Molecular Pathogenesis and Regulation of the Mir-29-3P-Family: Involvement of ITGA6 and ITGB1 in Intra-Hepatic Cholangiocarcinoma

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Pathogenesis and Regulation of the Mir-29-3P-Family: Involvement of ITGA6 and ITGB1 in Intra-Hepatic Cholangiocarcinoma cancers Article Molecular Pathogenesis and Regulation of the miR-29-3p-Family: Involvement of ITGA6 and ITGB1 in Intra-Hepatic Cholangiocarcinoma Yuto Hozaka 1 , Naohiko Seki 2,* , Takako Tanaka 1, Shunichi Asai 2, Shogo Moriya 3, Tetsuya Idichi 1, Masumi Wada 1, Kiyonori Tanoue 1, Yota Kawasaki 1, Yuko Mataki 1 , Hiroshi Kurahara 1 and Takao Ohtsuka 1 1 Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; [email protected] (Y.H.); [email protected] (T.T.); [email protected] (T.I.); [email protected] (M.W.); [email protected] (K.T.); [email protected] (Y.K.); [email protected] (Y.M.); [email protected] (H.K.); [email protected] (T.O.) 2 Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; [email protected] 3 Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-43-226-2971 Simple Summary: Even today, there are no effective targeted therapies for intrahepatic cholan- giocarcinoma (ICC) patients. Clarifying the molecular pathogenesis of ICC will contribute to the Citation: Hozaka, Y.; Seki, N.; development of treatment strategies for this disease. In this study, we searched for the role of the Tanaka, T.; Asai, S.; Moriya, S.; Idichi, miR-29-3p-family and its association with oncogenic pathway. Interestingly, aberrant expression of T.; Wada, M.; Tanoue, K.; Kawasaki, ITGA6 and ITGB1 was directly regulated by the miR-29-3p-family which are involved in multiple Y.; Mataki, Y.; et al. Molecular oncogenic pathways in ICC, and enhanced malignant transformation of ICC cells. Furthermore, SP1 Pathogenesis and Regulation of the which is a transcriptional activator of ITGA6/ITGB1, is regulated by the miR-29-3p-family. These miR-29-3p-Family: Involvement of molecules may be novel therapeutic targets for ICC. ITGA6 and ITGB1 in Intra-Hepatic Cholangiocarcinoma. Cancers 2021, 13, 2804. https://doi.org/10.3390/ Abstract: The aggressive nature of intrahepatic cholangiocarcinoma (ICC) renders it a particularly cancers13112804 lethal solid tumor. Searching for therapeutic targets for ICC is an essential challenge in the devel- opment of an effective treatment strategy. Our previous studies showed that the miR-29-3p-family Academic Editor: Takahiro Kodama members (miR-29a-3p, miR-29b-3p and miR-29c-3p) are key tumor-suppressive microRNAs that con- trol many oncogenic genes/pathways in several cancers. In this study, we searched for therapeutic Received: 31 March 2021 targets for ICC using the miR-29-3p-family as a starting point. Our functional studies of cell prolifera- Accepted: 31 May 2021 tion, migration and invasion confirmed that the miR-29-3p-family act as tumor-suppressors in ICC Published: 4 June 2021 cells. Moreover, in silico analysis revealed that “focal adhesion”, “ECM-receptor”, “endocytosis”, “PI3K-Akt signaling” and “Hippo signaling” were involved in oncogenic pathways in ICC cells. Our Publisher’s Note: MDPI stays neutral analysis focused on the genes for integrin-α6 (ITGA6) and integrin-β1 (ITGB1), which are involved with regard to jurisdictional claims in in multiple pathways. Overexpression of ITGA6 and ITGB1 enhanced malignant transformation published maps and institutional affil- of ICC cells. Both ITGA6 and ITGB1 were directly regulated by the miR-29-3p-family in ICC cells. iations. Interestingly, expression of ITGA6/ITGB1 was positively controlled by the transcription factor SP1, and SP1 was negatively controlled by the miR-29-3p-family. Downregulation of the miR-29-3p-family enhanced SP1-mediated ITGA6/ITGB1 expression in ICC cells. MicroRNA-based exploration is an attractive strategy for identifying therapeutic targets for ICC. Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Keywords: intrahepatic cholangiocarcinoma; miR-29a-3p; miR-29b-3p; miR-29c-3p; tumor-suppressor; This article is an open access article ITGA6; ITGB1; SP1 distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Cancers 2021, 13, 2804. https://doi.org/10.3390/cancers13112804 https://www.mdpi.com/journal/cancers Cancers 2021, 13, 2804 2 of 21 1. Introduction Cholangiocarcinoma is anatomically divided into intrahepatic cholangiocarcinoma (ICC) and extrahepatic cholangiocarcinoma. From cancer genomic analysis, each cancer contains characteristic gene mutations, suggesting molecular biological differences [1–3]. ICC is the second most common cancer of the liver after hepatocellular carcinoma (HCC). ICC constitutes about 5% of primary liver cancers, and global morbidity and mortality of the disease have increased significantly in recent years [4–7]. Due to the aggressive features of ICC (the high rate of metastasis), the prognosis of patients is very poor (5-year survival rate is less than 10%) [8]. Although surgical resection is the only strategy aiming at a complete cure, only about 30% of patients are operable [9]. Even today, there are no effective anti-cancer drugs or molecularly targeted therapies for ICC patients in the advanced stage of disease [1,2]. The lack of effective diagnostic markers for ICC is a major factor that delays the detection of this disease [10,11]. Clarifying the molecular pathogenesis of ICC based on the latest genomic analyses will contribute to the development of treatment strategies for this disease. The Human Genome Project has revealed the presence of a vast number of non- coding RNA molecules (ncRNAs) in the human genome. These ncRNAs have important function within cells [12]. MicroRNAs (miRNAs) constitute a set of small ncRNAs (19 to 23 bases) that negatively regulate the expression of RNA transcripts in a sequence- dependent manner [13]. Over the last decade, accumulating evidence has shown that aberrantly expressed miRNAs are closely involved in cancer cell development, metastasis and drug-resistance [12,14,15]. For example, dysregulated miRNAs can disrupt tightly controlled RNA networks, triggering the transition of normal cells to diseased cells. Identification of aberrantly expressed miRNAs in each type of cancer is the first step towards elucidating the roles of miRNA in the molecular pathogenesis of cancers. Based on miRNA expression signatures, we have revealed some of the roles of tumor-suppressive miRNAs and their controlled oncogenic targets and pathways in gastrointestinal cancers, e.g., esophageal cancer, gastric cancer and pancreatic ductal adenocarcinoma [16–18]. Previous study of ICC signatures showed that a total of 30 miRNAs (10 of which were upregulated and 20 were downregulated) were dysregulated in ICC tissues [19]. Moreover, the expression of three miRNAs (miR-675-5p, miR-652-3p and miR-338-3p) was characteristic of ICC. Those miRNA signatures were independent prognostic indicators based on multivariate analysis [19]. Other signatures showed that 38 miRNAs were differ- entially expressed in tumor and normal tissues [20]. Among these miRNAs, exogenous expression of miR-320 and miR-204 negatively controlled Mcl-1 and BCl-2 expression, respectively. Expression of those miRNAs facilitates chemotherapeutic drug-triggered apoptosis [20]. Upregulation of miR-191 in ICC tissues was detected by next-generation sequencing technology [21]. Overexpression of miR-191 enhanced ICC aggressive pheno- types, e.g., proliferation, invasion and migration abilities in vitro and in vivo [21]. Analysis of our RNA-sequence-based signatures revealed that the miR-29-3p-family (miR-29a-3p, miR-29b-3p and miR-29c-3p) was frequently downregulated in several cancers, suggesting these miRNAs acted as pivotal tumor-suppressors in cancer cells [22,23]. Impor- tantly the miR-29-3p-family is downregulated in ICC tissues [24]. The aim of the study was to investigate the functional significance of the miR-29-3p-family and to identify oncogenic targets/pathways in ICC cells. Our ectopic expression assays showed that all members of the miR-29-3p-family acted as tumor-suppressors in ICC cells. Several oncogenic pathways (e.g., focal adhesion, ECM-receptor, endocytosis, PI3K–Akt signaling and Hippo signaling) were subject to control by the miR-29-3p-family. Furthermore, we revealed that the genes for integrin alfa-6 (ITGA6) and beta-1(ITGB1) were directly regulated by the miR-29-3p-family, and their overexpression enhanced migration and invasive abilities in ICC cells. In addition, we showed that transcription factor SP1 is involved in ITGA6 and ITGB1 expression, and that SP1 expression was negatively controlled by the miR-29-family in ICC cells. Downregulation of the miR-29-3p-family activated several oncogenic pathways, and these events were closely involved in ICC oncogenesis. Oncogenic signaling pathways Cancers 2021, 13, x 3 of 21 Cancers 2021, 13, 2804 3 of 21 Downregulation of the miR-29-3p-family activated several oncogenic pathways, and these events were closely involved in ICC oncogenesis. Oncogenic signaling pathways mediated by ITGA6/ITGB1 are likely therapeutic targets for this disease. Our miRNA- basedmediated approach by ITGA6 will accelerate/ITGB1 are the likely understanding therapeutic of targetsthe molecular for this pathogenesis disease. Our of miRNA- ICC. based approach will accelerate the understanding of the molecular pathogenesis of ICC. 2. Results 2. Results 2.1. Downregulation of miR-29a-3p, miR-29b-3p and miR-29c-3p in ICC Clinical Specimens 2.1. Downregulation of miR-29a-3p, miR-29b-3p and miR-29c-3p in ICC Clinical Specimens The expression levels of miR-29a-3p, miR-29b-3p and miR-29c-3p were investigated to utilizeThe the expressionGene Expression levels ofOmnibusmiR-29a-3p (GEO), miR-29b-3p database (GSE:and miR-29c-3p 53870). Thesewere datasets investigated con- to utilize the Gene Expression Omnibus (GEO) database (GSE: 53870). These datasets tained 63 ICC tissues and 9 normal intrahepatic bile ducts tissues.
Recommended publications
  • Nanoliposomal Delivery of Microrna-203 Suppresses Migration of Triple-Negative Breast Cancer Through Distinct Target Suppression
    non-coding RNA Article Nanoliposomal Delivery of MicroRNA-203 Suppresses Migration of Triple-Negative Breast Cancer through Distinct Target Suppression Shuxuan Song 1, Kelsey S. Johnson 1, Henry Lujan 2, Sahar H. Pradhan 2 , Christie M. Sayes 2 and Joseph H. Taube 1,* 1 Department of Biology, Baylor University, Waco, TX 76706, USA; [email protected] (S.S.); [email protected] (K.S.J.) 2 Department of Environmental Science, Baylor University, Waco, TX 76706, USA; [email protected] (H.L.); [email protected] (S.H.P.); [email protected] (C.M.S.) * Correspondence: [email protected] Abstract: Triple-negative breast cancers affect thousands of women in the United States and dis- proportionately drive mortality from breast cancer. MicroRNAs are small, non-coding RNAs that negatively regulate gene expression post-transcriptionally by inhibiting target mRNA translation or by promoting mRNA degradation. We have identified that miRNA-203, silenced by epithelial– mesenchymal transition (EMT), is a tumor suppressor and can promote differentiation of breast cancer stem cells. In this study, we tested the ability of liposomal delivery of miR-203 to reverse aspects of breast cancer pathogenesis using breast cancer and EMT cell lines. We show that transla- tionally relevant methods for increasing miR-203 abundance within a target tissue affects cellular Citation: Song, S.; Johnson, K.S.; properties associated with cancer progression. While stable miR-203 expression suppresses LASP1 Lujan, H.; Pradhan, S.H.; Sayes, C.M.; and survivin, nanoliposomal delivery suppresses BMI1, indicating that suppression of distinct mRNA Taube, J.H. Nanoliposomal Delivery target profiles can lead to loss of cancer cell migration.
    [Show full text]
  • Detection of Interacting Transcription Factors in Human Tissues Using
    Myšičková and Vingron BMC Genomics 2012, 13(Suppl 1):S2 http://www.biomedcentral.com/1471-2164/13/S1/S2 PROCEEDINGS Open Access Detection of interacting transcription factors in human tissues using predicted DNA binding affinity Alena Myšičková*, Martin Vingron From The Tenth Asia Pacific Bioinformatics Conference (APBC 2012) Melbourne, Australia. 17-19 January 2012 Abstract Background: Tissue-specific gene expression is generally regulated by combinatorial interactions among transcription factors (TFs) which bind to the DNA. Despite this known fact, previous discoveries of the mechanism that controls gene expression usually consider only a single TF. Results: We provide a prediction of interacting TFs in 22 human tissues based on their DNA-binding affinity in promoter regions. We analyze all possible pairs of 130 vertebrate TFs from the JASPAR database. First, all human promoter regions are scanned for single TF-DNA binding affinities with TRAP and for each TF a ranked list of all promoters ordered by the binding affinity is created. We then study the similarity of the ranked lists and detect candidates for TF-TF interaction by applying a partial independence test for multiway contingency tables. Our candidates are validated by both known protein-protein interactions (PPIs) and known gene regulation mechanisms in the selected tissue. We find that the known PPIs are significantly enriched in the groups of our predicted TF-TF interactions (2 and 7 times more common than expected by chance). In addition, the predicted interacting TFs for studied tissues (liver, muscle, hematopoietic stem cell) are supported in literature to be active regulators or to be expressed in the corresponding tissue.
    [Show full text]
  • Immune Function of Mir-214 and Its Application Prospects As Molecular Marker
    Immune function of miR-214 and its application prospects as molecular marker Qiuyuan Wang, Yang Liu, Yiru Wu, Jie Wen and Chaolai Man College of Life Science and Technology, Harbin Normal University, Harbin, China ABSTRACT MicroRNAs are a class of evolutionary conserved non-coding small RNAs that play key regulatory roles at the post-transcriptional level. In recent years, studies have shown that miR-214 plays an important role in regulating several biological processes such as cell proliferation and differentiation, tumorigenesis, inflammation and immunity, and it has become a hotspot in the miRNA field. In this review, the regulatory functions of miR-214 in the proliferation, differentiation and functional activities of immune- related cells, such as dendritic cells, T cells and NK cells, were briefly reviewed. Also, the mechanisms of miR-214 involved in tumor immunity, inflammatory regulation and antivirus were discussed. Finally, the value and application prospects of miR-214 as a molecular marker in inflammation and tumor related diseases were analyzed briefly. We hope it can provide reference for further study on the mechanism and application of miR-214. Subjects Biochemistry, Molecular Biology, Immunology Keywords miR-214, Immune cell, Tumor immunity, Inflammation, Virus, Molecular marker INTRODUCTION MicroRNAs (miRNAs) are a kind of high conserved non-coding small RNAs in evolution that bind to the 30-untranslated region (30-UTR) of target gene mRNA and regulate gene Submitted 18 September 2020 expression at post-transcriptional level. In immune responses, miRNAs act as signal- Accepted 20 January 2021 Published 16 February 2021 regulating molecules after immune-related receptors activation, and affect the expression Corresponding author of immune-related genes, thus extensively participating in various aspects of immune Chaolai Man, [email protected] response (Bosisio et al., 2019; Mehta & Baltimore, 2016).
    [Show full text]
  • ANT2 Shrna Downregulates Mir-19A and Mir-96 Through the PI3K/Akt Pathway and Suppresses Tumor Growth in Hepatocellular Carcinoma Cells
    OPEN Experimental & Molecular Medicine (2016) 48, e222; doi:10.1038/emm.2015.126 & 2016 KSBMB. All rights reserved 2092-6413/16 www.nature.com/emm ORIGINAL ARTICLE ANT2 shRNA downregulates miR-19a and miR-96 through the PI3K/Akt pathway and suppresses tumor growth in hepatocellular carcinoma cells Seung Hyun Baik1,3, Jongkuen Lee1,3, Yeong-Shin Lee1,3, Ji-Young Jang1 and Chul-Woo Kim1,2 MicroRNAs (miRNAs) are negative regulators of gene expression, and miRNA deregulation is found in various tumors. We previously reported that suppression of adenine nucleotide translocase 2 (ANT2) by short hairpin RNA (shRNA) inhibits hepatocellular carcinoma (HCC) development by rescuing miR-636 expression. However, the tumor-suppressive mechanisms of ANT2 shRNA are still poorly understood in HCC. Here, we hypothesized that miRNAs that are specifically downregulated by ANT2 shRNA might function as oncomiRs, and we investigated the roles of ANT2 shRNA-regulated miRNAs in the pathogenesis of HCC. Our data show that miR-19a and miR-96, whose expression is regulated by ANT2 suppression, were markedly upregulated in HCC cell lines and clinical samples. Ectopic expression of miR-19a and miR-96 dramatically induced the proliferation and colony formation of hepatoma cells in vitro, whereas inhibition of miR-19a and miR-96 reduced these effects. To investigate the in vivo function, we implanted miR-96-overexpressing HepG2 cells in a xenograft model and demonstrated that the increase in miR-96 promoted tumor growth. We also found that miR-19a and miR-96 inhibited expression of tissue inhibitor of metalloproteinase-2. Taken together, our results suggest that ANT2-regulated miR-19a and miR-96 play an important role in promoting the proliferation of human HCC cells, and the knockdown of ANT2 directly downregulates miR-19a and miR-96, ultimately resulting in the suppression of tumor growth.
    [Show full text]
  • Elevated Circulating Microrna-122 Is Associated with Obesity and Insulin Resistance in Young Adults
    R Wang, J Hong, Y Cao and miR-122, obesity and insulin 172:3 291–300 Clinical Study others resistance Elevated circulating microRNA-122 is associated with obesity and insulin resistance in young adults Rui Wang1,*, Jie Hong1,*, Yanan Cao1,*, Juan Shi1, Weiqiong Gu1, Guang Ning1,2, Yifei Zhang1 and Weiqing Wang1 1Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Shanghai Key Laboratory for Endocrine Tumors and E-Institutes of Shanghai Universities, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China and 2Laboratory for Endocrine and Metabolism, Institute of Health Sciences, Correspondence Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School should be addressed of Medicine, Shanghai 200025, China to W Wang *(R Wang, J Hong and Y Cao contributed equally to this work) Email [email protected] Abstract Objective: MicroRNAs (miRNAs) are involved in the regulation of adiposity, but functional studies have yielded inconclusive results. Examining the associations of circulating miRNAs levels with obesity and insulin sensitivity in humans may lead to improved insights. Design and methods: Serum samples collected from 112 obese and control subjects (50.0% men) were randomly divided and combined into four pools (28 samples in each obese or control pool). The genome-wide circulating miRNA profiles were detected via microarray. Elevated miR-122 was selected and validated in individual serum samples from 123 obese (46.7% men) and 107 control (50.0% men) young adults. Associations between circulating miR-122 levels and parameters related to adiposity, insulin resistance, lipid profiles and hepatic enzymes were further assessed.
    [Show full text]
  • Microrna Pharmacoepigenetics: Posttranscriptional Regulation Mechanisms Behind Variable Drug Disposition and Strategy to Develop More Effective Therapy
    1521-009X/44/3/308–319$25.00 http://dx.doi.org/10.1124/dmd.115.067470 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:308–319, March 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Minireview MicroRNA Pharmacoepigenetics: Posttranscriptional Regulation Mechanisms behind Variable Drug Disposition and Strategy to Develop More Effective Therapy Ai-Ming Yu, Ye Tian, Mei-Juan Tu, Pui Yan Ho, and Joseph L. Jilek Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Sacramento, California Received September 30, 2015; accepted November 12, 2015 Downloaded from ABSTRACT Knowledge of drug absorption, distribution, metabolism, and excre- we review the advances in miRNA pharmacoepigenetics including tion (ADME) or pharmacokinetics properties is essential for drug the mechanistic actions of miRNAs in the modulation of Phase I and development and safe use of medicine. Varied or altered ADME may II drug-metabolizing enzymes, efflux and uptake transporters, and lead to a loss of efficacy or adverse drug effects. Understanding the xenobiotic receptors or transcription factors after briefly introducing causes of variations in drug disposition and response has proven the characteristics of miRNA-mediated posttranscriptional gene dmd.aspetjournals.org critical for the practice of personalized or precision medicine. The regulation. Consequently, miRNAs may have significant influence rise of noncoding microRNA (miRNA) pharmacoepigenetics and on drug disposition and response. Therefore, research on miRNA pharmacoepigenomics has come with accumulating evidence sup- pharmacoepigenetics shall not only improve mechanistic under- porting the role of miRNAs in the modulation of ADME gene standing of variations in pharmacotherapy but also provide novel expression and then drug disposition and response.
    [Show full text]
  • Tolerance to Sustained Activation of the Camp/Creb Pathway Activity in Osteoblastic Cells Is Enabled by Loss of P53 Mannu K
    Walia et al. Cell Death and Disease (2018) 9:844 DOI 10.1038/s41419-018-0944-8 Cell Death & Disease ARTICLE Open Access Tolerance to sustained activation of the cAMP/Creb pathway activity in osteoblastic cells is enabled by loss of p53 Mannu K. Walia1, Scott Taylor1,PatriciaW.M.Ho1,T.JohnMartin1,2 and Carl R. Walkley 1,2,3 Abstract The loss of p53 function is a central event in the genesis of osteosarcoma (OS). How mutation of p53 enables OS development from osteoblastic lineage cells is poorly understood. We and others have reported a key role for elevated and persistent activation of the cAMP/PKA/Creb1 pathway in maintenance of OS. In view of the osteoblast lineage being the cell of origin of OS, we sought to determine how these pathways interact within the context of the normal osteoblast. Normal osteoblasts (p53 WT) rapidly underwent apoptosis in response to acute elevation of cAMP levels or activity, whereas p53-deficient osteoblasts tolerated this aberrant cAMP/Creb level and activity. Using the p53 activating small-molecule Nutlin-3a and cAMP/Creb1 activator forskolin, we addressed the question of how p53 responds to the activation of cAMP. We observed that p53 acts dominantly to protect cells from excessive cAMP accumulation. We identify a Creb1-Cbp complex that functions together with and interacts with p53. Finally, translating these results we find that a selective small-molecule inhibitor of the Creb1-Cbp interaction demonstrates selective toxicity to OS cells where this pathway is constitutively active. This highlights the cAMP/Creb axis as a potentially actionable therapeutic vulnerability in p53-deficient tumors such as OS.
    [Show full text]
  • Microrna-155 Modulates Bile Duct Inflammation by Targeting the Suppressor of Cytokine Signaling 1 in Biliary Atresia
    nature publishing group Basic Science Investigation | Articles MicroRNA-155 modulates bile duct inflammation by targeting the suppressor of cytokine signaling 1 in biliary atresia Rui Zhao1, Rui Dong1, Yifan Yang1, Yuqing Wang1, Jin Ma2, Jiang Wang1, Hao Li1 and Shan Zheng1 BACKGROUND: Biliary atresia (BA) is an etiologically etiology and pathogenesis of BA remains largely unknown. A perplexing disease, manifested by neonatal cholestasis, leading hypothesis for the pathogenesis of BA is a virus repeated cholangitis, and progressive biliary fibrosis. MiR-155 infection-initiated bile duct injury (possibly prenatal), which has been implicated to modulate the immune response, is then followed by an exaggerated inflammatory or which contributes to biliary injury. However, its potential role autoimmune response targeting the bile duct epithelium. in the pathogenesis of BA has not been addressed so far. This ultimately results in progressive bile duct injury, METHODS: The microRNA changes from BA patients and obliteration, and secondary biliary cirrhosis (3,4). controls were identified via microarray. The immunomodula- Gene expression is primarily regulated at a post- tory function of miR-155 was investigated via cell transfection transcriptional level by microRNAs (miRNAs), which exert and reporter assay. The lentiviral vector pL-miR-155 inhibitor their function by targeting complementary mRNA molecules, was transfected into a mouse model to investigate its thus inhibiting their translation by binding to the 3′ role in BA. untranslated region (UTR) (5). Many miRNAs have been RESULTS: The expression of miR-155 in livers of BA patients reported to be differentially expressed in autoimmune diseases was significantly increased, and an inverse correlation and consequently may have a pivotal role in the regulation of between miR-155 and suppressor of cytokine signaling 1 both immune responses and autoimmunity.
    [Show full text]
  • Ten Commandments for a Good Scientist
    Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre.
    [Show full text]
  • METTL1 Promotes Let-7 Microrna Processing Via M7g Methylation
    Article METTL1 Promotes let-7 MicroRNA Processing via m7G Methylation Graphical Abstract Authors Luca Pandolfini, Isaia Barbieri, Andrew J. Bannister, ..., Mara d’Onofrio, Shankar Balasubramanian, Tony Kouzarides Correspondence [email protected] In Brief Pandolfini, Barbieri, et al. show that a subgroup of tumor suppressor microRNAs, including let-7e, contain 7-methylguanosine (m7G). Methyltransferase METTL1 is required for m7G modification of miRNAs, their efficient processing, and the inhibition of lung cancer cell migration. Structurally, m7G in miRNA precursors antagonizes RNA secondary structures that would otherwise inhibit their maturation. Highlights Data Resource d Internal m7G is identified in miRNAs by two independent GSE112182 sequencing techniques GSE112180 GSE112181 d Methyltransferase METTL1 mediates m7G modification of GSE120454 specific miRNAs GSE120455 d METTL1 promotes miRNA maturation and suppresses lung cancer cell migration d m7G promotes processing by antagonizing G-quadruplex structures in miRNA precursors Pandolfini et al., 2019, Molecular Cell 74, 1278–1290 June 20, 2019 ª 2019 The Author(s). Published by Elsevier Inc. https://doi.org/10.1016/j.molcel.2019.03.040 Molecular Cell Article METTL1 Promotes let-7 MicroRNA Processing via m7G Methylation Luca Pandolfini,1,9 Isaia Barbieri,1,2,9 Andrew J. Bannister,1 Alan Hendrick,3 Byron Andrews,3 Natalie Webster,3 Pierre Murat,4,7 Pia Mach,1 Rossella Brandi,5 Samuel C. Robson,1,8 Valentina Migliori,1 Andrej Alendar,1 Mara d’Onofrio,5,6 Shankar Balasubramanian,4
    [Show full text]
  • MRTF: Basic Biology and Role in Kidney Disease
    International Journal of Molecular Sciences Review MRTF: Basic Biology and Role in Kidney Disease Maria Zena Miranda 1, Zsuzsanna Lichner 1, Katalin Szászi 1,2 and András Kapus 1,2,3,* 1 Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; [email protected] (M.Z.M.); [email protected] (Z.L.); [email protected] (K.S.) 2 Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada 3 Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada * Correspondence: [email protected] Abstract: A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up- to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease.
    [Show full text]
  • Genetics of Gene Expression in Primary Immune Cells Identifies Cell
    ARTICLES Genetics of gene expression in primary immune cells identifies cell type–specific master regulators and roles of HLA alleles Benjamin P Fairfax1, Seiko Makino1, Jayachandran Radhakrishnan1, Katharine Plant1, Stephen Leslie2, Alexander Dilthey3, Peter Ellis4, Cordelia Langford4, Fredrik O Vannberg1,5 & Julian C Knight1 Trans-acting genetic variants have a substantial, albeit poorly characterized, role in the heritable determination of gene expression. Using paired purified primary monocytes and B cells, we identify new predominantly cell type–specific cis and trans expression quantitative trait loci (eQTLs), including multi-locus trans associations to LYZ and KLF4 in monocytes and B cells, respectively. Additionally, we observe a B cell–specific trans association of rs11171739 at 12q13.2, a known autoimmune disease locus, with IP6K2 (P = 5.8 × 10−15), PRIC285 (P = 3.0 × 10−10) and an upstream region of CDKN1A (P = 2 × 10−52), suggesting roles for cell cycle regulation and peroxisome proliferator-activated receptor γ (PPARγ) signaling in autoimmune pathogenesis. We also find that specific human leukocyte antigen (HLA) alleles form trans associations with the expression of AOAH and ARHGAP24 in monocytes but not in B cells. In summary, we show that mapping gene expression in defined primary cell populations identifies new cell type–specific trans-regulated networks and provides insights into the genetic basis of disease susceptibility. Defining the genetic determinants of gene expression is crucial to especially pertinent in the elucidation of trans-acting eQTLs, where understanding the biological and medical significance of genetic var- context specificity may be of greater relevance12. iation. This is particularly relevant in the drive to identify functional Here we sought to determine cell type–specific eQTLs relevant to variants underlying observed disease associations from genome- immunity and inflammation in paired samples of primary monocytes wide association studies (GWAS)1.
    [Show full text]