac.il/cards /). In this databasehigh SARG expressionwasonlydocumentedforprostateandlung. The SARG ORF encodes a protein of 601 amino acids; splice variants lacking exon 2 are expectedtocodeforacarboxylterminalfragmentof355aminoacidsofthefulllengthprotein. TransienttransfectionexperimentsshowedthattheSARGproteinislocatedinthecytoplasm.No homologytootherproteinswasfound.Unfortunately,theaminoacidcompositionofSARGdoes notindicatemotifsthatcouldpredictitsfunction.TheSargmouseorthologis605aminoacids with a homology to human SARG of 65%. Highest homology is in the aminoterminal and carboxylterminalregionsoftheproteins(datanotshown). ToexplainandrogenspecificityofSARGexpressionwefirststudieda3kbppromoterregion intransfectionassays.Becausetheseexperimentswereunsuccessful,wedecidedtocarryoutan in silico searchforcandidateARbindingsitesin18kbpflankingthe SARG transcriptionstart site.Thesearchcriteriawerebasedonthreeorlessdeviationsfromaperfectdirectrepeatorthe consensus high affinity ARE inverted repeat. We identified 34 candidate AREs. Functional studies,basedonclusteringofcandidateAREsindicatedthatanimperfectdirectrepeatinintron 1, 5’TGTGCTgcaTGTTCT3’ (ARESARG+4.6) was active and ARspecific. Importantly, ARESARG+4.6 cooperated with surrounding sequences in a569bpenhancerregionforfull activity. Part of the cooperating sequences mightbe weak ARbinding sites.However,others might be binding sites for prostate specific and more common transcription factors. The propertiesofthesefactorsremaintobeidentified. Mutation of ARESARG+4.6 to a perfect repeat did not affect AR DBDbinding. However, SARG7.3, which contains a perfect direct repeat, did not show any detectable androgen inductionintransfections.Also,linkageofSARG7.3toSARG+4.6SARGSdidnotincrease the activity of SARG+4.6SARGS in transfections (data not shown). In contrast to ARE SARG+4.6, ARESARG7.3 might lack favourablemodulatingflankingsequences(Nelson et al. 1999)orbindingsitesforothertranscriptionfactorsinitsclosevicinity.Thismightalsobe trueforinactivityofARESARG8.5. ThepresentstudyshowsthatabioinformaticsbasedsearchforARbindingsitesfollowedby selected functional studies can successfully identify active regulatory elements. However, it shows also the limitations of such an approach, due to the complexity of the regulation mechanismofgeneexpression.Thefunctionalstudieswerelimitedtothetwolargestclustersof candidateAREs,andtoasmallclustercontainingaperfectdirectrepeatinan18kbpregion. Without clusteringasaselectioncriterion,thebioinformatics approach would not have been selective, because of the high density of candidate AREs (1 per 500 bp). We realize that functional AREs in enhancers and promoters might also cluster with binding sites for other transcriptionfactors.Moreover,althoughlesslikely,itcannotbeexcludedcompletelythatsome candidateAREsequencesdidnotpasstheselectioncriteria.OnesuchAREshouldbeinSARG S (55 to +168), which is weakly androgen inducible. A candidate is the sequence 5’

126 GGGCCAggcAGCACA3’(+5to+17)inexon1,whichdeviatesat4positionsfromaperfect directrepeat. AcomplicatingfactorindirectrepeatAREsearchisthelackofaconsensussequenceforhigh affinity,highspecificityARbinding,duetothelimitednumberofthistypeofAREsidentified sofar.RatprobasinAREII(5’GGTTCTtggAGTACT3’),whichdeviatesfromaperfectdirect repeatat3positions,seemsatpresentthespecificAREwithhighestARaffinity(Rennie et al. 1993, Kasper et al. 1994, Claessens et al. 1996, Kasper et al. 1999, Claessens et al. 2001). However, a search of the 18 kbp SARG sequence did not detect candidate AREs closely resemblingthissequence(datanotshown).Ourdataprovidethefirstevidencethatanalmost perfect direct 5’TGTTCT3’ repeat aspresent in SARG+4.6, can function as an ARspecific element in a natural enhancer. Other direct repeatlike functional AREs, with variable AR specificity, as detected in the SC (Secretory Component) gene, the mouse Slp (Sex limited protein)geneandthe PEM (placentaandembryo)homeoboxgenealldeviateatleastatthree positionsfromaperfectdirectrepeat(Verrijdt et al. 1999,Verrijdt et al. 2000,Barbulescu et al. 2001). Comparison of functional AREs of a large series of preferentially androgen regulated genes should reveal the sequence of a consensus highaffinity,highspecificityARbindingsiteina natural context. Such genes might be identified by expression profiling of the AR and GR positive LNCaP1F5 cell line followed by an unbiased functional study of a large series of overlappingfragmentsflankingthetranscriptionstartsitesofthesegenes.Thisshouldalsogive abetterinsightinselectioncriteriaforabioinformaticsbasedsearchforfunctionalARbinding sites in novel genes. Such an approach might also include comparison with data from other species. It may be possible that the composition of an ARE can influence receptor activity by transduction of a particular conformation via the DNAbound DBD to other AR domains. Recent evidence indicates that binding to different AREs indeed induces different conformationalchanges(Geserick et al. 2003).AdifferentDBDconformationmightdirectlyor indirectlyaffecttheassociationwithcoactivators,asshownforER(Wood et al. 2001,Hall et al. 2002). In addition, it remains to be elucidated whether the ARE sequence is the major moleculardeterminantofARspecificity,orwhetherARproteinproteininteractions,including interactions with other specific transcription factors can contribute significantly to receptor specificity(Karvonen et al. 1997,Scheller et al. 1998). ACKNOWLEDGEMENT This work was supported in part by a grant from the Dutch Cancer Society KWF. We thank KarinHermansfortechnicalsupportandartworks. Abbreviations AR, androgen receptor; ARE, androgen response element; ChIP, chromatin immunoprecipitation; DBD, DNA bindingdomain;DCC,dextrancoatedcharcoal;DD,differentialdisplay;Dex,dexamethasone;DR,directrepeat; EMSA, electrophoretic mobility shift assay; FCS, fetal calf serum; GR, glucocorticoid receptor; HRE, hormone response element; MR, mineralocorticoid receptor; LBD, ligand binding domain; NTD, aminoterminal domain; PBS, phosphate buffered saline; PR, progesterone receptor; PSA, prostate specific antigen; R1881, methyltrienolone; SARG ,specificandrogenregulatedgene.

127 REFERENCES Aranda A & Pascual A2001Nuclearhormonereceptors and gene expression. Physiological Reviews 81 1269 1304. BarbulescuK,GeserickC,SchuttkeI,SchleuningWD&HaendlerB2001Newandrogenresponseelementsinthe murinepempromotermediateselectivetransactivation. Molecular Endocrinology 15 18031816. Berns EM, de Boer W & Mulder E 1986 Androgendependent growth regulation of and release of specific protein(s)bytheandrogenreceptorcontaininghumanprostatetumorcelllineLNCaP. Prostate 9247259. Claessens F, Dirckx L, Delaey B, Decourt JL, Hemschoote K, Peeters B & RombautsW1989Theandrogen dependentratprostaticbindingprotein:comparisonofthesequencesinthe5'partandupstreamregionof theC1andC2genesandanalysisoftheirtranscripts. Journal of Molecular Endocrinology 393103. Claessens F, Alen P, Devos A, Peeters B, Verhoeven G & Rombauts W 1996 The androgenspecific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors. Journal of Biological Chemistry 271 1901319016. Claessens F, Verrijdt G, Schoenmakers E, Haelens A,PeetersB,VerhoevenG&RombautsW2001Selective DNAbindingbytheandrogenreceptorasamechanismforhormonespecificgeneregulation. Journal of Steroid Biochemistry and 76 2330. CleutjensCB,SteketeeK,vanEekelenCC,vanderKorputJA,BrinkmannAO&TrapmanJ1997Bothandrogen receptorandglucocorticoidreceptorareabletoinduceprostatespecificantigenexpression,butdifferin theirgrowthstimulatingpropertiesofLNCaPcells. Endocrinology 138 52935300. CleutjensKB,vanEekelenCC,vanderKorputHA,BrinkmannAO&TrapmanJ1996Twoandrogenresponse regionscooperateinsteroidhormoneregulatedactivityoftheprostatespecificantigenpromoter. Journal of Biological Chemistry 271 63796388. DeVosP,ClaessensF,WinderickxJ,VanDijckP,CelisL,PeetersB,RombautsW,HeynsW&VerhoevenG 1991 Interaction of androgen response elements with the DNAbinding domain of the rat androgen receptorexpressedinEscherichiacoli. Journal of Biological Chemistry 266 34393443. DeVosP,ClaessensF,CelisL,PeetersB,RombautsW,HeynsW&VerhoevenG1994Nuclearextractsenhance theinteractionoffusionproteinscontainingtheDNAbindingdomainoftheandrogenandglucocorticoid receptor with androgen and glucocorticoid response elements. Journal of Steroid Biochemistry and Molecular Biology 48 317323. Devos A, Claessens F, Alen P, Winderickx J, Heyns W, Rombauts W & Peeters B 1997 Identification of a functionalandrogenresponseelementintheexon1codingsequenceofthecystatinrelatedproteingene crp2. Molecular Endocrinology 11 10331043. GeserickC,MeyerHA,BarbulescuK&HaendlerB2003Differentialmodulationofandrogenreceptoractionby deoxyribonucleicacidresponseelements. Molecular Endocrinology 17 17381750. GlassCK&RosenfeldMG2000Thecoregulatorexchangeintranscriptionalfunctionsofnuclearreceptors. Genes and Development 14 121141. HaelensA,VerrijdtG,CallewaertL,ChristiaensV,SchauwaersK,PeetersB,RombautsW&ClaessensF2003 DNArecognitionbytheandrogenreceptor:evidenceforanalternativeDNAdependentdimerization,and an active role of sequences flanking the response element on transactivation. Biochemical Journal 369 141151. Hall JM, McDonnell DP & Korach KS 2002 Allosteric regulation of estrogen receptor structure, function, and coactivatorrecruitmentbydifferentestrogenresponseelements. Molecular Endocrinology 16 469486. HamJ,ThomsonA,NeedhamM,WebbP&ParkerM1988Characterizationofresponseelementsforandrogens, glucocorticoidsandprogestinsinmousemammarytumourvirus. Nucleic Acids Research 16 52635276. HeinleinCA&ChangC2002Androgenreceptor(AR)coregulators:anoverview. Endocrine Reviews 23 175200. HoroszewiczJS,LeongSS,KawinskiE,KarrJP,RosenthalH,ChuTM,MirandEA&MurphyGP1983LNCaP modelofhumanprostaticcarcinoma. Cancer Research 43 18091818. KarvonenU,KallioPJ,JanneOA&PalvimoJJ1997Interactionofandrogenreceptorswithandrogenresponse element in intact cells. Roles of amino and carboxylterminal regions and the ligand. Journal of Biological Chemistry 272 1597315979. Kasper S, Rennie PS, Bruchovsky N, Sheppard PC, Cheng H, Lin L, Shiu RP, Snoek R & Matusik RJ 1994 CooperativebindingofandrogenreceptorstotwoDNAsequencesisrequiredforandrogeninductionof theprobasingene. Journal of Biological Chemistry 269 3176331769. Kasper S, Rennie PS, Bruchovsky N, Lin L, Cheng H, Snoek R, DahlmanWright K, Gustafsson JA, Shiu RP, Sheppard PC & Matusik RJ 1999 Selective activation of the probasin androgenresponsive region by steroidhormones. Journal of Molecular Endocrinology 22 313325. Khorasanizadeh S & Rastinejad F 2001 Nuclearreceptor interactions on DNAresponse elements. Trends in Biochemical Sciences 26 384390. KleinHitpass L, Tsai SY, Greene GL, Clark JH, Tsai MJ & O'Malley BW 1989 Specific binding of estrogen receptortotheestrogenresponseelement. Molecular and Cellular Biology 94349.

128 LeeKC&LeeKrausW2001Nuclearreceptors,coactivatorsandchromatin:newapproaches,newinsights. Trends in Endocrinology and Metabolism 12 191197. LiebermanBA,BonaBJ,EdwardsDP&NordeenSK1993Theconstitutionofaprogesteroneresponseelement. Molecular Endocrinology 7515527. Lombes M, Binart N, Oblin ME, Joulin V&BaulieuEE1993Characterizationoftheinteractionofthehuman mineralocorticosteroidreceptorwithhormoneresponseelements. Biochemical Journal 292 577583. McKenna NJ & O'Malley BW 2002 Minireview: nuclear receptor coactivatorsan update. Endocrinology 143 24612465. NelsonCC,HendySC,ShukinRJ,ChengH,BruchovskyN,KoopBF&RenniePS1999DeterminantsofDNA sequencespecificityoftheandrogen,progesterone,andglucocorticoidreceptors:evidencefordifferential steroidreceptorresponseelements. Molecular Endocrinology 13 20902107. Nordeen SK, Suh BJ, Kuhnel B & Hutchison CD 1990 Structural determinants of a glucocorticoid receptor recognitionelement. Molecular Endocrinology 418661873. QuandtK,FrechK,KarasH,WingenderE&WernerT1995MatIndandMatInspector:newfastandversatile toolsfordetectionofconsensusmatchesinnucleotidesequencedata. Nucleic Acids Research 23 4878 4884. Rennie PS, Bruchovsky N, Leco KJ, Sheppard PC, McQueen SA, Cheng H, Snoek R, Hamel A, Bock ME, MacDonaldBS&etal.1993CharacterizationoftwocisactingDNAelementsinvolvedintheandrogen regulationoftheprobasingene. Molecular Endocrinology 72336. RiegmanPH,VlietstraRJ,vanderKorputJA,BrinkmannAO&TrapmanJ1991Thepromoteroftheprostate specific antigen gene contains a functional androgen responsive element. Molecular Endocrinology 5 19211930. Roche PJ, Hoare SA & ParkerMG1992AconsensusDNAbinding site for the androgen receptor. Molecular Endocrinology 622292235. Rusconi S & Yamamoto KR 1987 Functional dissection of the hormone and DNA binding activities of the glucocorticoidreceptor. EMBO Journal 613091315. Sambrook J & Russell DW 2001 Molecular Cloning a laboratory manual, Third edition, Cold Spring Harbor LaboratoryPress,ColdSpringHarbor,NY. SchellerA,HughesE,GoldenKL&RobinsDM1998Multiplereceptordomainsinteracttopermit,orrestrict, androgenspecificgeneactivation. Journal of Biological Chemistry 273 2421624222. SchuurmansAL,BoltJ,VoorhorstMM,BlankensteinRA&MulderE1988Regulationofgrowthandepidermal growthfactorreceptorlevelsofLNCaPprostatetumorcellsbydifferentsteroids. International Journal of Cancer 42 917922. StrahleU,BoshartM,KlockG,StewartF&SchutzG1989Glucocorticoidandprogesteronespecificeffectsare determinedbydifferentialexpressionoftherespectivehormonereceptors. Nature 339 629632. Thornton JW 2001 Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitationandserialgenomeexpansions. Proceedings of the National Academy of Sciences U S A 98 56715676. VerrijdtG,SchoenmakersE,AlenP,HaelensA,PeetersB,RombautsW&ClaessensF1999Androgenspecificity ofaresponseunitupstreamofthehumansecretorycomponentgeneismediatedbydifferentialreceptor bindingtoanessentialandrogenresponseelement.Molecular Endocrinology 13 15581570. VerrijdtG,SchoenmakersE,HaelensA,PeetersB,VerhoevenG,RombautsW&ClaessensF2000Changeof specificitymutationsinandrogenselectiveenhancers.EvidenceforaroleofdifferentialDNAbindingby theandrogenreceptor. Journal of Biological Chemistry 275 1229812305. WoodJR,LikhiteVS,LovenMA&NardulliAM2001Allostericmodulationofestrogenreceptorconformationby differentestrogenresponseelements. Molecular Endocrinology 15 11141126. Young CY, Montgomery BT, Andrews PE, Qui SD, Bilhartz DL & Tindall DJ 1991 Hormonal regulation of prostatespecific antigen messenger RNA in human prostatic adenocarcinoma cell line LNCaP. Cancer Research 51 37483752.

129

130 Chapter 4 Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of H874 and mutation hot spotT877inprostatecancer Chapter4 Broadenedligandresponsivenessofandrogen receptormutantsobtainedbyrandomaminoacid substitutionofH874andmutationhotspotT877in prostatecancer KarineSteketee 1# ,LeonTimmerman 1# ,AngeliqueC.J.Zielvander Made 1,PaulDoesburg 1,AlbertO.Brinkmann 2andJanTrapman 1 1DepartmentofPathology,JosephineNefkensInstitute,ErasmusUniversity, Rotterdam,TheNetherlands 2DepartmentofEndocrinology&Reproduction,ErasmusUniversity,Rotterdam, TheNetherlands #Theseauthorscontributedequallytothisstudy IntJCancer.2002Jul20;100(3):309317

131 ABSTRACT In a subset of endocrine therapy resistantprostatecancers,aminoacidsubstitutionsH874Y, T877AandT877S,whichbroadenligandspecificityoftheligandbindingdomain(LBD)ofthe androgenreceptor(AR),havebeendetected.Toincreaseourknowledgeabouttheroleofamino acid substitutions at these specific positions in prostate cancer, codons 874 and 877 were subjected to random mutagenesis. AR mutants were screened in a yeast read out system for responsiveness to 5 αdihydrotestosterone, progesterone and dehydroepiandrosterone. At position874,onlythehistidinetotyrosinesubstitutioncouldbroadenARligandspecificity.At position 877, four ligand specificity broadening substitutions were found: T877A, T877S, T877CandT877G.Thelattertwowerenotfoundinprostate cancer. The AR mutants were testedinmammalian(Hep3B)cellsforresponsivenesstothirteendifferentligands.Allmutants displayed their own ligand specificity spectrum. Importantly, AR(H874Y) and AR(T877A) couldbeactivatedbycortisol.Accordingtothethreedimensional structure of the AR LBD, T877interactsdirectlywiththe17 βhydroxylgroupofandrogens.Allaminoacidsubstitutions identifiedatposition877hadsmallersidechainsthanthethreonineinthewildtypereceptor, indicatingthatincreasedspaceintheligandbindingpocketisimportantinbroadenedligand specificity.BecauseH874doesnotinteractdirectlywiththeligand,itssubstitutionbyatyrosine isexpectedtochangetheligandbindingpocketconformationindirectly.ForT877CandT877G substitutionstwopointmutationsarerequired,andforH874Y,T877AandT877Ssubstitutions, onlyonepointmutationissufficient.Thismostlikelyexplainsthatthelatterthreehavebeen foundinprostatecancer. INTRODUCTION Androgens (T and DHT) are essential for development and maintenance of the male phenotype. They mediate their function by activation of the AR, which is a member of the nuclear receptor family of transcription factors. The AR also plays a pivotal role in prostate tumor growth. Because growth of the majority of prostate cancers depends on continuous androgenicstimulation,therapyofmetastaticdiseaseisgenerallybasedonandrogenwithdrawal orblockadeofARfunctionbyantiandrogens.However,afteraninitialregression,essentiallyall tumorscontinuetogrow. Likeothernuclearreceptors,theARdisplaysamodularstructure:acarboxyterminalLBD,a centralDBD,andanaminoterminalTAD.Uponligandbinding,theARregulatestranscription by binding to specific androgen response elements in regulatory regions of target genes. Together with coactivators, general transcription factors and RNA polymerase II, a stable transcriptioninitiationcomplexisformed(seeforreviewsrefs 13).ThesizeoftheARcanbe variable,duetovariationinthelengthofpolyglutamineandpolyglycinestretchesintheTAD. AminoacidnumberinginthismanuscriptcorrespondstoanARwithalengthof919amino acids, which is employed by The Androgen Receptor Gene Mutations Database (http://www.mcgill.ca/androgendb). One of the causes of transition from androgendependent to apparent androgenindependent prostatetumorgrowthismodificationofARfunctioning.Inaproportionofendocrinetherapy resistant tumors, AR gene amplification has been detected. 46 This can lead to AR overexpression. Another mechanism, which directly affects AR function, canbe activation of theARbyaberrantcrosstalkwithothersignaltransductionpathways. 711 Athirdmechanismis

132 modification of AR properties by missense mutations. In a subgroup of endocrine therapy resistant prostate cancers, amino acid substitutions in the AR LBD have been found, which resultinabroadenedligandresponsespectrum.Themostcommonsubstitution,T877A,hasfirst beendescribedintheLNCaPprostatecancercellline. 12 Subsequently,itwasrepeatedlyfound in prostate cancer tissue specimens of patients with advanced disease. 1318 The T877A substitutionrenderstheARresponsivetonaturallowaffinityligandsandantiandrogens;T877S and H874Y substitutions, which have also been found in prostate cancer, induce similar propertiestotheAR. 12,17,1923 Duringthelastyears,thethreedimensionalstructuresofmanynuclearreceptorLBDshave beenelucidated. 2433 Thecrystallographicdatarevealedathreelayerstructurecomposedoften to twelve αhelices. Ligand binding induces a specific conformational change in the helical LBD structure, which makes it accessible to coactivators. 34,35 Antagonists induce a different LBD conformation than agonists, indicatig the importance of the LBD conformation for activationorinhibitionofnuclearreceptorfunction. 27,31,34 Knowledge of the LBD structure is invaluable for explanation of the molecular and the biologicaleffectsofspecificaminoacidsubstitutionsintheARinprostatecancer. HomologymodelingpredictedathreedimensionalstructureoftheARLBDthatissimilarto othernuclearreceptors. 3638 ThecrystalstructuresoftheDHTandR1881complexedwildtype AR LBDs and DHT complexed T877A mutant AR LBD have recently been elucidated and confirmedmostoftheearlierassumptions. 39,40 Inthisstudyweinvestigatedthebiologicaleffectsofaminoacidsubstitutionsatpositions874 and877,whicharebothinhelix11oftheARLBD. 36,37,39,41 Weaddressedthequestionwhether inadditiontoH874Y,T877AandT877Sother,asyetunidentified,aminoacidsubstitutionsat thesepositionscouldgiverisetosimilarfunctionalalterations.Previously,wehaveshownthat both wildtype AR and AR(T877A)retainedtheirligandspecificityinyeast. 42 Therefore,AR expression libraries with random mutations at codons 874 or 877 were screened for ligand specificityinayeastreadoutsystem.ARmutantswithanalteredligandspecificityasidentified intheyeastsystem,wereanalyzedinmammaliancellsfortheirresponsivenesstoalargeseries ofsexsteroids,antiandrogensandadrenalsteroids,includingglucocorticoids. MATERIALANDMETHODS Hormones DHT, ASD, Pg, E 2, DHEA, DEX, cortisol, and TAA were purchased from Steraloids(Wilton,NH),R1881(methyltrienolone)wasfromNEN(Boston,MA).CPAwasa gift from Schering AG (Berlin, Germany), OHFl from Schering USA (Bloomfield, NJ), and bicalutamide(Casodex)fromZenecaPharmaceuticals(Macclesfield,UK). Construction of androgen receptor cDNA libraries with random mutation of codons 874 and 877 TheyeastARcDNAexpressionvectorpG1ARII 42 wasusedtogeneratepG1ARII (863919) asacloningvectorfortheconstructionofthecontrolARexpressionvectorpG1ARIII,andthe AR expression libraries pG1ARIII(874X) and pG1ARIII(877X). All deletions and mutations were generated essentially as described. 43 First, a PCR fragment was synthesized utilizing pG1ARIIasatemplate,withtheforwardprimer5’CACTGAGGAGACAACCCAGAAGCT3’ andthereverseprimer5’AAGACGTCGAC TACGCGGCGCGC AATAGGCTGCACGG3’.A

133 SalI restriction site in the reverse primer is boldfaced and underlined; a BssHII site in this primerisunderlined.TheamplifiedfragmentwasTthIIIandSalIdigestedandexchangedwith thecorrespondingARfragmentinpG1ARII,resultinginpG1ARII (863919).Togeneratethe pG1ARIII(874X)library,PCRmutagenesiswascarriedoutonthepG1ARIItemplate,utilizing the forward primer 874X: 5’ATTGCGCGCGAGCTGNNN CAGTTCACTTTTGACCTG3’ (BssHIIboldfacedandunderlined,codon874underlined)combinedwiththereverseprimerRP 5’AAGACGTCGAC CGGATCC GCTTCACTGGGTGTGG3’(SalIboldfacedandunderlined; BamHI underlined; stop codon boldfaced). The amplified fragment was BssHIISalI digested and inserted in the corresponding sites in pG1ARII (863919). The pG1ARIII(877X) AR cDNA library was generated by the same procedure, utilizing the forward primer 877X 5’ ATTGCGCGC GAGCTGCATCAGTTCNNN TTTGACCTGCTAATC3’ and the RP reverse primer. Similarly, PG1ARIII was generated, utilizing forward primer 5’ ATTGCGCGC GAGCTGCATCAGTTCAC3’ and the reverse primer RP, resulting in an AR cDNAexpressionvectorwithaninternalBssHIIsiteandaBamHIsiteintheslightlyshorter3’ UTR,ascomparedtopG1ARII.TheinternalBssHIIsitedoesnotresultinanalteredARamino acidcomposition.Randomcodonrepresentationatcodons874and877inthepG1ARIII(874X) andpG1ARIII(877X)librarieswasverifiedbysequencingoffourteenclonesofeachlibrary.In bothlibrariesthesequencedcloneswereunique. Yeast LacZ-reporter plasmids TheandrogeninducibleyeastintegrationvectorpGRE3LacZiwasconstructedbyinsertionofa 100bpHindIIIEcoRIfragmentofpARE3tkCAT 44 ,containingatriplearrangedrepeatofthe 174/152prostatespecificantigen(PSA)promoterregion,inthecorrespondingsitesofpLacZi (Clontech,PaloAlto,CA).TheandrogeninducibleyeastLacZreporterplasmidpUC SS26X, containingatriplearranged26bpGREoligonucleotide,wasprovidedbyDr.Picard. 45 Construction of mammalian androgen receptor expression plasmids Mammalian AR expression plasmids pSVARIII, pSVARIII(H874Y), pSVARIII(T877A), pSVARIII(T877C),pSVARIII(T877G)andpSVARIII(T877S)wereconstructedbyexchanging theTthIIIBamHIfragmentsofpG1ARIII(mutant)constructswiththecorrespondingfragment ofpSVAR0. 46 Yeast strains, growth and transformation Yeast strain YM4271(GRE3LacZ) was utilized for AR cDNA library screening. YM4271(GRE3LacZ)wasderivedfromYM4271(Clontech,PaloAlto,CA)byintegrationof NcoIlinearizedpGRE3LacZiintoitsnonfunctionalura locus.YeaststrainBJ2168,agiftfrom Dr.Picard,wasusedforquantitativemeasurementofARactivity. 42 Yeastcellsweregrownin the appropriate selective media (0.67% w/v yeast nitrogen base without amino acids, 2% glucose,pH5.8)supplementedwiththerequiredaminoacids.Yeasttransformationwascarried outaccordingtothelithiumacetatemethod. 47 Yeast screening of androgen receptor mutants Approximately four hundred clones of YM4271(GRE3LacZ) transformed with pG1ARIII(874X) or pG1ARIII(877X) were grown on a master plate with the appropriate selective medium. After replica plating on HybondN filters (Amersham, Buckinghamshire, UK),coloniesweregrownfor16honthesamemediumsupplementedwithdifferenthormones: DHT(10 8M),Pg(10 –7M)andDHEA(10 6M)orintheabsenceofhormone.Yeastcolonies

134 were made permeable by freezing the filters in liquid nitrogen. Next, LacZ expression was visualizedbyincubationonWhatmannpapersoakedin Zbuffer (60 mM Na 2HPO 4, 40 mM NaH 2PO 4,10mMKCl,1mMMgSO 4,pH7.0)supplementedwith0.27% βmercaptoethanol and0.1%XGAL. AR expression plasmids were isolated from LacZpositive yeast clones as described. 48 Plasmidsweresequencedtoidentifyspecificmutationsatcodons874and877andtoconfirm properPCRamplificationoftheinsertedfragmentsinthepG1ARIIIvectors. Quantitative analysis of androgen receptor mutants in yeast Aliquid βgalactosidaseassaywasperformedtoquantifytheactivityofselectedARmutants, utilizing yeast strain BJ2168 containing the pUC SS26X LacZreporter plasmid. Overnight culturesofyeasttransformantsgrowninselectivemediumweredilutedtoOD 600 of0.3inthe samemediumsupplementedwithligand(DHT,PgorDHEA)orwithouthormoneandgrown untilanOD 600 ofapproximately1.0.Next, βgalactosidaseactivitywasdeterminedasdescribed previously. 42 Mammalian cell culture, transfection, and luciferase assay Hep3B (human liver) cells were maintained in α minimal essential medium ( αMEM) supplementedwith5%fetalcalfserumandantibiotics.Cellswereseededatadensityof5x10 4 cells/well(1.9cm 2)andgrownfor24h..Fourh.priortotransfection,themediumwasreplaced by 250 l αMEM, supplemented with 5% charcoalstripped fetal calf serum, antibiotics and oneofthefollowinghormones:DHT,R1881,ASD,Pg,E 2,OHFl,CPA,bicalutamide,DHEA, DEX,cortisol,aldosteroneorTAA.Fortransfection,25 l αMEMcontaining1 lFugene6 (BoehringerMannheim,Germany),0.5 gARexpressionplasmid(pSVARIIIconstructs),and1 gMMTVLUCreporterplasmidwereaddedperwell.Following24hincubation,cellswere lysed and luciferase activity was assayed as described previously. 49 In the absence of ligand, wildtypeandmutantARsdisplayedcomparablebackgroundactivities. RESULTS Detection of androgen receptor H874 and T877 mutants in a yeast screening system Using random mutagenesis, two AR cDNA libraries were generated in a yeast expression vector: one with mutations in codon 874, AR(874X), and one with mutationsincodon877, AR(877X). Approximately four hundred independent yeast colonies from each library were screenedforactivationofanARinducibleLacZreporterbyDHT,PgandDHEA(seeMaterials and Methods). Pg was tested because H874Y, and T877 mutant ARs showed an increased responsetothishormone. 12,1923,50 DHEAwaschosenbecausetheH874YandT877Amutant ARswereknowntoberesponsivetothisadrenalandrogen. 21 Ineachlibrary,approximatelytwo hundredoutofthefourhundredcolonieswere βgalactosidasepositiveuponincubationwith DHT,indicatingthattheotherhalfofthecoloniescontainedinactivatingARmutations. ScreeningoftheAR(874X)libraryresultedinfouryeastcolonies,whichwerepositiveafter DHT, Pg and DHEA incubation. Colonies positive withtwotestedhormones,orwithPgor DHEA alone were not found. Sequencing revealed that the DHT+/Pg+/DHEA+ colonies containedatcodon874thesequencesTACorTAT,whichbothencodeatyrosineresidue.From thisfindingitwasconcludedthatatyrosineresidueatposition874isuniqueinthegeneration ofanAR,whichcannotonlybeactivatedbyDHT,butalsobyPgandbyDHEA.

135 Screening of the AR(877X) library resulted in sixtythree colonies, which were DHT+/Pg+/DHEA+; fourteen colonies were DHT+/Pg+/DHEA. Sequencing of the DHT+/Pg+/DHEA+coloniesrevealedthreedifferentaminoacidsubstitutionsat877:T877A, T877G and T877S. The DHT+/Pg+/DHEA colonies contained a cysteine residue at 877. Interestingly, as described above, H874Y, T877A and T877S have been found in prostate cancer,whereasT877CandT877Gsubstitutionshavenotbeendetectedinthesetumors. Hormone induced transcriptional activity of the androgen receptor H874Y mutant in yeast and in mammalian cells Activation of AR(H874Y) by DHT, Pg and DHEA was quantified in a yeast liquid β galactosidaseassay.TheresultsaresummarizedinFigure1.AR(H874Y)showedadecreasein AR activation by DHT, as compared to wildtype AR (Fig. 1 a). At the highest hormone concentrations,PgandDHEAresponsesofAR(H874Y)wereclearlystrongerthanthatofwild typeAR(Fig.1 b,c). A 400 WILD -TYPE AR AR(H874Y) 300 200

100 (U) ACTIVITY ß-GAL

0 10 -9 10 -8 DHT (M) B 100 WILD -TYPE AR 80 AR(H874Y) 60 40

20 ß-GAL ACTIVITY (U) ACTIVITY ß-GAL 0 10 -8 10 -7 Pg (M)

C 50 WILD -TYPE AR 40 AR(H874Y) 30 20

(U) ACTIVITY ß-GAL 10

0 10 -7 10 -6 DHEA (M) FIGURE 1─TranscriptionalactivityofwildtypeARandAR(H874Y) in yeast. Yeast cells were cotransfected with the wildtype AR or AR(H874Y) yeast expression vector and the androgen inducible LacZ reporterpUC SS26X. (a) DHTactivation. (b) Pgactivation. (c) DHEAactivation.Values(±SEM)arethemean ofthreeindependentexperimentseachcarriedoutinduplicate.

136 Fordirectcomparisonwiththeyeastdata,Hep3Bmammaliancellswerecotransfectedwiththe AR(H874Y) mutant or wildtype AR expression plasmid and a MMTVluciferase reporter plasmid.Transfectedcellswereincubatedintheabsenceofhormoneorinthepresenceofserial dilutions of a large set of different ligands: the androgens DHT, and R1881; the steroidal antiandrogenCPA,thenonsteroidalantiandrogensOHFlandbicalutamide,andthesteroidsPg andE 2.R1881activatedwildtypeARandAR(H874Y)equally;bicalutamidewasinactiveon both wildtype AR and AR(H874Y) (data not shown). The activities of wildtype AR and AR(H874Y) induced by DHT, Pg, E 2, OHFl and CPA are shown in Figures 2 a and 2 b, respectively. As expected, wildtype AR activation was DHT specific. Only at high concentrations,someagonisticactivityofPg,E 2andCPAwasobserved;OHFlwasunableto activatethewildtypeARatallconcentrationstested.Likeinyeast,DHTwasfoundtobealess potentactivatorofAR(H874Y)thanofwildtypeAR,whichwasnotduetoalowerexpression level(datanotshown).BothE 2 andPginducedAR(H874Y)activitytoalmostthesameextent as DHT. At high concentrations, OHFl showed some agonistic activity; agonistic activity of CPAonAR(H874Y)wasaslowasonwildtypeAR. AB WILD-TYPE AR AR(H874Y) 400 400 300 300 200 200

FOLD INDUCTION 100 FOLD INDUCTION 100 1 1 10 10 10 -9 10 -8 10 -7 10 -6 10 10 10 -9 10 -8 10 -7 10 -6 HORMONE (M) HORMONE (M) FIGURE 2─TranscriptionalactivityofwildtypeARandAR(H874Y)inmammaliancells. Hep3B cellswerecotransfectedwiththewildtypeARorAR(H874Y)mammalianexpressionvectorandaMMTVLUC reporter,andactivatedbydifferenthormones. (a) wildtypeAR. (b) AR(H874Y).Ligands:( )DHT,( )Pg,( ) E2,( )CPA,( )OHFl.Values(±SEM)representthemeanofthreeindependentexperimentseachcarriedoutin duplicate. Hormone induced transcriptional activity of the androgen receptor T877 mutants in yeast and mammalian cells ActivationoftheAR877mutantsbyDHT,PgandDHEAwasanalyzedinthequantitative yeastassayasdescribedaboveforAR(H874Y).TheresultsaresummarizedinFigure3.DHT activation of all mutants, AR(T877A), AR(T877S), AR(T877G) and AR(T877C), was comparable to wildtype AR (Fig. 3 a). AR(T877A) and AR(T877S) displayed the most prominent altered ligand specificity at the two Pg and DHEA concentrations tested. Both showed increased activation by Pg and DHEA as compared to wildtype AR (Fig. 3 b,c). AR(T877C)andAR(T877G)wereactivatedbyPg(Fig.3b),butonlyAR(T877G)wasDHEA inducible(Fig.3 c),inagreementwiththequalitativeyeastscreening. LigandspecificitystudiesofthefourAR877mutantswereextendedtomammalianHep3B cells,usingthesamesetofligandsasusedforthewildtypeARandAR(H874Y)studiesshown

137 inFigure2.R1881activation,whichwasidenticalforwildtypeARandthefour877mutants, is not shown. Bicalutamide did not activate any of the 877 mutants (data not shown). The T877AandT877Ssubstitutionsintroducedthemostdramatic alterations in ligand specificity (Fig. 4; see for wildtype AR Fig. 2 a). Both AR(T877A) and AR(T877S) exhibited a strong activationbyPg,E 2 andtheantiandrogenCPA(Fig.4 a,d).AR(T877A)wasmoreresponsiveto OHFl than AR(T877S) (Fig. 4 a,d). AR(T877C) and AR(T877G) ligand specificity was less altered.AlthoughPgactivationcouldclearlybeestablished,agonisticactivityofotherligands waslimited(Fig.4 b,c).DifferencesinligandresponsesbetweentheARmutantswerenotdueto differentproteinlevels(datanotshown). A 400 WILD-TYPE AR AR(T877A) (U) 300 AR(T877C)

AR(T877G)

AR(T877S) 200

100 0 -9 -8 10 10 DHT (M) B 800 WILD-TYPE AR AR(T877A) AR(T877C) 600 AR(T877G) AR(T877S) 400 200 0 10 -8 10 -7 C Pg (M) 400 WILD-TYPE AR AR(T877A) 300 AR(T877C) AR(T877G) AR(T877S) 200 100 ß- (U)ACTIVITY ß-GAL (U)ACTIVITY ß-GAL ACTIVITY ß-GAL 0 10 -7 10 -6 DHEA (M) FIGURE 3─TranscriptionalactivityofwildtypeARandAR(T877)mutantsinyeast. Yeastcells werecotransfectedwithwildtypeARyeastexpressionvector,orAR(T877A),orAR(T877C),orAR(T877G),or AR(T877S) mutant yeast expression vectors and the androgen inducible LacZreporter pUC SS26X. (a) DHT activation. (b) Pg activation. (c) DHEA activation. Values (±SEM) represent the mean of three independent experimentseachcarriedoutinduplicate.

138 AB AR(T877A) AR(T877C) 400 400 300 300 200 200

100 INDUCTION FOLD 100 1 1 10 -10 10 -9 10 -8 10 -7 10 -6 10 -10 10 -9 10 -8 10 -7 10 -6 HORMONE (M) HORMONE (M) CDAR(T877G) AR(T877S) 400 400 300 300

200 200

100 INDUCTION FOLD 100 FOLD INDUCTIONFOLD INDUCTION FOLD 1 1 10 -10 10 -9 10 -8 10 -7 10 -6 10 -10 10 -9 10 -8 10 -7 10 -6 HORMONE (M) HORMONE (M) FIGURE 4─TranscriptionalactivityofAR(T877)mutantsinmammaliancells. Hep3Bcellswere cotransfectedwith (a) AR(T877A), (b) AR(T877C), (c) AR(T877G),and (d) AR(T877S)mammalianexpression vector and a MMTVLUC reporter. Ligands: ( ) DHT, ( ) Pg, ( ) E 2, ( ) CPA, ( ) OHFl. Values (±SEM) representthemeanofthreeindependentexperimentseachcarriedoutinduplicate. Transcriptional activation of androgen receptor H874 and T877 mutants by adrenal steroids and synthetic glucocorticoids TheAR874andAR877mutantswerealsoassayedinHep3Bcellsfortheiractivationbythe adrenal steroids DHEA and ASD (androgens), cortisol (glucocorticoid) and aldosterone (mineralocorticoid),andthesyntheticglucocorticoidsDEXandTAA.Activationofwildtype AR and all mutant ARs by ASD was identical; TAA was unable to activate wildtype and mutantARs(datanotshown).Fortheotherligandsaremarkablevariationinactivationpatterns ofthedifferentmutantswasobserved.Figure5 adisplaystheactivitiesofwildtypeARandall ARmutantsinducedbyhighconcentrationsDHEA,cortisol,DEXandaldosterone(10 6M).In Figure 5 be the ligand concentration dependent activation of selected mutants is shown. AR(H874Y),AR(T877A)andAR(T877S)wereclearlyresponsivetoDHEA(Fig.5 a,b).Also,a concentrationdependentactivationofAR(H874Y)andAR(T877A)byaldosterone,cortisoland DEXwasobserved(seeFig.5 a,ce).Incontrast,AR(T877S)andAR(T877G)couldhardlybe activatedbytheseligands(Fig.5 a).AR(T877C)didnotrespondtoanyoftheligands(Fig.5 a).

139 A WILD-TYPE AR AR(H874Y)

) 6 3 AR(T877A) AR(T877C) AR(T877G) AR(T877S) 4

LUC ACTIVITY (RLU * 10 2 0 - DHEA Cortisol DEX Aldosterone B C

N

N 30 30

O O

I I T

T Y

C C U

U S D

D 20 20

N N

I I

A Y D

D A L

L O

O 10 10 F F INDUCTION FOLD WT WT 1 1 10 -9 10 -8 10 -7 10 -6 10 -9 10 -8 10 -7 10 -6 DHEA (M) Aldosterone (M) D E

30 N

N 30 Y

O O I

I T

Y T A C

A C U

20 U 20

D D N

N

I I

D

D L

10 L O O 10

FOLD INDUCTION FOLD F F WT WT 1 1 10 -9 10 -8 10 -7 10 -6 10 -9 10 -8 10 -7 10 -6 Cortisol (M) DEX (M) FIGURE 5 ─ DHEA and corticoid induced transcriptional activity of wildtype AR and AR mutants. Hep3BcellswerecotransfectedwiththewildtypeAR,AR(H874Y)orAR(T877)mutantmammalian expression vector and a MMTVLUC reporter. (a) incubation in the absence of hormone, or in the presence of DHEA,Cortisol,DEXorALD(allat10 6M). (b) DHEAactivation. (c) ALDactivation. (d) Cortisolactivation. (e) DEX activation. ( )WT: wildtype AR, ( )Y: AR(T874Y), ( )A: AR(T877A), and ( )S: AR(T877S). Values (±SEM)representthemeanofthreeindependentexperimentseachcarriedoutinduplicate.

140 TABLE1 ─LIGANDRESPONSIVENESS 1OFARMUTANTSTOTHIRTEENDIFFERENT HORMONESASTESTEDONAMMTVLUCREPORTERINTRANSIENTLYTRANSFECTED MAMMALIAN(HEP3B)CELLS wildtype AR AR AR AR AR AR (H874Y) (T877A) (T877C) (T877G) (T877S) androgens DHT +++ +++ +++ +++ +++ +++ R1881 +++ +++ +++ +++ +++ +++ sex steroids Pg + ++ +++ +++ ++ +++

E2 + ++ ++ + + ++ antiandrogens CPA + + +++ + + +++ OHFl + ++ + + Bicalutamide adrenal androgens DHEA + + ± + ASD ++ ++ ++ ++ ++ ++ glucocorticoids Cortisol + + DEX + + TAA mineralocorticoid Aldosterone + + 1 Degreeofligandresponsiveness:noactivity;+lowactivity;++moderateacivity;+++highactivity, comparabletowildtypeARresponsivenesstoDHT. DISCUSSION MutationsintheARhavebeendescribedinseveraldiseases.Inandrogeninsensitivity,which isaninheriteddefectofmaledevelopment,overonehundredaminoacidsubstitutionsintheAR LBD have been documented (http://www.mcgill.ca/androgendb). 1,51 These mutations completely or partially inactivate AR function. In Kennedy’s disease or SBMA (spinal and bulbar muscular atrophy), anexpanded(CAG) nrepeatresultsinalongerglutaminestretchin the AR TAD. 52 In prostate cancer, AR mutants are rare in primary and locally progressive tumors, but more frequent in metastatic disease, following endocrine therapy. 1618,22,5357 The relevance of most AR mutants in progressive prostate cancer remains to be established. The mutants investigated in more detail are functionally different from AR mutants in androgen insensitivity,andtendtoclusterindifferentregionsoftheLBD. 57 ThemostfrequentlydescribedARmutationsinprostatecanceraresubstitutionsofH874and T877,whicharebothinhelix11oftheARLBD. 36,37,39,41 AR(T877A),whichhasoriginally beendetectedintheLNCaPcellline,seemstobethepreferredaminoacidsubstitutionin endocrinetherapyresistantprostatecancer. 12,1417 LikethelesscommonH874YandT877S aminoacidsubstitutions,T877AbroadensARligandspecificityinsuchamanner,thatnotonly androgens,butalsoothersexsteroids,andantiandrogenscanactivatetheAR. 12,1923 The recentlyidentifiedT877A&L701HARdoublemutantexhibitedanevenbroaderligand specificitythantheT877Asinglemutant, 58 addingcortisoltothespectrumofstrongactivators. ThereisincreasingevidencethattheARLBDmutantswithlessspecificligandresponsiveness areofclinicalrelevanceinasubsetofendocrinetherapyresistantprostatecancers. 16,17

141 Inthepresentstudytwotypesofexperimentswerecarriedout.First,ARsrandomlymutatedat positions874or877werescreenedforbroadenedligandspecificityinayeastreadoutsystem. Second,ARmutantswithbroadenedligandresponsivenesswereassayedinmammaliancells foractivationbythirteendifferentligands,includingsexsteroids,adrenalsteroidsand antiandrogens.Fromourfindings,severalimportantconclusionscanbedrawn. 1. IntheARcDNAlibraryrandomlymutatedatcodon874,AR(H874Y)wastheonlymutant able to broaden AR ligand specificity. In the 877 AR cDNA library, an alanine, serine, glycineorcysteineresidueatposition877broadenedARligandresponse.Aspointedout above, AR(H874Y), AR(T877A) and AR(T877S) are well known from prostate cancer; AR(T877G) and AR(T877C) have never been described in prostate cancer. The random mutagenesis system used in this study allowed the screening of all triplets possible for codons874and877.Asexpected,amongtheidentifiedARmutants,one,twoandthreebase deviationsfromthewildtypecodonweredetected.Innature,thechanceofmorethanone pointmutationwithinacodonisextremelylow.Indeed,allaminoacidsubstitutionsfoundat AR codons 874 and 877 in prostate cancer are due to single point mutations: H874Y: CAT>TAT, 17,21,22 T877A:ACT>GCT, 1217,22 T877S:ACT>TCT. 17,22 ForT877CorT877G substitutions, at least two bases need to be mutated. This can explain their absence in prostatecancer.Inconclusion,theH874Ysubstitutionisnotonlyuniqueatthispositionin prostate cancer, but is also the only possibility at this position to broaden AR ligand specificity.TheT877AandT877Ssubstitutionsinprostate cancer are not unique, in that theyarenottheonlysubstitutionsthatcanbroadenARligandspecificityatthisposition,but seemtobesequencedrivenselectionsoffourpossibleaminoacidsubstitutions. 2. Theresultsoftheextensiveseriesoftransactivationexperimentswithwildtypeandmutated ARsinmammaliancellsaresummarizedinTable1.Importantly,eachmutantdisplayedits own characteristic spectrum of ligand responsiveness. Differences in ligand affinities, as wellasdifferencesinligandinducedconformationalchangesmayaccountforthisvariation. MostremarkablearethesimilaritiesbetweenactivationofAR(H874Y)andAR(T877A)by the various ligands. Although completely different, both show identical responses to the glucocorticoids cortisol and DEX, and the mineralocorticoid aldosterone. Zhao et al. 58 describedactivationoftheARdoublemutantT877A&L701Hbycortisol,buttheydidnot find cortisol responsiveness of the single mutant AR(T877A). The apparent discrepancy with our data might be due to a less sensitive assay, or different cell line used for transfection experiments. Our findings warrant a further investigation of the role of glucocorticoidsinprostatecancerpatientscarryingamutatedAR. Based on the crystal structures of closely relatedsteroid hormone receptor LBDs, homology modelsoftheARLBDhavebeenconstructed. 3638 ThesemodelsindicatedthatT877ispartof the ligandbinding pocket and directly interacts with the ligand, H874 does not participate directlyinligandbinding.Recently,thepredictionsofARLBDfoldingandligandinteraction were modified and extended by theelucidationofthe crystal structures of the wildtype and T877AmutantARLBDcomplexedwithandrogens. 39,40 ForthewildtypeARLBD,eighteen aminoacidswerefoundtocontacttheliganddirectly.Importantly,T877inhelix11oftheLBD, togetherwithN705inhelix3,formhydrogenbondstothe17 βhydroxylgroupofR1881,which isalsopresentinDHT(Fig.6).Aspredicted,H874,whichisalsoinhelix11,projectsaway fromtheligandbindingpocket. The crystal structure of the T877A mutant AR LBD complexed with DHT revealed an increased space in the ligand binding pocket. 40 The amino acid residues serine, glycine and cysteineatposition877,haveincommonthat,likealanine,theyallaresmallerthanthe

142 CH 3

OH OH CO CH 3 CH 3 CH 3 CH 3 17 17 17 C D CH C D CH C D 3 3 A B A B A B O O O METHYLTRIENOLONE 5α-DIHYDROTESTOSTERONE PROGESTERONE (R1881) (DHT ) (Pg) CH 2OH CH 2OH CH 2OH O C O CO H CO CH 3 OH CH 3 OH C HO HO HO 17 17 CH 3 17 C C D C CH 3 D CH 3 CH 3 D F A B A B A B O O O CORTISOL DEXAMETHASONE ALDOSTERONE (DEX) CH 3 O C O OH O CH CH 3 O C CH 3 3 CH 3 17 17 17 C D C D C D CH 3 CH 3 A B A B A B O HO HO Cl CYPROTERONE ACETATE ESTRADIOL DEHYDROEPIANDROSTERONE

(CPA) (E 2) (DHEA) CH OH 2 O C O CH 3 CH 3 CH 3 O C HO CH 17 17 O 3 C D CH 3 CH 3 C D F A B A B O O ANDROSTENEDIONE TRIAMCINOLONE ACETONIDE (ASD) (TAA) FIGURE 6 ─Chemicalstructuresofsteroidsusedinthisstudy.

143 threonineresidueatthispositioninthewildtypeAR. 59 So,substitutionofT877byS,GorC will also increase the space of the ligand binding pocket. This larger space will facilitate appropriateenteringbyligandswithmorebulkysidechainsatC17likePg,cortisol,DEXand aldosterone(Fig.6).ThismayallowaconformationalchangeintheLBD,whichisfavorable for the AR transactivation function. A larger binding pocket may also explain appropriate folding of the LBD induced by the antiandrogen CPA, resulting in agonistic activity. The synthetic glucocorticoid TAA might be too big for proper entering an enlarged AR ligand bindingpocket(Fig.6).NotonlythesizeoftheC17sidechain,butalsoslightdifferencesin overallconformationofasteroid,asdeterminedbytheAtoDringmoities,mightcontributeto positioningintheligandbindingpocket.ParticularlyincaseofE 2andDHEA,whichbothhave asmallC17sidechain(Fig.6),butnotexcludingotherligands,thelargerbindingpocketmight be needed for appropriatebinding of these differentconformations.Elucidationofthecrystal structuresofthevariousARmutantscomplexedwithdifferentligandshastoproveandextend thesehypotheses. ManyothermutationshavebeendescribedintheARLBDinprostatecancer,butmostofthe mutants have not been characterized. 22,55,56,60,61 In contrast to L701 and T877, none of the mutatedaminoacidresiduescanbepredictedtocontactdirectlytheligand. 39,40 Thisisalsotrue formutantV715M,whichclearlydisplaysbroadenedligandresponse. 23,61,62 So,likeforH874Y, fortheV715Mmutantadifferentmechanismofactivationcanbepredicted. Oneofthemostimportantquestions,whichremaintobeaddressed,istheidentificationofthe physiologicalligandoftheARmutantsinendocrinetherapyresistantprostatecancer.MostAR LBD mutants with a broadened ligand response seem to be induced or selected during antiandrogen therapy. 17 Our findings suggest that in androgen depleted patients following antiandrogenwithdrawal,Pgorcortisolmightbethephysiologicalligandsforactivationofa mutated AR. The concentration of circulating Pg in men (0.30.9 nM) 63 seems sufficient for suchafunction,becauseofthestrongresponseofespeciallyAR(T877A)andAR(T877S)tothis ligand (Fig. 4). Although cortisol is a less potent activator of the mutants (Fig. 5), its high concentration in the circulation (70550 nM) 63 warrants further investigation of its role in patientscarryingaAR(H874Y)orAR(T877A)mutation.Activationofthesemutantsbycortisol would be in line with activation of the AR(L701H) single and AR(L701H/T877A) double 58 mutantby cortisol. CirculatingE 2,DHEAandaldosteroneconcentrations(73184pM,628 nM and 83832 pM, respectively), 63 seemtoolowtoaccountforsuchafunction.However, inactive DHEA sulfate, with a serum level of 19 M, 63 canbe converted into DHEA in the prostate,andresultinglocalDHEAconcentrationsmaybesufficientforactivationofthevarious ARmutants(Fig.5,Table1). 64 ToobtainrelevantdataonnoncognateligandsasactivatorsofmutantARs,extendedstudies with prostate cell lines containing mutated ARs are needed. In a previous study with DEX incubatedLNCaPcells,appliedhormoneconcentrationsweretoolowtobeabletoobservean effect on the endogenous AR(T877A). 65 Monitoring of the response of LNCaP (T877A) and CWR22 (H874Y) 12,21,66 cells to physiological concentrations of different ligands, including glucocorticoids and DHEA, will give important supportive information about the role of mutatedARsinprostatecancer.

144 ACKNOWLEDGEMENTS We thank Didier Picard for supplying plasmid pUC SS26X, Pascal Farla for help in preparationofthemanuscriptandErikJanDubbinkforfruitfuldiscussions. Abbreviations : AR, androgen receptor; ASD, androstenedione; CPA, cyproterone acetate; DBD, DNA binding domain;DEX,dexamethasone;DHEA,dehydroepiandrosterone;DHT,5 αdihydrotestosterone;E 2,estradiol;LBD, ligand binding domain; OHFl, hydroxyflutamide; Pg, progesterone; T, testosterone; TAA, triamcinolone acetonide;TAD,transactivationdomain.

145 REFERENCES 1. Quigley CA, De Bellis A, Marschke KB, elAwady MK, Wilson EM, French FS. Androgen receptor defects: historical, clinical, and molecular perspectives [published erratum appears in Endocr Rev 1995 Aug;16(4):546].EndocrRev1995;16 :271321. 2. Trapman J, Cleutjens KB. Androgenregulated gene expression in prostate cancer. Semin Cancer Biol 1997;8 :2936. 3. BrinkmannAO,BlokLJ,deRuiterPE,DoesburgP,SteketeeK,BerrevoetsCA,TrapmanJ.Mechanisms ofandrogenreceptoractivationandfunction.JSteroidBiochemMolBiol1999;69 :30713. 4. VisakorpiT,HyytinenE,KoivistoP,TannerM,KeinanenR,PalmbergC,PalotieA,TammelaT,IsolaJ, KallioniemiOP.Invivoamplificationoftheandrogenreceptorgeneandprogressionofhumanprostate cancer.NatGenet1995;9 :4016. 5. KoivistoP,KononenJ,PalmbergC,TammelaT,HyytinenE,IsolaJ,TrapmanJ,CleutjensK,Noordzij A,VisakorpiT,KallioniemiOP.Androgenreceptorgeneamplification:apossiblemolecularmechanism forandrogendeprivationtherapyfailureinprostatecancer.CancerRes1997;57 :3149. 6. Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T. Amplification and overexpression of androgen receptor gene in hormone refractory prostate cancer. Cancer Res 2001;61 :35505. 7. CuligZ,HobischA,CronauerMV,RadmayrC,TrapmanJ,HittmairA,BartschG,KlockerH.Androgen receptoractivationinprostatictumorcelllinesbyinsulinlikegrowthfactorI,keratinocytegrowthfactor, andepidermalgrowthfactor.CancerRes1994;54 :54748. 8. Hobisch A, Eder IE, Putz T, Horninger W, Bartsch G, Klocker H, Culig Z. Interleukin6 regulates prostatespecific protein expression in prostate carcinoma cells by activation of the androgen receptor. CancerRes1998;58 :46405. 9. Craft N, Shostak Y, Carey M, Sawyers CL. A mechanism for hormoneindependent prostate cancer through modulation of androgen receptor signaling by the HER2/neu tyrosine kinase. Nat Med 1999;5 :2805. 10. AbreuMartin MT, Chari A, Palladino AA, Craft NA, Sawyers CL. Mitogenactivated protein kinase kinasekinase1activatesandrogenreceptordependenttranscriptionandapoptosisinprostatecancer.Mol CellBiol1999;19 :514354. 11. PeterzielH,MinkS,SchonertA,BeckerM,KlockerH,CatoAC.Rapidsignallingbyandrogenreceptor inprostatecancercells.Oncogene1999;18 :63229. 12. VeldscholteJ,RisStalpersC,KuiperGG,JensterG,BerrevoetsC,ClaassenE,vanRooijHC,TrapmanJ, BrinkmannAO,MulderE.Amutationintheligandbindingdomainoftheandrogenreceptorofhuman LNCaPcellsaffectssteroidbindingcharacteristicsandresponsetoantiandrogens.BiochemBiophysRes Commun1990;173 :53440. 13. SuzukiH,SatoN,WatabeY,MasaiM,SeinoS,Shimazaki J. Androgen receptor gene mutations in humanprostatecancer.JSteroidBiochemMolBiol1993;46 :75965. 14. GaddipatiJP,McLeodDG,HeidenbergHB,SesterhennIA,FingerMJ,MoulJW,SrivastavaS.Frequent detectionofcodon877mutationintheandrogenreceptorgeneinadvancedprostatecancers.CancerRes 1994;54 :28614. 15. KleinermanDI,TroncosoP,PistersLL,NavoneNM,HsiehJT,LogothetisCJ,SleddensHFBM,Vander KwastTH,BrinkmannAO,SchroderFH,TrapmanJ.Expressionandstructureoftheandrogenreceptorin bonemetastasisofhormonerefractoryprostatecancer.Proc.Am.Urol.Assoc.1996;155 :624A. 16. SuzukiH,AkakuraK,KomiyaA,AidaS,AkimotoS,ShimazakiJ.Codon877mutationintheandrogen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate 1996;29 :1538. 17. TaplinME,BubleyGJ,KoYJ,SmallEJ,UptonM, Rajeshkumar B, Balk SP. Selection for androgen receptormutationsinprostatecancerstreatedwithandrogenantagonist.CancerRes1999;59 :25115. 18. ZhaoXY,BoyleB,KrishnanAV,NavoneNM,PeehlDM,FeldmanD.Twomutationsidentifiedinthe androgenreceptorofthenewhumanprostatecancercelllineMDAPCa2a.JUrol1999;162 :21929. 19. VeldscholteJ,BerrevoetsCA,BrinkmannAO,GrootegoedJA,MulderE.Antiandrogensandthemutated androgenreceptorofLNCaPcells:differentialeffectsonbindingaffinity,heatshockproteininteraction, andtranscriptionactivation.Biochemistry1992;31 :23939. 20. VeldscholteJ,BerrevoetsCA,RisStalpersC,KuiperGG,JensterG,TrapmanJ,BrinkmannAO,Mulder E.TheandrogenreceptorinLNCaPcellscontainsamutationintheligandbindingdomainwhichaffects steroidbindingcharacteristicsandresponsetoantiandrogens.JSteroidBiochemMolBiol1992;41 :6659. 21. TanJ,ShariefY,HamilKG,GregoryCW,ZangDY,SarM,GumerlockPH,deVereWhiteRW,Pretlow TG,HarrisSE,WilsonEM,MohlerJL,etal.Dehydroepiandrosteroneactivatesmutantandrogenreceptors expressed in the androgendependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol Endocrinol1997;11 :4509. 22. TaplinME,BubleyGJ,ShusterTD,FrantzME,SpoonerAE,OgataGK,KeerHN,BalkSP.Mutationof the androgenreceptor gene in metastatic androgen independent prostate cancer. N Engl J Med 1995;332 :13938. 23. Fenton MA, Shuster TD, Fertig AM, Taplin ME, Kolvenbag G, Bubley GJ, Balk SP. Functional characterization of mutant androgen receptors from androgen independentprostatecancer.ClinCancer Res1997;3 :13838. 24. Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D. Crystal structure of the ligandbinding domainofthehumannuclearreceptorRXRalpha.Nature1995;375 :37782.

146 25. RenaudJP,RochelN,RuffM,VivatV,ChambonP,GronemeyerH,MorasD.Crystalstructureofthe RARgammaligandbindingdomainboundtoalltransretinoicacid.Nature1995;378 :6819. 26. WagnerRL,AprilettiJW,McGrathME,WestBL,BaxterJD,FletterickRJ.Astructuralroleforhormone inthethyroidhormonereceptor.Nature1995;378 :6907. 27. Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, GustafssonJA,CarlquistM.Molecularbasisofagonismandantagonismintheoestrogenreceptor.Nature 1997;389 :7538. 28. Williams SP, Sigler PB. Atomic structure of progesterone complexed with its receptor. Nature 1998;393 :3926. 29. Uppenberg J, Svensson C, Jaki M, Bertilsson G, Jendeberg L, Berkenstam A. Crystal structure of the ligandbindingdomainofthehumannuclearreceptorPPARgamma.JBiolChem1998;273 :3110812. 30. MorasD,GronemeyerH.Thenuclearreceptorligandbindingdomain:structureandfunction.CurrOpin CellBiol1998;10 :38491. 31. PikeAC,BrzozowskiAM,HubbardRE,BonnT,ThorsellAG,EngstromO,LjunggrenJ,GustafssonJA, CarlquistM.Structureoftheligandbindingdomainofoestrogenreceptorbetainthepresenceofapartial agonistandafullantagonist.EmboJ1999;18 :460818. 32. RochelN,WurtzJM,MitschlerA,KlaholzB,MorasD.Thecrystalstructureofthenuclearreceptorfor vitaminDboundtoitsnaturalligand.MolCell2000;5 :1739. 33. Bourguet W, Germain P, Gronemeyer H. Nuclear receptor ligandbinding domains: threedimensional structures,molecularinteractionsandpharmacologicalimplications.TrendsPharmacolSci2000;21 :381 8. 34. ShiauAK,BarstadD,LoriaPM,ChengL,KushnerPJ,AgardDA,GreeneGL.Thestructuralbasisof estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998;95 :92737. 35. NolteRT,WiselyGB,WestinS,CobbJE,LambertMH,KurokawaR,RosenfeldMG,WillsonTM,Glass CK, Milburn MV. Ligand binding and coactivator assembly of the peroxisome proliferator activated receptorgamma.Nature1998;395 :13743. 36. McDonaldS,BriveL,AgusDB,ScherHI,ElyKR. Ligand responsiveness in human prostate cancer: structural analysis of mutant androgen receptors from LNCaP and CWR22 tumors. Cancer Res 2000;60 :231722. 37. PoujolN,WurtzJM,TahiriB,LumbrosoS,Nicolas JC, Moras D, Sultan C. Specific recognition of androgensbytheirnuclearreceptor.Astructurefunctionstudy.JBiolChem2000;275 :2402231. 38. MarhefkaCA,MooreBM,2nd,BishopTC,KirkovskyL,MukherjeeA,DaltonJT,MillerDD.Homology modeling using multiple molecular dynamics simulations and docking studies of the human androgen receptor ligand binding domain bound to testosterone and nonsteroidal ligands. J Med Chem 2001;44 :172940. 39. MatiasPM,DonnerP,CoelhoR,ThomazM,PeixotoC,MacedoS,OttoN,JoschkoS,ScholzP,WeggA, BaslerS,SchaferM,etal.Structuralevidenceforligandspecificityinthebindingdomainofthehuman androgenreceptor.Implicationsforpathogenicgenemutations.JBiolChem2000;275 :2616471. 40. SackJS,KishKF,WangC,AttarRM,KieferSE,AnY,WuGY,SchefflerJE,SalvatiME,KrystekSR, Jr.,WeinmannR,EinspahrHM.Crystallographicstructuresoftheligandbindingdomainsoftheandrogen receptor and its T877A mutant complexedwiththenaturalagonistdihydrotestosterone.ProcNatlAcad SciUSA2001;98 :49049. 41. BrinkmannAO,TrapmanJ.Prostatecancerschemesforandrogenescape.NatMed2000;6 :6289. 42. DoesburgP,KuilCW,BerrevoetsCA,SteketeeK,FaberPW,MulderE,BrinkmannAO,TrapmanJ. Functionalinvivointeractionbetweentheaminoterminal,transactivationdomainandtheligandbinding domainoftheandrogenreceptor.Biochemistry1997;36 :105264. 43. HiguchiR,KrummelB,SaikiRK.Ageneralmethodofinvitropreparationandspecificmutagenesisof DNAfragments:studyofproteinandDNAinteractions.NucleicAcidsRes1988;16 :735167. 44. RiegmanPH,VlietstraRJ,vanderKorputJA,BrinkmannAO,TrapmanJ.Thepromoteroftheprostate specificantigengenecontainsafunctionalandrogenresponsiveelement.MolEndocrinol1991;5 :192130. 45. SchenaM,PicardD,YamamotoKR.Vectorsforconstitutive and inducible gene expression in yeast. MethodsEnzymol1991;194 :38998. 46. BrinkmannAO,FaberPW,vanRooijHC,KuiperGG,RisC,KlaassenP,vanderKorputJA,Voorhorst MM,vanLaarJH,MulderE,etal.Thehumanandrogenreceptor:domainstructure,genomicorganization andregulationofexpression.JSteroidBiochem1989;34 :30710. 47. Gietz D, St. Jean A, Woods RA, Schiestl RH. Improved method for high efficiency transformation of intactyeastcells.NucleicAcidsRes1992;20 :1425. 48. KaiserP,AuerB.RapidshuttleplasmidpreparationfromyeastcellsbytransfertoE.coli.Biotechniques 1993;14 :552. 49. CleutjensKB,vanEekelenCC,vanderKorputHA,BrinkmannAO,TrapmanJ.Twoandrogenresponse regionscooperateinsteroidhormoneregulatedactivityoftheprostatespecificantigenpromoter.JBiol Chem1996;271 :637988. 50. RisStalpers C, VerleunMooijman MC, Trapman J, Brinkmann AO. Threonine on amino acid position 868inthehumanandrogenreceptorisessentialforandrogenbindingspecificityandfunctionalactivity. BiochemBiophysResCommun1993;196 :17380. 51. Brinkmann AO, Trapman J. Genetic analysis of androgen receptors in development and disease. Adv Pharmacol2000;47 :31741. 52. LaSpadaAR,WilsonEM,LubahnDB,HardingAE,FischbeckKH.Androgenreceptorgenemutationsin Xlinkedspinalandbulbarmuscularatrophy.Nature1991;352 :779.

147 53. RuizevelddeWinterJA,JanssenPJ,SleddensHM,VerleunMooijmanMC,TrapmanJ,BrinkmannAO, Santerse AB, Schroder FH, van der Kwast TH. Androgen receptor status in localized and locally progressivehormonerefractoryhumanprostatecancer.AmJPathol1994;144 :73546. 54. EvansBA,HarperME,DaniellsCE,WattsCE,Matenhelia S, Green J, Griffiths K. Low incidence of androgen receptor gene mutations in human prostatic tumors using single strand conformation polymorphismanalysis.Prostate1996;28 :16271. 55. TilleyWD,BuchananG,HickeyTE,BentelJM.Mutationsintheandrogenreceptorgeneareassociated withprogressionofhumanprostatecancertoandrogenindependence.ClinCancerRes1996;2 :27785. 56. MarcelliM,IttmannM,MarianiS,SutherlandR,NigamR,MurthyL,ZhaoY,DiConciniD,PuxedduE, Esen A, Eastham J, Weigel NL, et al. Androgen receptor mutations in prostate cancer. Cancer Res 2000;60 :9449. 57. BuchananG,GreenbergNM,ScherHI,HarrisJM, Marshall VR, Tilley WD. Collocation of androgen receptorgenemutationsinprostatecancer.ClinCancerRes2001;7 :127381. 58. ZhaoXY,MalloyPJ,KrishnanAV,SwamiS,NavoneNM,PeehlDM,FeldmanD.Glucocorticoidscan promoteandrogenindependentgrowthofprostatecancercellsthroughamutatedandrogenreceptor.Nat Med2000;6 :7036. 59. ChothiaC.Structuralinvariantsinproteinfolding.Nature1975;254 :3048. 60. NewmarkJR,HardyDO,TonbDC,CarterBS,EpsteinJI,IsaacsWB,BrownTR,BarrackER.Androgen receptorgenemutationsinhumanprostatecancer.ProcNatlAcadSciUSA1992;89 :631923. 61. CuligZ,HobischA,CronauerMV,CatoAC,HittmairA,RadmayrC,EberleJ,BartschG,KlockerH. Mutant androgen receptor detected in an advancedstage prostatic carcinoma is activated by adrenal androgensandprogesterone.MolEndocrinol1993;7 :154150. 62. PeterzielH,CuligZ,StoberJ,HobischA,RadmayrC,BartschG,KlockerH,CatoAC.Mutantandrogen receptors in prostatic tumors distinguish between amino acidsequence requirements for transactivation andligandbinding.IntJCancer1995;63 :54450. 63. GreenspanFS,Strewler,G.J.Appendix:Tableof normal hormone reference ranges, Basic and clinical endocrinology.London:PrenticeHallInternational,1997 64. HarperME,PikeA,PeelingWB,GriffithsK.Steroidsofadrenaloriginmetabolizedbyhumanprostatic tissuebothinvivoandinvitro.JEndocrinol1974;60 :11725. 65. Cleutjens CB, Steketee K, van Eekelen CC, van der Korput JA, Brinkmann AO, Trapman J. Both androgenreceptorandglucocorticoidreceptorareabletoinduceprostatespecificantigenexpression,but differintheirgrowthstimulatingpropertiesofLNCaPcells.Endocrinology1997;138 :5293300. 66. SchuurmansAL,BoltJ,VoorhorstMM,BlankensteinRA,MulderE.Regulationofgrowthandepidermal growth factor receptor levels of LNCaP prostate tumor cells by different steroids. Int J Cancer 1988;42 :91722.

148 Chapter5Generaldiscussionandfutureperspectives Chapter5 Generaldiscussionandfutureperspectives

149 5.1AimofARresearch TheARplaysaprominentroleindevelopmentofthemalephenotype,andthereforealsoin diseaseslikeKennedy'sdisease,AIS,andprostatecancer.Prostatecanceristhesecondleading causeofcancerdeathsinmeninWesterncountriesandthereforeitisamajorresearchtopic. Normalgrowth,development,andmaintenanceoftheprostatedependsonandrogenswhichact throughARmediatedregulationofandrogentargetgenes.Prostatetumorgrowthalsodepends on androgens. Androgen withdrawal therapy initially inhibits tumor growth and leads to a decrease of tumor size. However, eventually prostate tumors relapse and become apparantly androgenindependent. The tumor then appears to grow without androgen, although in most casestheARisstillpresent.Inandrogenindependenttumors,thereceptormightbeactivatedby othermechanisms,likeoverexpression,mutations,aberrantcoactivatorfunction,andcrosstalk with other signaling pathways. Even intraprostatic conversion of adrenal androgens to DHT mightoccur.So,theARisakeyplayerinbothandrogendependentandindependentprostate cancerandthereforeitisamajorsubjectofresearchinthisdiseaseandanimportanttargetfor therapy. InthisthesisresearchonseveralaspectsofARfunctionhavebeendescribed.Theseinclude:1) the functional interaction between the ARNTD and LBD, also known asN/C interaction, 2) androgenspecificregulationofgeneexpression,and3)ARLBDmutations.InthisChapter5 thefindingsareplacedinthegeneralcontextofARfunction,anddirectionsoffutureresearch arediscussed. 5.2MolecularmechanismsofARfunctions

5.2.1N/Cinteraction In Chapter 2, the androgendependent interaction between the aminoterminal AR NTD and thecarboxyterminalARLBD,theN/Cinteraction,isdescribed.InthisinteractionanFXXLF motif ( 23 FQNFL 27 ) in the AR NTD is essential. The phenylalanine and leucine residues are indispensible, but X can be any residue. Residues flanking the AR FXXLF motif have a modulatingroleintheinteraction 1,2 . Like LXXLL motifs, the FXXLF motif can form an αhelical structure that fits in the coactivatorgrooveoftheARLBD.ThegrooveintheARLBDisrelativelydeepcomparedto that in other steroid receptors and therefore it can harbor phenylalanine residues, which are bulkierthanleucines 3,4 .SeveralARcoregulators,likeARA54,ARA70,andRad9,alsocontain anFXXLFmotifthatcaninteractwiththeARLBD 57.However,notallFXXLFmotifsfound in ARcoregulatorscanbindtotheARLBD.Forexample,thecoactivatorFHL2containsan FXXLFmotif,butthismotifcannotbindtotheARLBD 5, 8 .So,residuesflankingthemotif mightpreventinteraction. Indeed, hydrophylic residues surrounding the groove and forming a charged clamp are very importantinbindingofFXXLFmotifs 1. Like was found for LXXLL motifs, this clamp can interactwiththechargedresiduesflankingtheARFXXLFmotif 1.Structuraldatahaverevealed thatinprincipleE897,butnotK720,isnecessaryforLXXLLARLBDbinding,whereasboth residues are neededfortheN/Cinteraction 4, 9 .However,crystallographicanalysisofvarious peptidescontainingeitherLXXLLorFXXLFmotifsindicatesamoredifferentiatedinducedfit modelinwhichotherresiduesliningthecoactivatorgroove,likeK717andR726,alsocanplay animportantroledependingontheresiduesthatflankthemotif 9, 10 .Thiscanexplainthatin

150 some studies K720 was found to be indispensible for FXXLF motif binding, whereas in experiments whith other peptides, K720 appeared to be less important 1, 4, 913 . Similar differenceswerefoundforE897. So,bindingoftheFXXLFmotifissimilar,butnotidentical to LXXLL binding, and most LXXLLmotifsbindtotheARLBDwithlessaffinitythanFXXLFmotifs.However,thethird LXXLLmotifofTIF2wasfoundtohaveCterminallyflankingnegativelychargedresiduesthat interact with positively charged patches on the AR LBD surface 14 . This might explain the relativelystrongbindingofthismotiftotheARLBDandARpreferenceforTIF2overother p160 coactivators 15 . So, AR coactivators that contain an FXXLF or LXXLL motif could competewiththeN/Cinteractionand/orwitheachother.Therefore,itmightalsobepossible thatthereisredundancybetweenp160coactivatorsandFXXLFcontainingcoactivators,likethe redundancy between SRC1 and TIF2, and between SRC1 and SRC3/p/CIP as observed in p160coactivatorknockoutmice1519 . Screening of peptide libraries has revealed that variations of the FXXLF motif are allowed. Theseincludeexclusivelyhydrophobicbulkyresiduesatpositions+1,+4,and+5ofthemotif, withpreferenceforFat+1,F,MorYat+4,andForYat+5forstronginteractionwithAR LBD 20,21 .However,althoughinsomepeptidesaWwasfoundatposition+1ofthemotif,these peptides showed a very weak interaction with the AR 8, 9 .Inaddition,apeptidecontaininga WXXLFmotiffoundintheARNTDthatwasproposedtobeinvolvedintheN/Cinteraction,is not able to bind to the AR LBD (Steketee unpublished results) 22 . A W residue might not properly fit in the coactivator groove, or does not make sufficient contacts to allow stable binding. Crystallographic analysis has provided evidence for the preference for bulky hydrophobic residues at the +1, +4, and +5 position of AR LBD interacting motifs 9. The structuralobservationscorrespondwiththestrengthoftheinteractionbetweentheARLBDand themotifsidentifiedwithrandomscreening.Illustrative of theprefered motif residues are an FXXFFmotifingelsolinandanFXXMFmotifinPAK6,thatshowhighaffinitybindingtoAR LBD 21 . It may be expected that more AR LBD binding proteins will be found that contain FXXLForvariantmotifsthatcaninteractwiththeARLBD. TofurtherunravelthemolecularmechanismofARfunctionitwasinvestigatedwhetherthe FXXLF mediatedN/C interaction is intra or intermolecular orboth. FRETexperimentswith CFPARYFP,CFPAR,andARYFPfusionproteinshaveindicatedthattheFXXLFmediated N/Cinteractioncanbeintramolecularinthecytoplasmaswellasinthenucleus,whereasAR dimerizationwaspredominantlyfoundinthenucleus 23 .MutationoftheFXXLFmotifaffected theFRETsignaloftheARYFP/ARCFPcombination,butnottheaffinitybetweenthesetwo ARmonomers,fromwhichitwasconcludedthattheFXXLFmotifinfluencesthedimerization, butitisnotclearyetwhetherandtowhichextent this iscontributedbyintermolecularN/C interaction.Inanotherstudy,itwasinvestigatedwhethertheN/CinteractionoccursintheDNA boundAR.WildtypeARandtheN/CinteractiondeficientmutantE897A,bothdoubletagged withCFPandYFP,wereusedforFRETanalysisinacelllinecontainingapproximately200 copiesofanMMTVRastandemarray 24 .InthissystemanN/Cinteractionwasestablishedona spotinthenucleusrepresentingtheARboundtotheMMTVarray.Incontrastwiththisstudy, FRETFRAPexperimentsinwildtypecellswithawildtypeARandaDNAbindingdeficient mutant,showedaclearN/CinteractioninnucleiforthemutantAR,whereasthatofthewild typeARwasconsiderablyless 25 .ThisindicatedthattheN/Cinteractiondoesnotoccurwhen theARisboundtoDNA,whichcouldimplyinteractionswithcoactivatorsthatpreventtheN/C interaction.ThisobservationwassubstantiatedbybindingofanARA54peptidetothewildtype ARandnottotheDNAbindingdeficientmutant 25 .Similarly,GSTpulldownassaysandChIP

151 onaMMTVreporterhaveshownthatARA54andARA70areabletobindtotheARLBDand toanN/CinteractiondefectivefulllengthAR,butnottothewildtypeAR 26 .So,theARN/C interaction could prevent premature/improper cofactor binding in both the cytoplasm and nucleus.DetectionofN/CinteractionontheMMTVarraymightbeexplainedbyashortlived existence of the interaction prior to coactivator binding, that is measurable because of the concentrationofmanyHREsonthisarray. SeveralstudieshaveindicatedthattheN/Cinteractionisneededforoptimalfunctioningofthe AR 3,12,22,2733 .UnderdifferentexperimentalconditionsFXXLFdeletionormutationspartially inhibitsARactivity.InmousemammaryadenocarcinomacellstheARLBDmutantE897Ahas aclearlyimpairedN/Cinteractionandisnotfunctional,whereasinanotherstudywiththesame mutanttestedinmonkeykidney(CV1)cells,stillARactivitycouldbemeasured 24,34 .Itcanbe speculatedthatinaspecificcellularenvironmenttheimpairedactivityoftheE897Amutantis mainlyduetoanabolishedinteractionwithFXXLFandLXXLLcontainingcoactivators,which needtheE897residueforARbinding,ratherthantoadisturbedN/Cinteraction.Indeed,inthe mouse mammary cells the E897A mutant was notableto recruit PolII, GRIP1 or CREB 24 . GRIP1bindsthroughitsLXXLLmotifforwhichE897isessential,subsequentlyfollowedby CREBandPolII.ThesamemightcountforanumberofARmutantsfoundinAIS,whichshow adisturbedN/Cinteraction 12,30,31,33 .HerealsoothermechanismsneededforARfunctionmay beaffected,includingincreasedliganddissociation. TheN/CinteractionwasalsofoundtohavevariableinfluenceonARfunctionondifferentAR targetsitesintheDNA.ThiswasillustratedbyN/CinteractiondefectiveARmutants,which had, compared to the wildtype AR, a decreased activity on a transient transfected reporter driven by a promoter with nonspecific AREs, but not with androgenspecific AREs 27 . In addition to DNA sequence requirements of the N/C interaction, the interaction was also proposedtoplayaroleinaccessibilityoftheARtochromatinembeddedDNA.AnARdeletion mutant lacking the FXXLF motif does not bind to the MMTV promoter and PSA enhancer whenassembledinchromatinin Xenopus or mammalian kidney cells 32 . However, on naked DNAthemutantwasabletobindtheMMTVpromoterandthePSAenhancer.Theroleofthe N/CinteractioninchromatinaccessoftheARisfurthersubstantiatedbythefindingthatthe FXXLFdeletedARmutantisalsodiminishedinitsbindingtotheATPasesubunitofSWI/SNF, Brg1 32 . The AR FXXLF motif is highly conserved, which indicates that itisanimportantdomain. Although deletion or mutation of this motif only partially inhibits AR activity in functional assays, in vivo it might have a more pronounced long term effect on AR function. So far, however,nomutationsintheFXXLFmotifwerefoundinprostatecancerorotherARrelated diseases(mcgill.ca/androgendb/). Inhibition of ARfunctionbyandrogendepletionand administration of antiandrogens is the standardtreatmentofmetastaticprostatecancer.AnothermethodofblockingARfunctioncould beinhibitionofcoactivatoraction.Thereforestructuralknowledgeoninteractionsbetweenthe ARanditscoactivatorsisessential.Onetargetofinhibitioncouldbethecoactivatorgrooveby blockingitwithARspecificpeptides,e.g.apeptidecontainingtheARFXXLFmotif.However, this would not only prevent binding of AR coactivators, but it would also interupt the N/C interaction. Hereby the FXXLF motif in the AR NTD becomes available for interaction with otherproteins,likeMAGE11,whichcanspecificallybindtotheFXXLFmotif,stabilizesthe ARintheabsenceofligand,andinthepresenceofanagonist,augmentsexposureofAF2to therecruitmentandactivationbytheSRC/p160coactivators. 20,35 .Thisway,anetinhibitionof the AR might not be achieved. For the ER antagonistic peptides were developed that can

152 succesfully block the LBD coactivator groove 36, 37 . However, in the ER, AF2 substantially contributes to the receptor transcriptional activity, whereas in the AR, AF1 is much more importantfortransactivationthantheLBD 11,3841 .Thereforeitcouldbeanoptiontocombinea peptide antagonist that binds to the AR LBD coactivator groove with an additional AF1 blocking approach. This way p160 coactivators, other AR NTD interacting coactivators, and FXXLFmotifcontainingcoactivatorscouldbeinhibitedinanARspecificmanner. Takentogether,theARN/Cinteractionmayplayafinetuningroleinstabilizingligandbound AR,effectivetravelingoftheligandboundARfromthecytoplasmtothenucleus,accessofthe AR to chromatin embedded DNA, proper deposition of the AR on its target ARE's, and inhibitionofprematurecofactorbinding.DeterminationofthephysiologicalroleoftheARN/C interactionawaitsamousemodelinwhichtheFXXLFmotifisdeleted.Suchamodelcould also be used for microarray analysis to determine which androgen target genes need theN/C interactionfortheiroptimalregulationandunderwhichcellularconditions.Furthermore,ChIP experiments with an FXXLF deletion mutant could establish the requirement of the FXXLF motif in protein complexes involved in regulation of expression of particular androgen responsivegenes. 5.2.2ARspecifictargetgenes All steroid receptors (except ER) can bind to the same high affinity consensus GRE (5’ AGAACAnnnTGTTCT3’).Steroidspecificgeneregulationisconferredbyseveralmechanisms includingreceptorexpressionlevels,selectiveinteractionsofreceptorswithspecificandgeneral transcription factors and coregulators, relative coregulator levels, ligand availability, and local chromatin structure at regulatory sites of target genes. However, although many GREs are recognizedbyAR,aswellasbyGRandPR,alsoARspecificAREshavebeenidentified.These AREs are present in androgenspecifically regulated genes like SC , Slp , probasin , PEM , and SARG 4247 . The SARG genewasidentifiedintheAR +/GR +LNCaPsubline1F5,usingdifferentialdisplay. ThefunctionoftheSARGproteinisnotknownyet.Itdoesnothaveanyknowndomainsthat couldpredictitsfunction.Recently,differentialdisplaydatawereconfirmedandextendedby microarrayanalysisof1F5cells.Thisrevealedseveralgenesofwhichtheexpressionishighly induced by androgens (van der Korput, unpublished results). Among these was SARG , which indicatesanimportantroleforthisgeneinandrogenregulationofprostatecells.Togetherwith theobservationthat1F5cellsdependonandrogens for their growth, SARG isacandidateto play a role in prostatic (cancer) cell growth. Elucidation of the SARG function awaits RNAi experimentsandamouseknockoutmodel. Initially,modelsofARDBDboundtoARspecificAREssuggestedthatthedirectrepeatlike characteroftheARspecificAREs,likethatof SARG ,determinesthemodeofARbinding.This interactionwasproposedtoinvolveheadtotaildimerization,similartotheorientationofNR heterodimersthatbindtodirectrepeatHREslikeVDR/RXR.However,itnowhasbeenproven by crystallographic analysis that an AR dimer has a headtohead conformation on both AR specificandnonspecificAREs 48 .ThemechanismunderlyingARspecificityofAREsinvolves strong homodimerization between AR DBDs. This interaction is less strong between other steroid receptors. Three extra hydrogenbondingsbetween two AR DBDs,ifcomparedtothe GRDBD,conferthisstrongerbinding.Infact,oneARbindstoahighaffinitylefthalfsiteof theARspecificAREandthesecondmonomercanbindtothesecondhalfsite,whichmight deviateconsiderablyfromthehighaffinityconsensussitesequenceandhasalowaffinityfor theAR.Apparently,thedimerizationinteractionisstrongenoughtokeeptheARdimerintact.

153 ThismightalsoexplainwhytheARwasabletobindtothePem1AREwitha5bpspacing, while the GR cannot 42 . Although the mechanism of the PemI ARE could be complex, one aspectmightbethatthestrongARdimerizationovercomestheextraspacingandconcomittant phasechangeofthemajorgroovetowhichtheARbindsifcomparedtoanormal3bpspacing, byresistingthetensionputonitbybendingofthespacerinordertoaccomodatetheARdimer. Thephysiologicalrolesofandrogenspecificregulatedgenesarenotknown,butknowledgeon these genes might be important for development of specific AR targeting prostate cancer therapies.MutationshavebeenfoundinAISpatientsatthepositionsofthethreeaminoacids involvedintheextrahydrogenbondingsbetweenARDBDs.InPAISpatientsA596T,S597G, S597T, S597R, and T602P substitutions were identified 4956 . Some of these were shown to impairARfunction 50,51,56 .ItwouldbeinformativetotestwhethertheseARmutantsareactive on nonspecific AR target genes and less active on ARspecific genes. Indeed, one of the mutants,A596T,wastestedandshowedreducedactivityonARspecificAREs,butnotonnon specificAREs 57 . Recently, a transgenic mouse model, SPARKI (SPecificityaffecting AR KnockIN), was generatedinwhichthesecondzincclusteroftheARwasswappedwiththesecondzinccluster oftheGR 58 .ThisARmutantshowedasignificantlossoffunctiononandrogenspecificAREs, butnotonnonspecificAREs.SPARKImaleshaveanapparentlynormalphenotype.However, they are subfertile. The reproductive organs are decreased in weight and spermatogenesis is disturbed.Thismodelcanhelprevealwhichpathwaysareinvolvedinandrogenspecificgene regulation. Microarrays are very important tools for the identification of androgenspecific regulated genes.TofindAREsinthosegenesaveryusefulapproachcanbeabioinformaticsbasedsearch for AREs. However, to identify a real AR specific ARE, functional studies always will be needed. For example, by using bioinformatics at 7.5kb upstream of the SARG transcription start site, a candidate ARE was found, which is identical to an artificial AR specific ARE previouslytestedasanoligonucleotide 59 .IncontrasttotheartificialARE,the7.5kbcandidate ARE appeared to be nonfunctional and even no AR binding was found 45 . This clearly illustratesthathalfsitesequencesalonearenotsufficient,butneedflankingand/ormoredistant sequences to determine the androgen response of a candidate ARE. The concomitant local chromatinstructureinwhichtheAREisembedded,andbindingofothertranscriptionfactorsto theflankingsequences,mightalsodeterminewhetheracandidateAREisfunctionalornot. Anotherdifficultyinfindingandrogenregulatedgenesbyusingbioinformatics,isthatmany known functional AREs differ considerably from the consensus sequence. So, genome wide screeningforAREsequenceswouldinvolveahugevarietyofsequencestobeusedassearch string. This would result in a too high numberofcandidate AREs to be suitable for further analysis. Searching exclusively for AR specific AREs would even be more problematic. For this,onehalfsitemustbeahighaffinity,mostlynear consensus sequence, and one half site shouldconsiderablydeviatefromtheconsensussequence.However,thiswouldimplyscreening withonehalfsitesequence,whichmeansusingasearchstringwithonly6bases.Thiswould reveal far too many candidate AREs to handle. As the second halfsite can be extremely variable,itwouldbeverycomplicatedandmaybeimpossibletodefineaconsensussequence forARspecificAREs. An approach to solve the problem of too many candidate AREs in screening of genomic sequencesistheChIPonchiptechnique 60 .ThistechniquecombinesproteinDNAbindingwith microarrayanalysis.AgenomewidescreeninghasbeendonetoidentifyERbindingsequences, whichisonestepforwardinlimitingthenumberofcandidateHREs 61 .Recently,ChIPonchip

154 fortheARwasperformedonasocalledENCODEchip,whichrepresentsapproximately1%of thewholegenome 62 .Severalnovelandrogenresponsegeneshavebeenidentified.MostAREs appearedtobelocatedinregionsotherthanproximalpromoterregions.Theintronicandrogen specificAREintheSARGgeneisanexampleofthis(Chapter3) 45 .ChIPonchipanalysisof the complete chromosomes 21 and 22 has revealed 90 AR binding sites, among which one upstream of the TMPRSS2 gene 63 .InaChIPonchipapproachwithmorethan24,000gene promoter regions, 92 genes were identified as strong candidate AR regulated genes, and this corresponded with expression data sets of those genes 64 . In another study, a few hundred androgenregulated genes were identified with expression profiling and subsequent ChIPon chipanalysisofthepromoterregionsofthosegenes.Thisrevealedmorethan500ARbinding regions of which 22 were tested in a reporter gene assay, and 20 of these were androgen inducible 65 . Most of these AR binding regions contained two or more AREs. Clustering of candidate AREs may indicate an androgen regulated region, but a single ARE may have no measurable activity in transfection experiments and therefore can be difficult to identify 66 . Using ChIPonchip analysis may also help overcome this problem. Identification of all androgen regulated genes and all existing AREs, both androgen specific and nonspecific, awaitsaChIPonchipanalysisofthecompletegenome. 5.2.3ARLBDmutations ARmutationshavebeenfoundinpathologicalconditionsasKennedy'sdiseaseandAIS,and inasubset(upto10%)ofendocrinetherapyresistantprostatecancers.Inprostatecancermost mutationsarefoundintheLBD,whichcouldimplychanges in ligand and cofactor binding. Well characterized mutations are T877A, L701H, H874Y, and W741C/L, which cause a broadened ligand specificity of the AR. These mutationsrendertheAR,inadditiontoTand DHT, also responsive to noncognate ligands like progesterone, estradiol, adrenal androgens, glucocorticoids,andevenantiandrogens 45, 6777 .Forsomeofthesemutantsthemechanismof broadenedligandspecificityhasbeenelucidated.Crystallographicanalysishasshownthatthe T877A mutant has a modified ligand binding pocket size that can explain accomodation of ligands larger than T and DHT 78 . However, also mutations of residues that do not line the ligandbindingpocket,e.g.inARH874Y,canconferbroadenedligandspecificity,mostlikely bystructuralchangesthatindirectlyinfluenceligandbinding.Crystallographicanalysesofthe differentmutantsboundtodifferentnoncognateligandsexplainandconfirmthemechanisms underlyingthebroadenedligandspecificity,suchastherecentlyelucidatedcrystalstructureof theT877AARLBDcomplexedtoCPA 79 .InthismutantresidueL701intheLBDisdisplaced resultinginexpansionoftheligandbindingpocket.ThisenablesCPA,whichisapartialagonist forthewildtypeARandisbulkierthanARsteroidalagonistslikeDHT,T,orR1881,tofitthe pocket properly so that it can act as a full agonist for the T877A AR mutant. Similarly, an L701A mutant can also be activated by CPA at the same nanomolar concentrations as the T877A mutant 79 . These kind of structural studies provide insight in ligandinduced conformationalchangesandcouldbehelpfulinstructurebaseddrugdesign. AgonisticactionofantagonistsontheARmutantscouldbedeterminedbypropercoactivator interactions as a result of the changed ligand accomodation. For example, in the presence of ligandssuchasestradiol,progesterone,spironolactone,andOHFl,theT877Amutantshowed an increased ligand potency in recruitment of LXXLL and FXXLF peptides 80 . Likewise, it mightbeexpectedthattheARFXXLFmotifinteractsdifferentlywiththemutantLBDaswith thewildtypeLBDinthepresenceofanantagonist.So,crystallographicdataofwildtypeand mutantARLBDscomplexedwithpeptidesinthepresenceofdifferentligandscouldgivemore

155 insightinthemechanismofARfunction.Thiscouldbeusefulforthedesignofnewapproaches tospecificallyblockARLBDcoactivatorinteractionsinbothwildtypeandmutantARs. AndrogenablationbyLHRHagonistsusedfortreatmentofmetastaticprostatecancerdoesnot reduce serum T levels such that DHT levels in the prostate will become low enough to completely inhibit the AR 8184 . Therefore, also antiandrogens are used to counteract DHT action.Itisbelievedthatuseofantiandrogensinprostatecancertreatmentcaninduceandrogen independenttumorgrowthinasubsetofpatients.Strongindicationsforthisareprovidedby experimentsinayeastsystemandinprostatecancercelllines,inwhichARmutantscouldbe selectedfortheirresponsetononcognateligands,amongwhichantiandrogens 45,69,85 .TheAR mutationsfoundintheseexperimentsarethesameasfoundinantiandrogentreatedpatients. AlthoughitispossiblethatthoseARmutantsarealreadypresentinnontreatedtumors,these mustberareastheyhavenotbeenfoundinprimarytumors.Thisimpliesthatthosemutants couldnothavegrowthadvantageintheuntreatedstagewhenDHTisatphysiologicallevels. This is in accordance with the responses of wildtype and AR mutants to DHT, which are comparableasmeasuredintransfection. The W741C mutant can be activated by bicalutamide, but not by nilutamide and OHFl, whereastheT877Amutantdoesnotrespondtobicalutamide,butcanbeactivatedbyOHFland nilutamide 86 . Structural modeling has revealed the possible underlying mechanisms of these mutantswiththerespectiveligands 79,8688 .Thishasledtothehypothesisthatswitchingofanti androgensduringprostatecancertreatmentcouldabolishtheeffectsofappearingARmutations. Thiswouldalsobeinlinewiththephenomenon'antiandrogenwithdrawalsyndrome'inwhich prostate tumors decrease in size when antiandrogenadministrationistemporarilystopped 89 . However,onlyasmallproportionofthecasesofantiandrogenwithdrawalsyndromecarryAR mutations,whichmeansthatalsogrowthpathwaysotherthanthoseregulatedbyARmutants mustbeinvolvedintumorprogression.Nevertheless,ithasbeenarguedthatatherapyinwhich useofdifferentantiandrogensandwithdrawalofthesecompoundsisalternated,couldinhibit progressionofatleastasubsetofprostatecancers 86,90 . Prostate cancer related AR mutations are not only found in theLBD,but,albeitmuchless frequent, also in the NTD and DBD. In the transgenic adenocarcinoma of mouse prostate (TRAMP)model,ARLBDmutationswerefoundinthetumorsofnontreatedmice,whereasin castratedTRAMPmiceARNTDmutationswerefound 91 .Apparently,theandrogendepleted hormone status leads to mutations in the androgenindependent NTD. However, androgen depletion, mostly by using LHRH agonists, is often combined with antiandrogens. This substantiateswhymostARmutationsinantiandrogentreatedprostatecancersarefoundinthe liganddependent LBD as these mutations may appear under selection pressure by the anti androgens that can activate them. As AR mutations in the TRAMP model developed under physiologicallynormalhormoneconditions,italsoraisedthequestionwhetherARmutations couldinduceoncogenesis.Indeed,inalltransgenicmiceharboringtheARNTDmutantE231G, oncogenictransformationoftheprostatewasfound92 .Sofar,theE231Gmutationhasnotbeen found in humanprostate cancer(mcgill.ca/androgendb/).Theunderlyingmechanismcouldbe anincreasedARactivitycausedbyadisturbedinteractionwiththenegativeARregulatorCHIP. Recently,anARDBDmutation,K580R,whichwasfoundin a lymph node metastasis, was found to be oncogenic in transfection. Activation of the Akt signalling pathway might be involved, because this mutant increases pAkt and pp70 S6K levels 93, 94 . These findings indicatethatitisimportanttoinvestigatemutationsinallthreeARdomains,whichwillleadto abetterunderstandingoftheroleoftheARinprostatecancer.

156 5.3ARinfurtherresearchandfutureperspectives Although there is already an extensive knowledge on the molecular mechanisms of AR functions,manyaspectsremaintobeelucidated,ofwhichafewimportantonesarediscussed below. OnefeatureoftheARthatstillistobeestablishedisthestructuralconformationoftheNTD. Sofar,onlyanαhelicalstructureforthe 23 FXXLF 27 motifwasfound 4,9 .Itisthoughtthatthe NTD, if not bound to other proteins, is very flexible and that it adopts different induced fit conformationsdependingontheproteinsthatbindtothisARdomain.So,structuralanalysisof ARNTDmightonlybesuccesfulinthecontextofitsinteractingproteinslikeCHIP,MAGE, SHP,SMRT,CBP,andp160coactivators(seesection1.2.2). Although AR mutations are found in only a subset of prostate cancer patients, further unraveling the functional consequences of these mutations will highly contribute to general understanding of AR function, which could be useful for development of new or better therapies. RNAicouldbeaneffectivetherapyforprostatecancertreatment.AstheARplaysakeyrole inprostatecancer,androgenresponsivegenesmightbeselectedastargetsofRNAiinaddition toRNAioftheARitself.Forthisitwillbeimportant to develop a therapy thatcanbalance expression of androgen up and downregulated genes so precisely that cell proliferation is completely shut down in a prostate specific manner. To develop such an approach, more detailed knowledge is needed on (specifically) androgen regulated genes, which has been achievedbyusingmicroarraytechnologyandnowalsowiththerecentlydevelopedChIPon chip technique 6062 . A good candidate for RNAi might be the recently identified TMPRSS2:ERG fusion gene. It is highly expressed in a substantial proportion of prostate cancers,androgenresponsive,andcorrelateswithrecurrenceandaggressivenessofthedisease 9599 .Thisgeneissuggestedtoplayaroleintheandrogendependentstageofprostatecancer 96 . TheARcanalsohaveafunctioninmechanismsotherthanregulationofgenetranscription. Recently,theARwasfoundtobealicensingfactorforDNAreplicationinandrogendependent prostatecancercells,butnotinnormalprostatecells 100,101 .Intheprostatecancercells,theAR has to be degraded before AR signalling can promote a next round of DNA replication. So, paradoxically,ARstabilizingapproacheswouldinhibitDNAreplicationandthereforedisturb the cell cycle. A new approach for prostate cancer treatment could be intermittent androgen blockade(IMAB).ThiswouldanticipateontheeffectofselectionofARmutantsrespondingto antiandrogens and inhibit cell proliferation on a more general level by diminishing DNA replication. In summary, knowledge on the molecular mechanisms of AR functions is important to understandARfunctioninordertobeabletoimproveexistingtherapiesandtodevelopnew treatments for ARrelated diseases like prostate cancer. Our current knowledge still needs furtherextensiontofindtargetsforimprovementofcurrentprostatecancertreatmentordevelop newtherapies.

157 5.4REFERENCES 1 B.HeandE.M.Wilson(2003)ElectrostaticmodulationinsteroidreceptorrecruitmentofLXXLLand FXXLFmotifs Mol Cell Biol 23 6213550 2 K.Steketee,C.A.Berrevoets,H.J.Dubbink,P.Doesburg,R.Hersmus,A.O.BrinkmannandJ.Trapman (2002)Aminoacids313andaminoacidsinandflankingthe23FxxLF27motifmodulatetheinteraction betweentheNterminalandligandbindingdomainoftheandrogenreceptor Eur J Biochem 269 235780 91 3 H.J.Dubbink,R.Hersmus,C.S.Verma,H.A.VanDerKorput,C.A.Berrevoets,J.VanTol,A.C.Ziel VanDerMade,A.O.Brinkmann,A.C.PikeandJ.Trapman(2004)Distinctrecognitionmodesof FXXLFandLXXLLmotifsbytheandrogenreceptor Mol Endocrinol 18 9213250 4 B.He,R.T.Gampe,Jr.,A.J.Kole,A.T.Hnat,T.B.Stanley,G.An,E.L.Stewart,R.I.Kalman,J.T. MingesandE.M.Wilson(2004)Structuralbasisforandrogenreceptorinterdomainandcoactivator interactionssuggestsatransitioninnuclearreceptoractivationfunctiondominance Mol Cell 16 342538 5 B.He,J.T.Minges,L.W.LeeandE.M.Wilson(2002)TheFXXLFmotifmediatesandrogenreceptor specificinteractionswithcoregulators J Biol Chem 277 121022635 6 Y.C.Hu,S.Yeh,S.D.Yeh,E.R.Sampson,J.Huang,P.Li,C.L.Hsu,H.J.Ting,H.K.Lin,L.Wang,E. Kim,J.NiandC.Chang(2004)Functionaldomainandmotifanalysesofandrogenreceptorcoregulator ARA70anditsdifferentialexpressioninprostatecancer J Biol Chem 279 323343846 7 L.Wang,C.L.Hsu,J.Ni,P.H.Wang,S.Yeh,P.KengandC.Chang(2004)Humancheckpointprotein hRad9functionsasanegativecoregulatortorepressandrogenreceptortransactivationinprostatecancer cells Mol Cell Biol 24 5220213 8 C.L.Hsu,Y.L.Chen,S.Yeh,H.J.Ting,Y.C.Hu,H.Lin,X.WangandC.Chang(2003)Theuseof phagedisplaytechniquefortheisolationofandrogenreceptorinteractingpeptideswith(F/W)XXL(F/W) andFXXLYnewsignaturemotifs J Biol Chem 278 26236918 9 E.Hur,S.J.Pfaff,E.S.Payne,H.Gron,B.M.BuehrerandR.J.Fletterick(2004)Recognitionand accommodationattheandrogenreceptorcoactivatorbindinginterface PLoS Biol 29E274 10 H.J.Dubbink,R.Hersmus,A.C.Pike,M.Molier,A.O.Brinkmann,G.JensterandJ.Trapman(2006) AndrogenreceptorligandbindingdomaininteractionandnuclearreceptorspecificityofFXXLFand LXXLLmotifsasdeterminedbyL/Fswapping Mol Endocrinol 20 8174255 11 P.Alen,F.Claessens,G.Verhoeven,W.RombautsandB.Peeters(1999)Theandrogenreceptoramino terminaldomainplaysakeyroleinp160coactivatorstimulatedgenetranscription Mol Cell Biol 19 9 608597 12 B.He,J.A.Kemppainen,J.J.Voegel,H.GronemeyerandE.M.Wilson(1999)Activationfunction2in thehumanandrogenreceptorligandbindingdomainmediatesinterdomaincommunicationwiththe NH(2)terminaldomain J Biol Chem 274 523721925 13 T.Slagsvold,I.Kraus,T.Bentzen,J.PalvimoandF.Saatcioglu(2000)Mutationalanalysisofthe androgenreceptorAF2(activationfunction2)coredomainrevealsfunctionalandmechanisticdifferences ofconservedresiduescomparedwithothernuclearreceptors Mol Endocrinol 14 10160317 14 E.EstebanezPerpina,J.M.Moore,E.Mar,E.DelgadoRodrigues,P.Nguyen,J.D.Baxter,B.M. Buehrer,P.Webb,R.J.FletterickandR.K.Guy(2005)Themolecularmechanismsofcoactivator utilizationinliganddependenttransactivationbytheandrogenreceptor J Biol Chem 280 980608 15 X.Ye,S.J.Han,S.Y.Tsai,F.J.Demayo,J.Xu,M.J.TsaiandW.O'malleyB(2005)Rolesofsteroid receptorcoactivator(SRC)1andtranscriptionalintermediaryfactor(TIF)2inandrogenreceptoractivity inmice Proc Natl Acad Sci U S A 102 27948792 16 M.Mark,H.YoshidaKomiya,M.Gehin,L.Liao,M.J.Tsai,B.W.O'malley,P.ChambonandJ.Xu (2004)PartiallyredundantfunctionsofSRC1andTIF2inpostnatalsurvivalandmalereproduction Proc Natl Acad Sci U S A 101 1344538 17 N.P.Mongan,J.Jaaskelainen,S.Bhattacharyya,R.M.LeuandI.A.Hughes(2003)Steroidreceptor coactivator3glutaminerepeatpolymorphismandtheandrogeninsensitivitysyndrome Eur J Endocrinol 148 22779 18 J.Xu,Y.Qiu,F.J.Demayo,S.Y.Tsai,M.J.TsaiandB.W.O'malley(1998)Partialhormoneresistance inmicewithdisruptionofthesteroidreceptorcoactivator1(SRC1)gene Science 279 535819225 19 Z.Wang,C.Qi,A.Krones,P.Woodring,X.Zhu,J.K.Reddy,R.M.Evans,M.G.RosenfeldandT. Hunter(2006)Criticalrolesofthep160transcriptionalcoactivatorsp/CIPandSRC1inenergybalance Cell Metab 3211122 20 C.Y.Chang,J.Abdo,T.HartneyandD.P.Mcdonnell(2005)Developmentofpeptideantagonistsforthe androgenreceptorusingcombinatorialpeptidephagedisplay Mol Endocrinol 19 10247890 21 D.J.VanDeWijngaart,M.E.VanRoyen,R.Hersmus,A.C.Pike,A.B.Houtsmuller,G.Jenster,J. TrapmanandH.J.Dubbink(2006)NovelFXXFFandFXXMFmotifsinandrogenreceptorcofactors mediatehighaffinityandspecificinteractionswiththeligandbindingdomain J Biol Chem 281 2819407 16 22 B.He,J.A.KemppainenandE.M.Wilson(2000)FXXLFandWXXLFsequencesmediatetheNH2 terminalinteractionwiththeligandbindingdomainoftheandrogenreceptor J Biol Chem 275 3022986 94 23 F.Schaufele,X.Carbonell,M.Guerbadot,S.Borngraeber,M.S.Chapman,A.A.Ma,J.N.MinerandM. I.Diamond(2005)Thestructuralbasisofandrogenreceptoractivation:intramolecularandintermolecular aminocarboxyinteractions Proc Natl Acad Sci U S A 102 2898027

158 24 T.I.Klokk,P.Kurys,C.Elbi,A.K.Nagaich,A.Hendarwanto,T.Slagsvold,C.Y.Chang,G.L.Hager andF.Saatcioglu(2007)Ligandspecificdynamicsoftheandrogenreceptoratitsresponseelementin livingcells Mol Cell Biol 27 5182343 25 M.E.VanRoyen,S.M.Cunha,M.C.Brink,K.A.Mattern,A.L.Nigg,H.J.Dubbink,P.J.Verschure,J. TrapmanandA.B.Houtsmuller(2007)Compartmentalizationofandrogenreceptorproteinprotein interactionsinlivingcells J Cell Biol 177 16372 26 C.Toumazou,J.LiandJ.Wong(2007)CofactorRestrictionbyAndrogenReceptorNterminalandC terminalInteraction Mol Endocrinol 27 L.Callewaert,G.Verrijdt,V.Christiaens,A.HaelensandF.Claessens(2003)Dualfunctionofanamino terminalamphipatichelixinandrogenreceptormediatedtransactivationthroughspecificandnonspecific responseelements J Biol Chem 278 1082128 28 B.He,N.T.Bowen,J.T.MingesandE.M.Wilson(2001)AndrogeninducedNH2andCOOHterminal InteractionInhibitsp160coactivatorrecruitmentbyactivationfunction2 J Biol Chem 276 4542293301 29 C.L.Hsu,Y.L.Chen,H.J.Ting,W.J.Lin,Z.Yang,Y.Zhang,L.Wang,C.T.Wu,H.C.Chang,S.Yeh, S.W.PimplikarandC.Chang(2005)Androgenreceptor(AR)NH2andCOOHterminalinteractions resultinthedifferentialinfluencesontheARmediatedtransactivationandcellgrowth Mol Endocrinol 19 235061 30 J.Jaaskelainen,A.Deeb,J.W.Schwabe,N.P.Mongan,H.MartinandI.A.Hughes(2006)Human androgenreceptorgeneligandbindingdomainmutationsleadingtodisruptedinteractionbetweentheN andCterminaldomains J Mol Endocrinol 36 23618 31 E.Langley,J.A.KemppainenandE.M.Wilson(1998)IntermolecularNH2/carboxylterminal interactionsinandrogenreceptordimerizationrevealedbymutationsthatcauseandrogeninsensitivity J Biol Chem 273 192101 32 J.Li,J.Fu,C.Toumazou,H.G.YoonandJ.Wong(2006)Aroleoftheaminoterminal(N)andcarboxyl terminal(C)interactioninbindingofandrogenreceptortochromatin Mol Endocrinol 20 477685 33 J.Thompson,F.Saatcioglu,O.A.JanneandJ.J.Palvimo(2001)Disruptedaminoandcarboxylterminal interactionsoftheandrogenreceptorarelinkedtoandrogeninsensitivity Mol Endocrinol 15 692335 34 B.HeandE.M.Wilson(2002)TheNH(2)terminalandcarboxylterminalinteractioninthehuman androgenreceptor Mol Genet Metab 75 42938 35 S.Bai,B.HeandE.M.Wilson(2005)MelanomaantigengeneproteinMAGE11regulatesandrogen receptorfunctionbymodulatingtheinterdomaininteraction Mol Cell Biol 25 4123857 36 C.Chang,J.D.Norris,H.Gron,L.A.Paige,P.T.Hamilton,D.J.Kenan,D.FowlkesandD.P. Mcdonnell(1999)DissectionoftheLXXLLnuclearreceptorcoactivatorinteractionmotifusing combinatorialpeptidelibraries:discoveryofpeptideantagonistsofestrogenreceptorsalphaandbeta Mol Cell Biol 19 12822639 37 J.M.Hall,C.Y.ChangandD.P.Mcdonnell(2000)Developmentofpeptideantagoniststhattarget estrogenreceptorbetacoactivatorinteractions Mol Endocrinol 14 12201023 38 A.Benecke,P.ChambonandH.Gronemeyer(2000)Synergybetweenestrogenreceptoralphaactivation functionsAF1andAF2mediatedbytranscriptionintermediaryfactorTIF2 EMBO Rep 121517 39 C.A.Berrevoets,P.Doesburg,K.Steketee,J.TrapmanandA.O.Brinkmann(1998)Functional interactionsoftheAF2activationdomaincoreregionofthehumanandrogenreceptorwiththeamino terminaldomainandwiththetranscriptionalcoactivatorTIF2(transcriptionalintermediaryfactor2) Mol Endocrinol 12 8117283 40 R.Metivier,G.Penot,G.FlouriotandF.Pakdel(2001)SynergismbetweenERalphatransactivation function1(AF1)andAF2mediatedbysteroidreceptorcoactivatorprotein1:requirementfortheAF1 alphahelicalcoreandforadirectinteractionbetweentheNandCterminaldomains Mol Endocrinol 15 11195370 41 S.A.Onate,V.Boonyaratanakornkit,T.E.Spencer,S.Y.Tsai,M.J.Tsai,D.P.EdwardsandB.W. O'malley(1998)Thesteroidreceptorcoactivator1containsmultiplereceptorinteractingandactivation domainsthatcooperativelyenhancetheactivationfunction1(AF1)andAF2domainsofsteroidreceptors J Biol Chem 273 20121018 42 K.Barbulescu,C.Geserick,I.Schuttke,W.D.SchleuningandB.Haendler(2001)Newandrogen responseelementsinthemurinepempromotermediateselectivetransactivation Mol Endocrinol 15 10 180316 43 F.Claessens,P.Alen,A.Devos,B.Peeters,G.VerhoevenandW.Rombauts(1996)Theandrogen specificprobasinresponseelement2interactsdifferentiallywithandrogenandglucocorticoidreceptors J Biol Chem 271 32190136 44 A.Haelens,G.Verrijdt,E.Schoenmakers,P.Alen,B.Peeters,W.RombautsandF.Claessens(1999)The firstexonofthehumanscgenecontainsanandrogenresponsiveunitandaninterferonregulatoryfactor element Mol Cell Endocrinol 153 1291102 45 K.Steketee,A.C.ZielVanDerMade,H.A.VanDerKorput,A.B.HoutsmullerandJ.Trapman(2004) AbioinformaticsbasedfunctionalanalysisshowsthatthespecificallyandrogenregulatedgeneSARG containsanactivedirectrepeatandrogenresponseelementinthefirstintron J Mol Endocrinol 33 2477 91 46 G.Verrijdt,E.Schoenmakers,P.Alen,A.Haelens,B.Peeters,W.RombautsandF.Claessens(1999) Androgenspecificityofaresponseunitupstreamofthehumansecretorycomponentgeneismediatedby differentialreceptorbindingtoanessentialandrogenresponseelement Mol Endocrinol 13 9155870 47 J.Zhang,N.Gao,S.Kasper,K.Reid,C.NelsonandR.J.Matusik(2004)Anandrogendependent upstreamenhancerisessentialforhighlevelsofprobasingeneexpression Endocrinology 145 113448 48 P.L.Shaffer,A.Jivan,D.E.Dollins,F.ClaessensandD.T.Gewirth(2004)Structuralbasisofandrogen receptorbindingtoselectiveandrogenresponseelements Proc Natl Acad Sci U S A 101 14475863

159 49 A.Deeb,C.Mason,Y.S.LeeandI.A.Hughes(2005)Correlationbetweengenotype,phenotypeandsex ofrearingin111patientswithpartialandrogeninsensitivitysyndrome Clin Endocrinol (Oxf) 63 15662 50 A.Gast,F.NeuschmidKaspar,H.KlockerandA.C.Cato(1995)Asingleaminoacidexchangeabolishes dimerizationoftheandrogenreceptorandcausesReifensteinsyndrome Mol Cell Endocrinol 111 1938 51 A.Giwercman,T.Kledal,M.Schwartz,Y.L.Giwercman,H.Leffers,H.Zazzi,A.WedellandN.E. Skakkebaek(2000)Preservedmalefertilitydespitedecreasedandrogensensitivitycausedbyamutationin theligandbindingdomainoftheandrogenreceptorgene J Clin Endocrinol Metab 85 622539 52 Y.L.Giwercman,S.A.Ivarsson,J.Richthoff,K.B.LundinandA.Giwercman(2004)Anovelmutation intheDboxoftheandrogenreceptorgene(S597R)intwounrelatedindividualsIsassociatedwithboth normalphenotypeandseverePAIS Horm Res 61 25862 53 P.M.Holterhus,G.H.Sinnecker,H.A.Wollmann,D.Struve,N.Homburg,K.KruseandO.Hiort(1999) Expressionoftwofunctionallydifferentandrogenreceptorsinapatientwithandrogeninsensitivity Eur J Pediatr 158 97026 54 K.F.Melo,B.B.Mendonca,A.E.Billerbeck,E.M.Costa,M.Inacio,F.A.Silva,A.M.Leal,A.C. LatronicoandI.J.Arnhold(2003)Clinical,hormonal,behavioral,andgeneticcharacteristicsofandrogen insensitivitysyndromeinaBraziliancohort:fivenovelmutationsintheandrogenreceptorgene J Clin Endocrinol Metab 88 7324150 55 A.Nordenskjold,E.Friedman,M.TapperPersson,C.Soderhall,A.Leviav,J.SvenssonandM.Anvret (1999)Screeningformutationsincandidategenesforhypospadias Urol Res 27 14955 56 S.Zoppi,M.Marcelli,J.P.Deslypere,J.E.Griffin,J.D.WilsonandM.J.Mcphaul(1992)Aminoacid substitutionsintheDNAbindingdomainofthehumanandrogenreceptorareafrequentcauseofreceptor bindingpositiveandrogenresistance Mol Endocrinol 6340915 57 C.Geserick,H.A.Meyer,K.BarbulescuandB.Haendler(2003)Differentialmodulationofandrogen receptoractionbydeoxyribonucleicacidresponseelements Mol Endocrinol 17 9173850 58 K.Schauwaers,K.DeGendt,P.T.Saunders,N.Atanassova,A.Haelens,L.Callewaert,U.Moehren,J.V. Swinnen,G.Verhoeven,G.VerrijdtandF.Claessens(2007)Lossofandrogenreceptorbindingto selectiveandrogenresponseelementscausesareproductivephenotypeinaknockinmousemodel Proc Natl Acad Sci U S A 104 1249616 59 F.Claessens,G.Verrijdt,E.Schoenmakers,A.Haelens,B.Peeters,G.VerhoevenandW.Rombauts (2001)SelectiveDNAbindingbytheandrogenreceptorasamechanismforhormonespecificgene regulation J Steroid Biochem Mol Biol 76 152330 60 J.S.Carroll,X.S.Liu,A.S.Brodsky,W.Li,C.A.Meyer,A.J.Szary,J.Eeckhoute,W.Shao,E.V. Hestermann,T.R.Geistlinger,E.A.Fox,P.A.SilverandM.Brown(2005)Chromosomewidemapping ofestrogenreceptorbindingrevealslongrangeregulationrequiringtheforkheadproteinFoxA1 Cell 122 13343 61 J.S.CarrollandM.Brown(2006)Estrogenreceptortargetgene:anevolvingconcept Mol Endocrinol 20 8170714 62 K.Takayama,K.Kaneshiro,S.Tsutsumi,K.HorieInoue,K.Ikeda,T.Urano,N.Ijichi,Y.Ouchi,K. Shirahige,H.AburataniandS.Inoue(2007)Identificationofnovelandrogenresponsegenesinprostate cancercellsbycouplingchromatinimmunoprecipitationandgenomicmicroarrayanalysis Oncogene 26 30445363 63 Q.Wang,W.Li,X.S.Liu,J.S.Carroll,O.A.Janne,E.K.Keeton,A.M.Chinnaiyan,K.J.PientaandM. Brown(2007)Ahierarchicalnetworkoftranscriptionfactorsgovernsandrogenreceptordependent prostatecancergrowth Mol Cell 27 338092 64 C.E.Massie,B.Adryan,N.L.BarbosaMorais,A.G.Lynch,M.G.Tran,D.E.NealandI.G.Mills (2007)NewandrogenreceptorgenomictargetsshowaninteractionwiththeETS1transcriptionfactor EMBO Rep 898718 65 E.C.Bolton,A.Y.So,C.Chaivorapol,C.M.Haqq,H.LiandK.R.Yamamoto(2007)Cellandgene specificregulationofprimarytargetgenesbytheandrogenreceptor Genes Dev 21 16200517 66 C.B.Cleutjens,K.Steketee,C.C.VanEekelen,J.A.VanDerKorput,A.O.BrinkmannandJ.Trapman (1997)Bothandrogenreceptorandglucocorticoidreceptorareabletoinduceprostatespecificantigen expression,butdifferintheirgrowthstimulatingpropertiesofLNCaPcells Endocrinology 138 125293 300 67 M.A.Fenton,T.D.Shuster,A.M.Fertig,M.E.Taplin,G.Kolvenbag,G.J.BubleyandS.P.Balk(1997) Functionalcharacterizationofmutantandrogenreceptorsfromandrogenindependentprostatecancer Clin Cancer Res 3813838 68 K.Haapala,E.R.Hyytinen,M.Roiha,M.Laurila,I.Rantala,H.J.HelinandP.A.Koivisto(2001) Androgenreceptoralterationsinprostatecancerrelapsedduringacombinedandrogenblockadeby orchiectomyandbicalutamide Lab Invest 81 12164751 69 T.Hara,J.Miyazaki,H.Araki,M.Yamaoka,N.Kanzaki,M.KusakaandM.Miyamoto(2003)Novel mutationsofandrogenreceptor:apossiblemechanismofbicalutamidewithdrawalsyndrome Cancer Res 63 114953 70 J.Tan,Y.Sharief,K.G.Hamil,C.W.Gregory,D.Y.Zang,M.Sar,P.H.Gumerlock,R.W.Devere White,T.G.Pretlow,S.E.Harris,E.M.Wilson,J.L.MohlerandF.S.French(1997) Dehydroepiandrosteroneactivatesmutantandrogenreceptorsexpressedintheandrogendependenthuman prostatecancerxenograftCWR22andLNCaPcells Mol Endocrinol 11 44509 71 M.E.Taplin,G.J.Bubley,Y.J.Ko,E.J.Small,M.Upton,B.RajeshkumarandS.P.Balk(1999) Selectionforandrogenreceptormutationsinprostatecancerstreatedwithandrogenantagonist Cancer Res 59 1125115

160 72 M.E.Taplin,G.J.Bubley,T.D.Shuster,M.E.Frantz,A.E.Spooner,G.K.Ogata,H.N.KeerandS.P. Balk(1995)MutationoftheandrogenreceptorgeneinmetastaticandrogenindependentprostatecancerN Engl J Med 332 2113938 73 J.Veldscholte,C.A.Berrevoets,A.O.Brinkmann,J.A.GrootegoedandE.Mulder(1992)Anti androgensandthemutatedandrogenreceptorofLNCaPcells:differentialeffectsonbindingaffinity,heat shockproteininteraction,andtranscriptionactivation Biochemistry 31 823939 74 J.Veldscholte,C.A.Berrevoets,C.RisStalpers,G.G.Kuiper,G.Jenster,J.Trapman,A.O.Brinkmann andE.Mulder(1992)TheandrogenreceptorinLNCaPcellscontainsamutationintheligandbinding domainwhichaffectssteroidbindingcharacteristicsandresponsetoantiandrogens J Steroid Biochem Mol Biol 41 386659 75 J.Veldscholte,C.RisStalpers,G.G.Kuiper,G.Jenster,C.Berrevoets,E.Claassen,H.C.VanRooij,J. Trapman,A.O.BrinkmannandE.Mulder(1990)Amutationintheligandbindingdomainofthe androgenreceptorofhumanLNCaPcellsaffectssteroidbindingcharacteristicsandresponsetoanti androgens Biochem Biophys Res Commun 173 253440 76 X.Y.Zhao,B.Boyle,A.V.Krishnan,N.M.Navone,D.M.PeehlandD.Feldman(1999)Twomutations identifiedintheandrogenreceptorofthenewhumanprostatecancercelllineMDAPCa2a J Urol 162 6 21929 77 X.Y.Zhao,P.J.Malloy,A.V.Krishnan,S.Swami,N.M.Navone,D.M.PeehlandD.Feldman(2000) Glucocorticoidscanpromoteandrogenindependentgrowthofprostatecancercellsthroughamutated androgenreceptor Nat Med 667036 78 J.S.Sack,K.F.Kish,C.Wang,R.M.Attar,S.E.Kiefer,Y.An,G.Y.Wu,J.E.Scheffler,M.E.Salvati, S.R.Krystek,Jr.,R.WeinmannandH.M.Einspahr(2001)Crystallographicstructuresoftheligand bindingdomainsoftheandrogenreceptoranditsT877Amutantcomplexedwiththenaturalagonist dihydrotestosterone Proc Natl Acad Sci U S A 98 949049 79 C.E.Bohl,Z.Wu,D.D.Miller,C.E.BellandJ.T.Dalton(2007)CrystalstructureoftheT877Ahuman androgenreceptorligandbindingdomaincomplexedtocyproteroneacetateprovidesinsightforligand inducedconformationalchangesandstructurebaseddrugdesign J Biol Chem 282 181364855 80 M.S.Ozers,B.D.Marks,K.Gowda,K.R.Kupcho,K.M.Ervin,T.DeRosier,N.Qadir,H.C.Eliason, S.M.RiddleandM.S.Shekhani(2007)TheandrogenreceptorT877AmutantrecruitsLXXLLand FXXLFpeptidesdifferentlythanwildtypeandrogenreceptorinatimeresolvedfluorescenceresonance energytransferassay Biochemistry 46 368395 81 A.Belanger,M.BrochuandJ.Cliche(1986)Levelsofplasmasteroidglucuronidesinintactandcastrated menwithprostaticcancer J Clin Endocrinol Metab 62 58125 82 F.Labrie,A.Dupont,A.Belanger,R.LachanceandM.Giguere(1985)Longtermtreatmentwith luteinisinghormonereleasinghormoneagonistsandmaintenanceofserumtestosteronetocastration concentrations Br Med J (Clin Res Ed) 291 649236970 83 S.T.Page,D.W.Lin,E.A.Mostaghel,D.L.Hess,L.D.True,J.K.Amory,P.S.Nelson,A.M. MatsumotoandW.J.Bremner(2006)Persistentintraprostaticandrogenconcentrationsaftermedical castrationinhealthymen J Clin Endocrinol Metab 91 1038506 84 M.A.Titus,M.J.Schell,F.B.Lih,K.B.TomerandJ.L.Mohler(2005)Testosteroneand dihydrotestosteronetissuelevelsinrecurrentprostatecancer Clin Cancer Res 11 1346537 85 R.B.Marques,S.ErkensSchulze,C.M.DeRidder,K.G.Hermans,K.Waltering,T.Visakorpi,J. Trapman,J.C.Romijn,W.M.VanWeerdenandG.Jenster(2005)Androgenreceptormodificationsin prostatecancercellsuponlongtermandrogenablationandantiandrogentreatment Int J Cancer 117 2221 9 86 M.Urushibara,J.Ishioka,N.Hyochi,K.Kihara,S.Hara,P.Singh,J.T.IsaacsandY.Kageyama(2007) Effectsofsteroidalandnonsteroidalantiandrogensonwildtypeandmutantandrogenreceptors Prostate 67 8799807 87 C.E.Bohl,W.Gao,D.D.Miller,C.E.BellandJ.T.Dalton(2005)Structuralbasisforantagonismand resistanceofbicalutamideinprostatecancer Proc Natl Acad Sci U S A 102 1762016 88 C.E.Bohl,D.D.Miller,J.Chen,C.E.BellandJ.T.Dalton(2005)Structuralbasisforaccommodationof nonsteroidalligandsintheandrogenreceptor J Biol Chem 280 453774754 89 H.Miyamoto,M.M.RahmanandC.Chang(2004)Molecularbasisfortheantiandrogenwithdrawal syndrome J Cell Biochem 91 1312 90 J.J.Rambeaud(1999)Intermittentcompleteandrogenblockadeinmetastaticprostatecancer Eur Urol 35 Suppl1 326 91 G.Han,B.A.Foster,S.Mistry,G.Buchanan,J.M.Harris,W.D.TilleyandN.M.Greenberg(2001) Hormonestatusselectsforspontaneoussomaticandrogenreceptorvariantsthatdemonstratespecific ligandandcofactordependentactivitiesinautochthonousprostatecancer J Biol Chem 276 141120413 92 G.Han,G.Buchanan,M.Ittmann,J.M.Harris,X.Yu,F.J.Demayo,W.TilleyandN.M.Greenberg (2005)Mutationoftheandrogenreceptorcausesoncogenictransformationoftheprostate Proc Natl Acad Sci U S A 102 411516 93 M.Marcelli,M.Ittmann,S.Mariani,R.Sutherland,R.Nigam,L.Murthy,Y.Zhao,D.Diconcini,E. Puxeddu,A.Esen,J.Eastham,N.L.WeigelandD.J.Lamb(2000)Androgenreceptormutationsin prostatecancer Cancer Res 60 49449 94 X.B.Shi,L.Xue,C.G.Tepper,R.GandourEdwards,P.Ghosh,H.J.KungandR.W.DevereWhite (2007)Theoncogenicpotentialofaprostatecancerderivedandrogenreceptormutant Prostate 67 6591 602 95 J.Clark,S.Merson,S.Jhavar,P.Flohr,S.Edwards,C.S.Foster,R.Eeles,F.L.Martin,D.H.Phillips,M. Crundwell,T.Christmas,A.Thompson,C.Fisher,G.KovacsandC.S.Cooper(2007)Diversityof TMPRSS2ERGfusiontranscriptsinthehumanprostate Oncogene 26 18266773

161 96 K.G.Hermans,R.VanMarion,H.VanDekken,G.Jenster,W.M.VanWeerdenandJ.Trapman(2006) TMPRSS2:ERGfusionbytranslocationorinterstitialdeletionishighlyrelevantinandrogendependent prostatecancer,butisbypassedinlatestageandrogenreceptornegativeprostatecancer Cancer Res 66 22 1065863 97 S.Perner,F.Demichelis,R.Beroukhim,F.H.Schmidt,J.M.Mosquera,S.Setlur,J.Tchinda,S.A. Tomlins,M.D.Hofer,K.G.Pienta,R.Kuefer,R.Vessella,X.W.Sun,M.Meyerson,C.Lee,W.R. Sellers,A.M.ChinnaiyanandM.A.Rubin(2006)TMPRSS2:ERGFusionAssociatedDeletionsProvide InsightintotheHeterogeneityofProstateCancer Cancer Res 66 17833741 98 M.J.Soller,M.Isaksson,P.Elfving,W.Soller,R.LundgrenandI.Panagopoulos(2006)Confirmationof thehighfrequencyoftheTMPRSS2/ERGfusiongeneinprostatecancer Genes Chromosomes Cancer 45 77179 99 S.A.Tomlins,D.R.Rhodes,S.Perner,S.M.Dhanasekaran,R.Mehra,X.W.Sun,S.Varambally,X. Cao,J.Tchinda,R.Kuefer,C.Lee,J.E.Montie,R.B.Shah,K.J.Pienta,M.A.RubinandA.M. Chinnaiyan(2005)RecurrentfusionofTMPRSS2andETStranscriptionfactorgenesinprostatecancer Science 310 57486448 100 I.V.Litvinov,D.J.VanderGriend,L.Antony,S.Dalrymple,A.M.DeMarzo,C.G.DrakeandJ.T. Isaacs(2006)AndrogenreceptorasalicensingfactorforDNAreplicationinandrogensensitiveprostate cancercells Proc Natl Acad Sci U S A 103 411508590 101 D.J.VanderGriend,I.V.LitvinovandJ.T.Isaacs(2007)Stabilizingandrogenreceptorinmitosis inhibitsprostatecancerproliferation Cell Cycle 6664751

162 Summary The androgens testosterone (T) and dihydrotestosterone (DHT) are steroid hormones, which are necessary for development and maintenance of the functions of the male sex organs, including the prostate. Androgens also play an important role in benign abnormalities of the prostateandinthegrowthofprostatecancer.Prostatetumors,whicharenotyetmetastatic,are treated with radiotherapy or by surgical removal of the complete prostate. Therapy of metastasized prostate cancer aims on inhibition of androgen action, by inhibtion of the productionofTinthetestis(chemicalcastration)andbyadministrationofantiandrogens.T andDHTexerttheirfunctionbyspecificbindingasaligandtotheandrogenreceptor(AR).The ARisamemberofthefamilyofnuclearreceptors.Itisexpressedinandrogentargetcells,and functions as a ligand induced transcription factor. In this thesis described research project focussesonseveralmolecularmechanismsofARfunctions. Chapter 1 gives an overview of the current knowledge on nuclear receptors in general and different aspects of AR functions in particular. Among the latter are: receptor structure, interaction with other proteins involved in transcription, the liganddependent interaction betweentheNterminaldomain(NTD)andtheligandbindingCterminaldomain(LBD)ofthe AR (N/C interaction), expression of androgenspecific regulated genes, and the role of AR mutationsinprostatecancer. InChapter2amotifintheARNTD, 23 FXXLF 27 ,thatisessentialfortheN/Cinteractionis described.Mutationofthephenylalanineresiduesorleucineinthismotifcompletelydisturbs theinteraction.Flankingresidueshaveamodulating roleintheN/Cinteraction.TheFXXLF motifcanadoptanαhelixconformationandbindstotheLBDsurfaceatthesamepostitionas some coactivators. Coactivators can contain one or more LXXLL or FXXLF motifs. Coactivators with an FXXLF motif are specific for the AR. The function of the AR N/C interactionisnotclearasyet.Theinteractioncanplayaroleinthestabilityofligandbinding. There are also indications that the N/C interaction is important for expression of endogenic genes,butlessimportantinmodelsystemsthattransientlyexpressareportergene. In Chapter 3 the characterization of the specifically androgenregulated gene SARG is described.ThisgenewasidentifiedintheLNCaP1F5subcellline,whichinadditiontotheAR alsostablyexpressestheglucocorticoidreceptor(GR).Inthiswayitispossibletodistinguish between genes that can be activated by more than one steroid receptor and genes that are regulated by one specific receptor. SARG transcription in 1F5 cells can be regulated by androgens,butnotbyglucocorticoids.The SARG genecontains4exonsandalternativesplicing results in transcripts missing exon 2 and with an exon 1 that varies in length. Variable polyadenylationleadsalsototranscriptsofdifferentlengths.TheSARGproteinconsistsof601 aminoacidsandislocalizedinthecytoplasm.However,itsfunctionhasnotbeenestablished yet. A bioinformaticsbased screening of the SARG gene, including up and downstream sequences, revealed a number of candidate AR binding sites (androgen response elements or AREs)ontheDNA,ofwhichonethatislocalizedinintron1,isARspecific.EMSAandChIP experimentshaveshownthattheGRcannotbindtothisARE,andanenhancercontainingthis AREcannotbeactivatedbyGR.ItisnowknownthatARspecificAREshaveonehalfsitewith ahighaffinityfortheAR,andonelowaffinityhalfsite.HydrogenbondsbetweentheDBDsin anARdimerareresponsibleforastrongARARinteraction,sothatarelativelyweakbinding tooneofthehalfsitesispermitted.ThesehydrogenbondsarenotpresentintheGRdimer, whichcanexplainwhytheGRdimerdoesnotbindtoanARspecificARE.

163 Prostatetumorsinitiallyaredependentonandrogensfortheirgrowth.Inalatestageoftumor growththisismuchlessthecase.Thenthetumorsarecalledendocrinetherapyresistant.Inpart oftheseresistanttumors,aminoacidsubstitutionshavebeenfoundintheARthroughwhichit cannotonlybeactivatedbyTorDHT,butalsobyothersteroidsandevenbyantiandrogens.In Chapter4researchisdecribedinwhichtheprostatecancermutationhotspotsH874andT877 arerandomlymutatedandmutantsareselectedfortheiractivationbyprogesterone.Thisscreen identifiedthesamemutationsasfoundinprostatecancer:H874Y,T877A,andT877S.These mutantsaresubsequentlytestedwithavarietyofhormonesand,nexttotheexpectedactivation byprogesterone,estradiol,andhydroxyflutamide,thesemutantsalsoappearedtobesensitiveto physiological concentrations of cortisol. This could mean that prostate tumors have obtained these mutant ARs by selective pressure by antiandrogens, after which these could also be maintained by cortisol. The broadened ligandspecificity of the mutant ARs caused by a substitution on position 877 can be explained by the substitution of threonine by a smaller aminoacidresidue,likealanineorserine.Theaminoacidatposition877iswithintheligand binding pocket and binds to the 17 βhydroxylgroup of androgens, whereby a smaller amino acidresiduemeansthatthereismorespaceinthispocket,sothatligandslargerthanTorDHT, e.g.progesterone,alsocanbind,whichisnotpossibleinthewildtypereceptor.Apparently,the interactionsleftaresufficientforstablebindingoftheligandand/ornewinteractionsmightbe formed.H874isnotlocatedintheligandbindingpocket,butitispresumedthattheH874Y substitutionchangestheconformationoftheARLBD,insuchawaythattheligandbinding pocketbecomesavailablefornonandrogenichormones. InChapter5theresearchwhichisdescribedinthepreviouschaptersisplacedinthebroader context of recent literature on molecular mechanismsofARfunctions.Inthischapteralsoa perspectiveforfurtherresearchonthesemechanismsisgiven.

164 Samenvatting De androgenen testosteron (T) en dihydrotestosteron (DHT) zijn steroïdhormonen, die noodzakelijkzijnvoordeontwikkelingenhetinstandhoudenvandefunctiesvandemannelijke geslachtsorganen, waaronder de prostaat. Daarnaast spelen androgenen een belangrijke rol in benigne afwijkingen van de prostaat en bij de groei van prostaatkanker. Prostaattumoren, die nognietzijnuitgezaaid,wordenbehandelddoormiddelvanradiotherapieofdoorchirurgische verwijdering van de gehele prostaat. De therapie van gemetastaseerd prostaatkanker is erop gericht om de werkingvanandrogenentegentegaan,doordeproductievanTindetestiste remmen (chemische castratie) en doorhettoedienenvanantiandrogenen.TenDHToefenen hun werking uit door specifiek te binden als ligand aan de androgeenreceptor (AR). De AR behoort tot de familie van kernreceptoren. De AR komt tot expressie in doelwitcellen van androgenenenfunctioneertalseenligandgeïnduceerdetranscriptiefactor.Hetinditproefschrift beschrevenonderzoekrichtzichopeenaantalmoleculairemechanismenvanARfuncties. Hoofdstuk1geefteenoverzichtvandehuidigekennisvankernreceptoreninhetalgemeenen verschillendeaspectenvandeARfunctiesinhetbijzonder.Onderdezelaatstezijn:structuur vandereceptor,deinteractiemetandereeiwittenbetrokkenbijdereguleringvantranscriptie,de ligandafhankelijkeinteractietussenhetNterminaledomein(NTD)enhetligandbindendeof Cterminale domein (LBD)vandeAR(N/Cinteractie),deexpressievanandrogeenspecifiek gereguleerdegenen,enderolvanARmutatiesinprostaatkanker. InHoofdstuk2iseenmotiefindeARNTD, 23 FXXLF 27 ,beschrevendatessentieelisvoorde N/C interactie. Mutatie van de fenylalanineresiduenofvanleucineinditmotiefverstoortde interactie compleet. Omliggende aminozuur residuen hebben een modulerende rol in de N/C interactie. Het FXXLF motief kan een αhelix conformatie aannemen en bindt aan het LBD oppervlakopdezelfdeplaatsalssommigecoactivatoren.Coactivatorenkunnenéénofmeerdere LXXLL of FXXLF motieven bevatten. Coactivatoren met een FXXLF motief zijn specifiek voordeAR.DefunctievandeARN/Cinteractieisnognietgeheelduidelijk.Deinteractiekan eenrolspelenbijstabiliteitvandebindingvaneenligand.OokzijneraanwijzingendatdeN/C interactiebelangrijkisvoordeexpressievanendogenegenen,maarvanminderbelanginmodel systemen,waarbijeenreportergentransienttotexpressiewordtgebracht. InHoofdstuk3wordtdekarakteriseringvanhetspecifiekandrogeengereguleerdegen SARG beschreven. Dit gen werd geïdentificeerd in de LNCaP1F5 subcellijn die naast de AR ook stabiel de glucocorticoidreceptor (GR) tot expressie brengt. Hierdoor is het mogelijk om onderscheid te maken tussen genen die door meerdere steroidreceptoren geactiveerd kunnen wordenengenendiedooréénspecifiekereceptorgereguleerdworden. SARG transcriptiekanin 1F5cellenweldoorandrogenengestimuleerdwordenmaarnietdoorglucocorticosteroïden.Het SARG genbevat4exonenenalternatievesplicingresulteertintranscriptendieexon2missenen een exon 1 hebben dat varieert in lengte. Variabelepolyadenyleringleidtooktottranscripten vanverschillendelengtes.HetSARGeiwitbestaatuit601aminozurenenisgelokaliseerdinhet cytoplasma.Defunctieervanisechternognietvastgesteld.Eenopbioinformaticagebaseerde screeningvanhet SARG gen,inclusiefsequentiesvoorenachterhetgen,leverdeophetDNA eenaantalkandidaatbindingsplaatsenvoordeAR(androgeenresponselementenofAREs)op, waarvan er één, die zich in intron 1 bevindt, ARspecifiek is. EMSA, ChIP experimenten hebbenlatenziendatdezeAREnietinstaatisdeGRtebindenenookdatdeenhancerdiedeze ARE bevat niet geactiveerd kan worden door de GR, maar wel door de AR. Van de AR specifiekeAREsisnubekenddatzeéénhalfsitemethogeaffiniteitvoordeARhebbenenéén

165 halfsite met een veel lagere affiniteit. Waterstofbruggen tussen de twee DBDs in een AR dimeerzorgenvooreensterkeARARinteractie,waardooreenzwakkerebindingaanéénvan de ARE halfsites gepermitteerd lijkt. Deze waterstofbruggen komen niet voor in een GR dimeer,watkanverklarenwaaromdeGRnietgoedbindtaaneenARspecifiekeARE. Prostaattumorenzijninhetbeginvanhungroeiafhankelijkvanandrogenen.Ditisineenlaat stadiumvantumorgroeiveelminderhetgeval.Dezelaatstetumorenzijndusresistentgeworden tegendeendocrienetherapie.Ineendeelvandezeresistentetumorenzijnaminozuursubstituties indeARgevondenwaardoordezenietalleengeactiveerdkanwordendoorTofDHT,maarook door andere steroïden en zelfs door antiandrogenen. In Hoofdstuk 4 is een onderzoek beschreven waarin de in prostaatkanker gevonden mutatie hot spots H874 en T877 random gemuteerd zijn en mutanten geselecteerd zijn voor hun activering door progesteron. Hierbij werdendezelfdemutantengevondenalsookinprostaatkankervoorkomen:H874Y,T877Aen T877S.Dezemutantenzijninvervolgexperimentengetestmeteenheelscalaaanhormonenen naast de verwachte activering door progesteron, estradiol en hydroxyflutamide bleken deze mutantenookgevoeligvoorfysiologischeconcentratiescortisol.Ditzoukunnenbetekenendat prostaattumoren deze mutante ARs door selectiedruk van antiandrogeen hebben verkregen, waarna deze bovendien in stand gehouden zouden kunnen worden door cortisol. De bredere ligandspecificiteit van de mutante ARs veroorzaakt door een substitutie op positie 877 kan worden verklaard door de substitutie van threonine door een kleiner aminozuur residu, zoals alanine of serine. Positie 877 is onderdeel van de ligandbindende pocket en bindt de 17 β hydroxylgroepvanandrogenen,waarbijeenkleineraminozuurbetekentdatermeerruimteisin dezepocket,zodatligandengroterdanTofDHT,bv.progesteron,ookkunnenbinden,watze nietkunnenmetdewildtypereceptor.Blijkbaarzijnovergebleveninteractiesvoldoendevoor stabielebindingvanhetliganden/ofwordennieuweinteractiesgevormd.H874ligtnietinde ligandbindendepocket,maarverondersteldwordtdatdeH874Ysubstitutieeenveranderingin de conformatie van het AR LBD teweegbrengt, die de ligandbindende pocket ook geschikt maaktvoornietandrogenehormonen. In Hoofdstuk 5 zijn de onderzoeken die beschreven zijn in voorgaande hoofdstukken in de bredere context van recente literatuur over de moleculaire mechanismen van AR functies geplaatst.Ookisindithoofdstukeenperspectiefaangegevenvoorverderonderzoeknaardeze mechanismen.

166 Listofpublications Abioinformaticsbasedfunctionalanalysisshowsthatthespecificallyandrogenregulated geneSARGcontainsanactivedirectrepeatandrogenresponseelementinthefirstintron. KarineSteketeeK,HettyA.G.M.vanderKorput,AdriaanB.HoutsmullerandJanTrapman JMolEndocrinol.2004,33:47791 Amino acids 313 and amino acids in and flanking the 23 FxxLF 27 motif modulate the interaction between the aminoterminal and ligand binding domain of the androgen receptor. KarineSteketee,CorA.Berrevoets,ErikJanDubbink,PaulDoesburg,RemkoHersmus,Albert O.BrinkmannandJanTrapman EurJBiochem.2002Dec;269(23):578011 Broadened ligand responsiveness of androgen receptor mutants obtained by random aminoacidsubstitutionofH874andmutationhotspotT877inprostatecancer. KarineSteketee,LeonTimmerman,AngeliqueC.J.ZielvanderMade,PaulDoesburg,Albert O.BrinkmannandJanTrapman IntJCancer.2002Jul20;100(3):30917 Mechanismsofandrogenreceptoractivationandfunction. BrinkmannAO,BlokLJ,deRuiterPE,DoesburgP,SteketeeK,BerrevoetsCA,TrapmanJ. JSteroidBiochemMolBiol.1999AprJun;69(16):30713.Review FunctionalinteractionsoftheAF2activationdomaincoreregionofthehumanandrogen receptor with the aminoterminal domain and with the transcriptional coactivator TIF2 (transcriptionalintermediaryfactor2). BerrevoetsCA,DoesburgP,SteketeeK,TrapmanJ,BrinkmannAO. MolEndocrinol.1998Aug;12(8):117283 Both androgen receptor and glucocorticoid receptor are able to induce prostatespecific antigenexpression,butdifferintheirgrowthstimulatingpropertiesofLNCaPcells. CleutjensCB,SteketeeK,vanEekelenCC,vanderKorputJA,BrinkmannAO,TrapmanJ. Endocrinology.1997Dec;138(12):5293300 Functional in vivo interaction between the aminoterminal, transactivation domain and theligandbindingdomainoftheandrogenreceptor. Doesburg P, Kuil CW, Berrevoets CA, Steketee K, Faber PW, Mulder E, Brinkmann AO, TrapmanJ. Biochemistry.1997Feb4;36(5):105264 GenomicandcDNAcloningofanovelmouselipoxygenasegene. WillemsvanDijkK,SteketeeK,HavekesL,FrantsR,HofkerM. BiochimBiophysActa.1995Oct26;1259(1):48

167 Curriculumvitae Karine Steketee was born on the 20 th of November 1967 in 'sHeerHendrikskinderen (in the former municipality of 'sHeerArendskerke,currentlyGoes).Hersecondaryeducation(VWO) was taken at the Buys Ballot College (currently Ostrea Lyceum) in Goes. In 1986/1987 she workedforoneyearasanursetrainee.In1991sheobtainedherbachelorsdegreeinChemistry (specializationBiochemistry)attheHogeschoolZeelandinVlissingen.In1994shegraduatedin Biology(specializationMedicalGenetics)atLeidenUniversity.InJuly1992shestartedaminor graduation project, entitled 'Extracellular phosphorylation of adenosine by Dictyostelium discoideum', which was performed at the Department of Cell Biology of Leiden University under supervision of Ir. P.H.A.M. Michielsen. Her major graduation project was started in August1993attheDepartmentofHumanGenetics,andwassupervisedbyProf.Dr.R.R.Frants and Dr. Ir. J.A.P. Willems van Dijk. The title of thisprojectwas'Characterizationofmurine lipoxygenase genes', and it was part of an atherosclerosis research project. She obtained her MSconAugust8 th 1994.FromAugusttoNovember1994sheworkedasaresearchassistantat thesamedepartmentonaMultipleTumorSuppressor1(MTS1)projectundersupervisionof Dr. N.A. Gruis. In November 1994 she started her PhD project at the at the Department of Pathology (Josephine Nefkens Institute) of the ErasmusMC at the Erasmus University Rotterdam,undersupervisionofProf.dr.J.TrapmanandDr.A.O.Brinkmann.FromJune1999 toJuly2000sheworkedasaresearchassistant,anduntilrecentlyasaguestworkeratthesame department.SinceAugust2003shehasbeenemployedbytheChristelijkeScholengemeenschap WalchereninMiddelburgasateacherinBiology,Chemistry,andGeneralSciences(Algemene Natuurwetenschappen).In2004shewasalecturerattheDepartmentofChemistryandAquatic EcotechnologyoftheHogeschoolZeeland.SinceAugust2005shehasbeenworkingasajunior university teacher in the Science Department at the Roosevelt Academy (honors university college) in Middelburg. In November 2006 she obtained her teaching qualification at the ICLON,LeidenUniversityGraduateSchoolofTeaching.

168 Dankwoord/Acknowledgements Hèhè,beterlaatdannooit.Hetheeftevengeduurd,maarhetisdannutochechtaf.Natuurlijk is dit proefschrift tot stand gekomen met de bijdragen van vele anderen. Allereerst mijn promotorJanTrapman.Jan,heelveeldankvoorhetgedulddatjemetmijhebtgehad.Jehebt altijddewegopengehoudenommeditboekjetelatenvoltooien.Develediscussiesenjouw zeerkritischekijkopwetenschappelijkezakenhebbenervoorgezorgddatersolidepapersde deuruitgingen,onderhetmotto'Eenfactor2ofminderisniks'.Woordspelletjesdoenomde tijdtedoden'snachtsophetvliegveldvanRome(i.v.m.eenstaking)waswelheelapartenvan wetenschappelijkeinhoudwasditkeergeensprake. Ook mijn copromotor Albert Brinkmann wil ik heel hartelijk bedanken. Albert, aan de besprekingen met jouw groep in het Androdrome (toen nog op de 5 e) bewaar ik heel goede herinneringen.Julliegeruittetafelkleedbrachtdesfeervanwetenschapaandekeukentafel.Het heeft geleid tot hele mooie papers (o.a. Hoofdstuk 2, 3 en 4). Ook de gezamenlijke congresbezoeken zijn me bijgebleven. Vooral die met dat zeer langdurige bezoek aan het vliegveld van Palermo (ook door de staking) en de veel te lekkere vissoep in Villefrance, waardoorwehethoofdgerechtnietmeeropkonden. Zonderdevolgendetweemensenzouiknogsteedsvoorditboekjestaantepipeteren:Paul Doesburg en Angelique Zielvan der Made. Paul, jouw enthousiasme voor het AR werk was aanstekelijk. Na jouw vertrek was het toch minder eenvoudig om Jan van nieuwe ideeën te overtuigen.Aljenoestearbeidmetdegistjesenhetvoorjouwgeldendeverbodomoliebollente bakken hebben uiteindelijk geleid tot de drie N/C interactie papers en de mutanten paper, waaronderHoofdstukken2en4.Angelique,waaromeenRNAgel,zelfsonderjouwtoeziend oog bij mij niet wilde lukken en bij jou wel, zal altijd wel een raadsel blijven. Jouw kwaliteitswerk heeft zijn weerslag in Hoofdstukken 3 en 4. En met name Figuur 1B van hoofdstuk3!Ikzalonzesomsietwatlangdurigegesprekkenmissen.PaulenAngelique,heel bedankt! CorBerrevoetsuitAlberts'groepwasonzemammaliantoeverlaat.Cor,zonderjouwashetmet deN/Cinteractieniksgeworden.JouwveleCHOproevenenpulldownswarenonmisbaarvoor Hoofdstuk2.Snelèngoediskenmerkendvoorjouwwerkwijze.Heelergbedanktdatjem'n collegawas. ErikJan,eerstwasjem'ncollegavanUrologieenlaternamjijalspostdochetstokjemetde N/Cinteractieover.Aldiemotievenzijnmesteedsblijvenboeien.Dankookvooralleniet wetenschappelijkemaarzeeropbouwendegesprekken. Ook 'mijn' 5 stagiaires, Phebe, Annelies, Marco, Judith en Leon wil ik bedanken voor hun bijdrageaanmijnonderzoek.Leon,overHoofdstuk4kunnenweheeltevredenzijn. Verderishetindeloopvandetijdeenkomenengaangeweestvanvelecollega's(dathebje alsjezolangblijft).Zonderanderentekorttewillendoenwilikereenaantalinhetbijzonder bedanken.Hetty,jouwuitlegenadviesvoordedoormijaantelerentechniekenwarenbijzonder goedenjestondaltijdklaaromm'nvelevragentebeantwoorden.Karin,heelveeldankvoorde experimenten en plaatjes die volgens de referenten nog nodig waren om Hoofdstuk 3 gepubliceerdtekrijgen.Ookwilikalm'nkamergenotendieikindeafgelopenjarengehadheb bedanken voor de collegiale hulp en adviezen en niet onbelangrijk jullie gezelschap: Kitty, Conny, Lydia, Dirk, Claudia, Henri, Remko (2x), Pascal, Petra, Hanneke, Martin en Dennis (dezelaatstetweehebbennamijm'nbureaubezetgehouden).Verderbedankikallemensenvan

169 degroepenvanAlbertBrinkmann,WinandDinjens,EllenZwarthof,enAdriaanHoutsmuller, alsmedeookdemensenvanUrologievoorhuncollegialiteitengezelligheid. Ookm'n(nieuwe)collega'sopdeChristelijkeScholengemeenschapWalcheren(CSW)enop de Roosevelt Academy,beide in Middelburg,heelhartelijkdankvoorjulliebelangstellingen aanmoedigingomtochvooralm'nboekjeaftemaken. Ook mijn schoonfamilie wil ik bedanken voor hun vaak gestelde vraag wanneer m'n proefschriftnueindelijkeensafis.Wel,hetisnuechtaf. Lieve Marianne, heel veel dank voor alle steun die ik van je gekregen heb op de letterlijk allermoeilijkstemomenten.Hetwaseenbizarretijd,waarinweelkaarsomsuithetoogverloren endaarnaweervonden.Onzegesprekkenaanderodekeukentafel(vaakmet300wpm)zalik nooitvergeten.Delaatstejarenalsik'savondsinRotterdamwasbleefermeestalgeentijdover ombijjelangstegaan.Vanafnuduswel.Dankjeweldatjem'nparanimfwiltzijn. Dannummer32:LieveEllenenMarc,julliewarenafentoeletterlijkeentoevluchtsoordwaar altijdwattedoenwas.Bijjulliekonikweereenbeetjebijtrekkenalsdatnodigwas.Dedoor jullie altijd met veel belangstelling gestelde vraag: 'Hoe is het met je proefschrift?' is nu voorgoedverledentijd.Ellen,dankjeweldatjem'nparanimfwiltzijn. LieveWernerenVincent,mijnoogappeltjes.Julliekomstopdewereldwaseenfeest.Dezon gingechteenbeetjefellerschijnenintoentochwatdonkeredagen.Nuiknietmeeroverhet werkophetlaboratoriuminRotterdamhoefteschrijven,zalikvoortaanveelmeertijdhebben om op jullie te komen passen en leuke dingen te gaan doen. Ik hoop nog heel vaak pannenkoekenvoorjullietebakken. Lievemama,ookjouwnooitaflatendebelangstellingvoorm'npromotieonderzoekisvoormij heelbelangrijkgeweest.Opmijnverhalenengemopperreageerdejemet'volhouden!'of'hetis ooknietgauwgoedzeg'.Nuishetgoed. Lievepapa,postuumwilikjebedankenvoorallekansendiemamaenjijmegegevenhebben omtegaandoenwatikwilde.Jouwuitspraak'Toemaar, dat kanjebest' heeft de afgelopen jaren heel vaak in m'n gedachten nageklonken, en opdemoeilijkstemomentenmijdekracht gegevenomdoortegaan.Ikweethoetrotsjeopmezouzijngeweest. Endanalslaatstemijnallessie.LieveJeroen,eindelijkiserdanlichtgaanschijnenaanhet eindevaneendonkeretunnel.Nuhoefjenietmeertezeggen'savondsnahetjournaal'Ikgeloof datikerweereentjenaardecomputermoetsturen'.Hetklonkgrappig,maarhetwashardnodig alsdemotivatiehetwataflietweten.Heelveeldankvooralleaanmoedigingenhetdoorjou opgebrachtegeduld.Jehoeftervoortaannietmeeralleenopuit.Ikgaweermetjemee! Karine

170

171

172