Meristic and Morphological Differentiation of Orestias Species (Teleostei; Cyprinodontiformes) from the Southern Altiplano

Total Page:16

File Type:pdf, Size:1020Kb

Meristic and Morphological Differentiation of Orestias Species (Teleostei; Cyprinodontiformes) from the Southern Altiplano Environ Biol Fish (2020) 103:939–951 https://doi.org/10.1007/s10641-020-00995-4 Meristic and morphological differentiation of Orestias species (Teleostei; Cyprinodontiformes) from the southern Altiplano Sergio Scott & Pablo Rojas & Irma Vila Received: 5 March 2020 /Accepted: 14 June 2020 / Published online: 22 June 2020 # Springer Nature B.V. 2020 Abstract Orestias is an endemic fish genus of lacustrine Keywords Andean high plateau . Freshwater fish . and lotic systems distributed on the Andes highland region Morphology (Altiplano) of Peru, Bolivia and Chile (9°S to 22°S). Based on morphological characters, taxonomic studies have recognized seven species on the Chilean western Introduction southern Altiplano region (17°S - 22°S). The current geographical distribution of Orestias would be associated Traditionally, taxonomic studies for the identification of with historical vicariant events and fluctuations in water species members have been carried out using morpho- levels since the Pleistocene. In this context, this group logical and meristic characteristics (Cadrin 2000), where arises as an interesting model to assess Orestias morpho- specimens or their populations may present overlaps logical adaptations in Altiplano systems. Morphological when characters are invariant. (Swain and Foote 1999; and meristic analyses were performed on ten populations Murta 2000). When fish are exposed to different envi- of Orestias in the southern Altiplano. The results showed ronmental conditions, they can adjust their morphology significant differences among populations. The meristic and evolve with adaptations that allow them to survive and morphometric characters were related to physical and the new conditions (Webb 1984). The environment is a chemical properties of their habitat. We considered the powerful force that models the morphology of organ- systematic validation of the Orestias species and the pos- isms during their ontogeny (Costa and Cataudella sible future determination of new species of the popula- 2007). Hence, morphology is not only a result of their tions of O.cf.agassii of Huasco saltpan, Isluga River and genetics but also of their environment and behavior Chuviri wetland, which should be tested with trophic, (Guill et al. 2003). genetic and karyotype analyses. Ecosystem dynamism and geographic isolation may enable specimens to experience a wide range of ecological S. Scott : P. Rojas : I. Vila (*) conditions, leading to morphological differences and local Department of Ecological Sciences, University of Chile, Las adaptations (Schluter 1993, 1996, 2000; Losos et al. 1998; Palmeras, 3425 Santiago, Chile Kocher 2004; Maldonado et al. 2009). For this reason, it is e-mail: [email protected] suggested that natural selection may lead species into S. Scott occupying similar ecological niches with certain morpho- Applied Research Center of Chile, CIACHI, Badajoz 100, logical and meristic characteristics, in response to equiva- Santiago, Chile lent selective pressures (Wainwright 1991, 1996; Hugueny S. Scott and Pouilly 1999; Cardin and Friedland 1999; Pouilly et al. Educational and Science Foundation, Castillo Urizar, 2003; Poulet et al. 2005;Merona2005). The quantification 2949 Santiago, Chile of specific characteristics of a specimen or group of 940 Environ Biol Fish (2020) 103:939–951 specimens may demonstrate the degree of speciation in- The objective of this study has been to analyze the duced by biotic and abiotic conditions, contributing to the morphological and meristic differences between the definition of different groups of species (Bailey 1997; species of Orestias of the southern Altiplano. We hy- Nacua et al. 2010). pothesized differences among the populations of To understand the morphological responses of organ- Orestias, principally due to historical isolation and par- isms to environmental conditions, patterns of morpho- ticular environmental conditions of each ecosystem of logical variation have been compared with patterns of the southern Altiplano. For this, a higher number of variation in ecological characteristics (Norton et al. individuals have been considered for the morphological 1995; Maldonado et al. 2009). These analyses have and meristic analyses, incorporating adults of different helped to determine whether there is phenotypic diver- sizes and considering all the species described for this gence among different species or populations of the zone, as well as new populations under study. same species, and which could have an impact on them, shedding light on the interaction that species have had with their environment since their separation from their Material and methods dispersal center. A habitat freshwater heterogeneity (lo- tic and lentic) could potentially create a spatial variation The study included 258 Orestias specimens collected or facilitate morphological plasticity (Franssen 2011). between 2013 and 2016 (Table 1) in 10 different sys- For example, the lotic environments select a body fusi- tems of the southern Altiplano (Fig. 1). The fish were form shape by reducing the resistance of the water captured using hand nets, as well as electrofishing stream, obtaining lower energy costs (Webb 1984; (SAMUS -725) at deeper places. Fish were fixed with Langerhans and Reznick 2010;Fosteretal.2015). 95% alcohol after being euthanized with Tricaine The genus Orestias described in the southern Alti- methanesulfonate (MS222). Posteriorly, at the laborato- plano (17° to 22° S) inhabits aquatic systems as diverse ry, the alcohol was removed and fish were fixed with as high lakes, rivers, saltpans and wetlands (locally new 95% alcohol. Finally, the specimens were included called bofedales) of the Andes. Most systematic studies to the collection of the Limnology Laboratory of the have emphasized the use of meristic and morphological University of Chile (Table 1). characters for Orestias species characterization. Up to The species included in this study were now, species descriptions have mainly considered rela- O. parinacotensis (Arratia 1982) from Parinacota wetland tionships of body proportions, number and distribution (18°12’ S; 69°16’ W), O. laucaensis (Arratia 1982) from of scales, fin rays and gills characteristics (Arratia 1982; Lauca River (18°11’ S; 68°16’ W) and Cotacotani lake Lauzanne 1982; Parenti 1984a; Costa 1997;Vilaetal. (18°12’ S; 69°14’ W), O. chungarensis (Vila and Pinto 2011, 2013), yet lacking an analysis which would cor- 1986) of Lake Chungará (18°15’ S; 69°07’ W), relate the set of characters with the environmental var- O. ascotanensis (Parenti 1984a)ofAscotánsaltpan(21° iations where the species live. S; 68° W), O. piacotensis (Vila 2006)ofPiacotalake Seven Orestias species have been described for the (18°12’ S; 69°158’ W); O.cf.agassii (Valenciennes, southern Altiplano (Fig. 1); Orestias piacotensis (Vila 1846) of Huasco saltpan (20°16’ S; 68°41’ W) O.cf. 2006), O. laucaensis (Arratia 1982), O. parinacotensis agassii of Isluga River (19°01’ S; 68°42’ W), O.cf.agassii (Arratia 1982), O. chungarensis (Vila and Pinto 1986), of Chuviri wetland (18°10’ S; 69°20’ W) and O. gloriae O.cf.agassii (Mann, 1954), O. gloriae (Vilaetal.2011) (Vila et al. 2011) of Carcote saltpan (21°17’ S; 68°19’ W). and O. ascotanensis (Parenti, 1984). The validity of the The descriptions of Arratia (1982); Parenti (1984a); Vila species described for the agassii complex of the south- and Pinto (1986), Vila (2006) and Vila et al. (2011)were ern Altiplano has been questioned by Villwock and used to determine the species. Sienknecht (1995, 1996), postulating that they represent For the morphological analyses of the species studied, ontogenetic stages and that they could also represent the following measurements were standardized for each geographical variations of the same species. The likely specimen size: eye diameter, head length, pre dorsal length, source of discrepancy is that the original descriptions standard length, total length, pre orbital length, caudal were based on the analyses of a limited number of peduncle length, pre anal length, body height, caudal specimens of the same ontogenetic stage (Villwock peduncle height, and head height (Fig. 2). For the meristic and Sienknecht 1995, 1996). analyses, the same specimens were used, counting the Environ Biol Fish (2020) 103:939–951 941 Fig. 1 Distribution map of the Orestias species used in this study number of scales of the lateral line, the number of rays of into fluvial O. laucaensis,andO.cf.agassii of Isluga; O. the dorsal, anal, pectoral and caudal fins cf. agassii from Huasco, O. ascotanensis and O. gloriae in (Appendix Table 5). Data were analyzed by a MANOVA saltpans; O. chungarensis O. piacotensis as lacustrines; (Multivariate variance analysis) using all morphometric O. laucaensis of Cotacotani, O. parinacotensis and O.cf. measurements, grouping specimens by sampled localities, agassii of Chuviri from wetlands. A Principal Component and grouped also by type of environment classifying them analysis (PCA) and Linear discriminant analysis (LDA) Table 1 Locality of the populations of Orestias collected Populations Locality Latitude/ Longitude N° Ind O. parinacotensis Parinacota wetland 18°12’S/ 69°16’W29 O. laucaensis Lauca river 18°22’S/ 69°20’W27 O. laucaensis Cotacotani lake 18°12’S/ 69°14’W28 O. chungarensis Chungara Lake 18°15’S/ 69°10’W16 O. ascotanensis Ascotan salt pan 21°29’S/ 68°15’W22 O. gloriae Carcote salt pan 21°16’S/ 68°19’W28 O. piacotensis Piacota lake 18°12’S/69°16’W27 O.cf.agassii Isluga river 19°15’S/68°42’W28 O.cf.agassii
Recommended publications
  • (Acari: Mesostigmata) Raphael De Campos Castilho
    Universidade de São Paulo Escola Superior de Agricultura “Luiz de Queiroz” Taxonomy of Rhodacaroidea mites (Acari: Mesostigmata) Raphael de Campos Castilho Thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Science. Area of concentration: Entomology Piracicaba 2012 2 Raphael de Campos Castilho Engenheiro Agrônomo Taxonomy of Rhodacaroidea mites (Acari: Mesostigmata) Adviser: Prof. Dr. GILBERTO JOSÉ DE MORAES Thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Science. Area of concentration: Entomology Piracicaba 2012 Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA - ESALQ/USP Castilho, Raphael de Campos Taxonomy of Rhodacaroidea mites (Acari: Mesostigmata) / Raphael de Campos Castilho. - - Piracicaba, 2012. 579 p. : il. Tese (Doutorado) - - Escola Superior de Agricultura “Luiz de Queiroz”, 2012. 1. Ácaros predadores 2. Classificação 3. Ácaros de solo 4. Controle biológico I. Título CDD 595.42 C352t “Permitida a cópia total ou parcial deste documento, desde que citada a fonte – O autor” 3 To GOD Source of perseverance and life, To my mother Sonia Regina de Campos For her love, tenderness and comprehension. To my partner Karina Cezarete Semençato for her love, patience and unfailing support to me Offer To Prof. Dr. Gilberto José de Moraes For his valuable guidance, friendship and recognition of my work Special thanks 4 5 Ackanowledgements To Escola Superior de Agricultura ―Luiz de Queiroz‖ (ESALQ), Universidade de São Paulo (USP), and especially to ―Departamento de Entomologia e Acarologia‖ for providing all intellectual and material support necessary for the proper development of this work; I am especially grateful to Carlos H. W.
    [Show full text]
  • The Etyfish Project © Christopher Scharpf and Kenneth J
    CYPRINODONTIFORMES (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 3.0 - 13 Nov. 2020 Order CYPRINODONTIFORMES (part 3 of 4) Suborder CYPRINODONTOIDEI Family PANTANODONTIDAE Spine Killifishes Pantanodon Myers 1955 pan(tos), all; ano-, without; odon, tooth, referring to lack of teeth in P. podoxys (=stuhlmanni) Pantanodon madagascariensis (Arnoult 1963) -ensis, suffix denoting place: Madagascar, where it is endemic [extinct due to habitat loss] Pantanodon stuhlmanni (Ahl 1924) in honor of Franz Ludwig Stuhlmann (1863-1928), German Colonial Service, who, with Emin Pascha, led the German East Africa Expedition (1889-1892), during which type was collected Family CYPRINODONTIDAE Pupfishes 10 genera · 112 species/subspecies Subfamily Cubanichthyinae Island Pupfishes Cubanichthys Hubbs 1926 Cuba, where genus was thought to be endemic until generic placement of C. pengelleyi; ichthys, fish Cubanichthys cubensis (Eigenmann 1903) -ensis, suffix denoting place: Cuba, where it is endemic (including mainland and Isla de la Juventud, or Isle of Pines) Cubanichthys pengelleyi (Fowler 1939) in honor of Jamaican physician and medical officer Charles Edward Pengelley (1888-1966), who “obtained” type specimens and “sent interesting details of his experience with them as aquarium fishes” Yssolebias Huber 2012 yssos, javelin, referring to elongate and narrow dorsal and anal fins with sharp borders; lebias, Greek name for a kind of small fish, first applied to killifishes (“Les Lebias”) by Cuvier (1816) and now a
    [Show full text]
  • Biodiversidad Final.Pmd
    Gayana 70(1): 100-113, 2006 ISSN 0717-652X ESTADO DE CONOCIMIENTO DE LOS PECES DULCEACUICOLAS DE CHILE CURRENT STATE OF KNOWLEDGE OF FRESHWATER FISHES OF CHILE Evelyn Habit1, Brian Dyer2 & Irma Vila3 1Unidad de Sistemas Acuáticos, Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepción, Casilla 160-C, Concepción, Chile. [email protected] 2Escuela de Recursos Naturales, Universidad del Mar, Amunátegui 1838, Recreo, Viña del Mar, Chile. [email protected] 3Laboratorio de Limnología, Depto. Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile. [email protected] RESUMEN La ictiofauna nativa de los sistemas límnicos de Chile se compone de 11 familias, 17 géneros y alrededor de 44 especies, incluyendo dos lampreas. De éstas, 81% son endémicas de la provincia biogeográfica chilena y 40% se encuentran clasificadas en peligro de extinción. Los grupos más representados corresponden a los órdenes Siluriformes (11 especies), Osmeriformes (9 especies) y Atheriniformes (7 especies). También están representados en Chile los ciclóstomos Petromyzontiformes (2 especies), y los teleósteos Characiformes (4 especies), Cyprinodontiformes (6 especies), Perciformes (4 especies) y Mugilifromes (1). Latitudinalmente, la mayor riqueza de especies ocurre en la zona centro-sur de la provincia Chilena, en tanto que los extremos norte y sur son de baja riqueza específica. Dado su origen, porcentaje de endemismo y retención de caracteres primitivos, este conjunto ictiofaunístico es de alto valor biogeográfico y de conservación. Existen sin embargo importantes vacíos de conocimiento sobre su sistemática, distribución y biología. PALABRAS CLAVES: Peces, sistemas dulceacuícolas, Chile. ABSTRACT The Chilean native freshwater ichthyofauna is composed of 11 families, 17 genera and about 44 species, including two lampreys.
    [Show full text]
  • THE ATACAMA DISPUTE: the Legal Proceedings Between Chile and Bolivia Regarding the Resources Present in the Area
    Department of Political Science Chair of International Law THE ATACAMA DISPUTE: The legal proceedings between Chile and Bolivia regarding the resources present in the area Eleonora Colitti Prof. Roberto Virzo Matr. 082202 SUPERVISOR CANDIDATE Academic Year 2018/2019 1 Introduction …………………………………………………………………………………. 4 1. Historical Context………………………………………………………………………........ 8 1.1 Spanish Colonization ……………………………………………………………........ 8 1.2 The first Aggression ………………………………………………………………….10 1.3 The Boundary Treaty between Chile and Bolivia ………………………………….12 1.4 The Treaty of 1874 ………………………………………………………………...…13 1.5 The Secret Treaty …………………………………………………………………….14 1.6 The War of the Pacific………………………………………………………………..15 1.7 The Conference of Arica …………………………………………………………… 16 1.8 Argentina’s diplomatic efforts against Chile ……………………………………… 17 1.9 The Peace Treaty ……………………………………………………………………. 18 1.10 Tacna and Arica ……………………………………………………………………. 19 1.11 The start of Diplomatic Negotiations …………………………………………….... 22 2. Obligation to Negotiate Sovereign Access to the Pacific Ocean (Bolivia v. Chile) ………25 2.1 Overview of the Case ……………………………………………………………….. 25 2.2 The Bolivian Position ……………………………………………………………….. 26 2.2.1 Chapter I of the Bolivian Memorial: Historical Background ……………...… 26 2.2.2 Chapter II of the Bolivian Memorial: The Chilean Obligation ……………… 31 2.2.3 Chapter III of the Bolivian Memorial : Chile’s Breach of Its Obligations …... 33 2.3 Economic reasons of Bolivia ……………………………………………………….. 34 2.4 Rights of Access of Landlocked States to and from the Sea and Freedom of Transit ……………………………………………………………………………. 35 2.5 The Chilean Position ……………………………………………………………….. 36 2.5.1 The Chilean Preliminary Objection to the Bolivian Memorial ………………... 36 2.5.2 The Bolivian written Statement About the Objection ………………………..... 37 2.5.3 The Chilean Counter-Memorial ……………………………………………... 39 2.6 The Judgement of October 1st, 2018 ……………………………………………….
    [Show full text]
  • Thin-Skinned Tectonics in the Cordillera Oriental
    INTRACONTINENTAL SEISMICITY AND NEOGENE DEFORMATION OF THE ANDEAN FOREARC IN THE REGION OF ARICA (18.5ºS-19.5ºS) Claire DAVID (1), Joseph MARTINOD (1, 2), Diana COMTE (1), Gérard HÉRAIL (2), Henri HAESSLER (3), (1) Universidad de Chile, Casilla 2777, Santiago, Chile ([email protected], [email protected]) (2) IRD, LMTG, 38 rue des 36 Ponts, 31400 Toulouse, France ([email protected], [email protected]). (3) IPGS, 5 rue Rene Descartes, 67084 Strasbourg Cedex France, ([email protected] ) KEY WORDS : Forearc, Shortening, Tilting, Intraplate Seismicity, Altiplano. INTRODUCTION The superficial crustal seismic activity in Chile is remarkably moderate. Almost all the Chilean earthquakes are located on the subduction plane, and most of the intracontinental seismicity that results from the growth of the Cordillera occurs on the Eastern side of the Andes, in Bolivia and Argentina. Geological data, indeed, in agreement with the seismological measurements, show that the Chilean forearc suffered very moderate deformations in the Neogene [e.g. Lamb et al., 1997; García et al., 1997], in spite most of the surrection of the Altiplano probably occurred at that time [e.g. Gregory-Wodzicki, 2000]. The only region in Chile where significant crustal seismicity has been reported in the forearc is the northernmost part of the country, near Arica, where a permanent seismic network evidences an intracontinental forearc seismicity that vanishes south of 19.7°S. In this work, we describe the main characteristics of this seismicity, the associated
    [Show full text]
  • Review Article Cyprinodontid Fishes of the World
    Archive ofIran. SID J. Ichthyol. (March 2018), 5(1): 1–29 Received: January 5, 2018 © 2018 Iranian Society of Ichthyology Accepted: March 1, 2018 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v5i1.267 http://www.ijichthyol.org Review Article Cyprinodontid fishes of the world: an updated list of taxonomy, distribution and conservation status (Teleostei: Cyprinodontoidea) Hamid Reza ESMAEILI1*, Tayebeh ASRAR1, Ali GHOLAMIFARD2 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran. 2Department of Biology, Faculty of Sciences, Lorestan University, 6815144316 Khorramabad, Iran. Email: [email protected] Abstract: This checklist aims to list all the reported cyprinodontid fishes (superfamily Cyprinodontoidea/pupfishes) of the world. It lists 141 species in 8 genera and 4 families. The most diverse family is Cyprinodontidae (54 species, 38%), followed by Orestiidae (45 species, 32%), Aphaniidae (39 species, 28%), and Cubanichthyidae (3 species, 2%). Among 141 listed species, 73 (51.8%) species are Not Evaluated (NE), 15 (10.6%) Least Concern (LC), 9 (6.4%) Vulnerable (VU), 3 (2.1%) Data Deficient (DD), 11 (7.8%) Critically Endangered (CR), 4 (2.8%) Near Threatened (NT), 18 (12.8%) Endangered (EN), 3 (2.1%) Extinct in the Wild (EW) and 5 (3.5%) Extinct of the Red List of IUCN. They inhabit in the fresh, brackish and marine waters of the United States, Middle America, the West Indies, parts of northern South America, North Africa, the Mediterranean Anatolian region, coastal areas of the Persian Gulf and Makran Sea (Oman Sea), the northern Arabian Sea east to Gujarat in India, and some endorheic basins of Iran, Pakistan and the Arabian Peninsula.
    [Show full text]
  • Obligation to Negotiate Access to the Pacific Ocean Obligation De Négocier Un Accès À L'océan Pacifique
    INTERNATIONAL COURT OF JUSTICE REPORTS OF JUDGMENTS, ADVISORY OPINIONS AND ORDERS OBLIGATION TO NEGOTIATE ACCESS TO THE PACIFIC OCEAN (BOLIVIA v. CHILE) JUDGMENT OF 1 OCTOBER 2018 2018 COUR INTERNATIONALE DE JUSTICE RECUEIL DES ARRÊTS, AVIS CONSULTATIFS ET ORDONNANCES OBLIGATION DE NÉGOCIER UN ACCÈS À L’OCÉAN PACIFIQUE (BOLIVIE c. CHILI) ARRÊT DU 1er OCTOBRE 2018 5 CIJ1150.indb 1 22/05/19 10:55 Official citation : Obligation to Negotiate Access to the Pacific Ocean (Bolivia v. Chile), Judgment, I.C.J. Reports 2018, p. 507 Mode officiel de citation : Obligation de négocier un accès à l’océan Pacifique (Bolivie c. Chili), arrêt, C.I.J. Recueil 2018, p. 507 Sales number ISSN 0074-4441 No de vente : 1150 ISBN 978-92-1-157349-7 5 CIJ1150.indb 2 22/05/19 10:55 1 OCTOBER 2018 JUDGMENT OBLIGATION TO NEGOTIATE ACCESS TO THE PACIFIC OCEAN (BOLIVIA v. CHILE) OBLIGATION DE NÉGOCIER UN ACCÈS À L’OCÉAN PACIFIQUE (BOLIVIE c. CHILI) 1er OCTOBRE 2018 ARRET 5 CIJ1150.indb 3 22/05/19 10:55 507 TABLE OF CONTENTS Paragraphs Chronology of the Procedure 1-15 I. Historical and Factual Background 16-83 1. Events and treaties prior to 1904, including the 1895 Transfer Treaty 19-24 2. The 1904 Peace Treaty 25 3. Exchanges and statements in the 1920s 26-46 A. The 1920 “Acta Protocolizada” 26-31 B. Follow-up exchanges (1920-1925) 32-41 C. The 1926 Kellogg Proposal and the 1926 Matte Memo- randum 42-46 4. Bolivia’s reaction to the 1929 Treaty of Lima and its Supple- mentary Protocol 47-49 5.
    [Show full text]
  • Geographical Data of Chilean Lizards and Snakes in the Museo Nacional De Historia Natural Santiago, Chile
    GEOGRAPHICAL DATA OF CHILEAN LIZARDS AND SNAKES IN THE MUSEO NACIONAL DE HISTORIA NATURAL SANTIAGO, CHILE HERMAN NUNEZ Seccion Zoologia Museo Nacional de Historia Natural SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 91 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists • through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The herpetological collections of the Museo Nacional de Historia Natural (MNHNC) contains about 3500 amphibians and reptiles. Nearly 90% of the specimens are lizards, and of these, most are Liolaemus , the most diversified member of the Chilean herpetofauna. The specimens of Liolaemus derive mainly from "central Chile", i.e., the area between the city of La Serena and the Biobio River. Both northern and southern Chile are relatively unexplored; thus, the taxonomy and composition of these herpetof aunas is less well known. The distribution of Chilean lizards and snakes has not received much attention (however, see Valencia & Velosa 1981, Velosa & Navarro 1988) beyond the general information provided by Peters & Donoso-Barros (1970) and Donoso-Barros (1966, 1970).
    [Show full text]
  • Hidrogeoquímica De Fuentes Termales En Ambientes Salinos Relacionados Con Salares En Los Andes Del Norte De Chile
    UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE GEOLOGÍA HIDROGEOQUÍMICA DE FUENTES TERMALES EN AMBIENTES SALINOS RELACIONADOS CON SALARES EN LOS ANDES DEL NORTE DE CHILE TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS MENCIÓN GEOLOGÍA MEMORIA PARA OPTAR AL TÍTULO DE GEÓLOGO LAURA VALENTINA LAGOS DURÁN PROFESOR GUÍA: DIEGO MORATA CÉSPEDES MIEMBROS DE LA COMISIÓN: MARTIN REICH MORALES LINDA DANIELE LUCIANO ACHURRA REVECO SANTIAGO, CHILE 2016 Resumen En un contexto en que los métodos de exploración de recursos geotérmicos tienen que ser cada vez más eficientes, una comprensión más clara de los factores que controlan la localización y naturaleza de los reservorios de alta entalpía en los Andes chilenos es un requisito clave. Debido a esto, se hace necesario utilizar herramientas geoquímicas especializadas, en particular para agua geotermal con influencia de lago salino, y así establecer modelos que discriminen entre entradas de solución salina de superficie respecto a potenciales signaturas químicas e isotópicas relacionadas con la presencia de reservorios geotermales profundos. A la fecha, sólo un número muy limitado de estudios han reportado concentraciones de elementos traza e isótopos de B, Li y Sr en aguas de salares en el norte de Chile, todos ellos destinados a diferenciar las contribuciones relativas de reservorios y salmueras superficiales en los manantiales termales en borde de lagunas y salares. Sobre esta base, el objetivo principal de este trabajo es definir dichas señales químicas e isotópicas de las diferentes fuentes que aportan iones a las aguas termales al Salar de Surire y a la Laguna Tuyajto en el Altiplano de la I y II región, Chile.
    [Show full text]
  • ENSO and Solar Activity Signals from Oxygen Isotopes in Diatom Silica During Late
    ENSO and solar activity signals from oxygen isotopes in diatom silica during Late Glacial-Holocene transition in Central Andes (18ºS) Armand Hernández1*, Santiago Giralt1, Roberto Bao2, Alberto Sáez3, Melanie J. Leng4,5, Philip A. Barker6 1Institute of Earth Sciences Jaume Almera-CSIC, C/Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain 2Faculty of Sciences, University of A Coruña, Campus da Zapateira s/n, 15701 A Coruña, Spain 3Faculty of Geology, University of Barcelona, C/ Martí Franquès s/n, 08028 Barcelona, Spain 4NERC Isotope Geosciences Laboratory, British Geological Survey, Nottingham NG12 5GG, UK 5School of Geography, University of Nottingham, Nottingham NG7 2RD, UK 6 Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK *Correspondence to: Armand Hernández; Institute of Earth Sciences 'Jaume Almera' (CSIC). C/Lluis Solé i Sabarís s/n. E-08028 Barcelona (Spain). Phone: +34.934.095.410 Fax: +34.934.110.012 E-mail: [email protected] 1 Abstract The Late Glacial-Holocene transition from the Lago Chungará sedimentary record in northern Chilean Altiplano (18ºS) is made up of laminated sediments composed of light and dark pluriannual couplets of diatomaceous ooze. Light sediment laminae accumulated during short- term extraordinary diatom blooms whereas dark sediment laminae represent the baseline limnological conditions during several years of deposition. Diatom oxygen isotope data 18 (δ Odiatom) analyzed in 40 succesive (lamina by lamina) dark laminae, from 11,990 to 11,450 cal years BP, suggest that there occurred a series of decadal-to-centennial dry–wet oscillations. Dry periods are marked by relatively high isotope values whereas wet episodes are indicated by lower values.
    [Show full text]
  • Catalog of the Types of Curculionoidea (Insecta, Coleoptera) Deposited at the Museo Argentino De Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires
    Rev. Mus. Argentino Cienc. Nat., n.s. 15(2): 209-280, 2013 ISSN 1514-5158 (impresa) ISSN 1853-0400 (en línea) Catalog of the types of Curculionoidea (Insecta, Coleoptera) deposited at the Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires Axel O. BACHMANN 1 & Analía A. LANTERI 2 1Museo Argentino de Ciencias Naturales, División Entomología, Buenos Aires C1405DJR. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EHA, e-mail: [email protected]. uba.ar. 2 Museo de La Plata, División Entomología, Paseo del Bosque s/n, La Plata, B1900FWA, Argentina, e-mail: [email protected] Abstract: The type specimens of Curculionoidea (Apionidae, Brentidae, Anhribidae, Curculionidae, Platypodidae, and Scolytidae) from the Museo Argentino de Ciencias Naturales (MACN), corresponding to all current categories, are herein catalogued. A total of 344 specific and subspecific names are alphabetically recorded, for their original binomina or trinomina, and spellings. Later combinations and synonyms are mentioned, as well as the informa- tion of all the labels associated to the specimens. In order to assist future research, three further lists are added: 1. specimens deemed to be deposited at MACN but not found in the collection; 2. specimens labeled as types of species which descriptions have probably never been published (non available names); and 3. specimens of dubi- ous type status, because the information on the labels does not agree with that of the original publication. Key words: Type specimens, Curculionoidea, Coleoptera, Insecta. Resumen: Catálogo de los tipos de Curculionoidea (Insecta, Coleoptera) depositados en el Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires.
    [Show full text]
  • An Updated List of Taxonomy, Distribution and Conservation Status (Teleostei: Cyprinodontoidea)
    Iran. J. Ichthyol. (March 2018), 5(1): 1–29 Received: January 5, 2018 © 2018 Iranian Society of Ichthyology Accepted: March 1, 2018 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v5i1.267 http://www.ijichthyol.org Review Article Cyprinodontid fishes of the world: an updated list of taxonomy, distribution and conservation status (Teleostei: Cyprinodontoidea) Hamid Reza ESMAEILI1*, Tayebeh ASRAR1, Ali GHOLAMIFARD2 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran. 2Department of Biology, Faculty of Sciences, Lorestan University, 6815144316 Khorramabad, Iran. Email: [email protected] Abstract: This checklist aims to list all the reported cyprinodontid fishes (superfamily Cyprinodontoidea/pupfishes) of the world. It lists 141 species in 8 genera and 4 families. The most diverse family is Cyprinodontidae (54 species, 38%), followed by Orestiidae (45 species, 32%), Aphaniidae (39 species, 28%), and Cubanichthyidae (3 species, 2%). Among 141 listed species, 73 (51.8%) species are Not Evaluated (NE), 15 (10.6%) Least Concern (LC), 9 (6.4%) Vulnerable (VU), 3 (2.1%) Data Deficient (DD), 11 (7.8%) Critically Endangered (CR), 4 (2.8%) Near Threatened (NT), 18 (12.8%) Endangered (EN), 3 (2.1%) Extinct in the Wild (EW) and 5 (3.5%) Extinct of the Red List of IUCN. They inhabit in the fresh, brackish and marine waters of the United States, Middle America, the West Indies, parts of northern South America, North Africa, the Mediterranean Anatolian region, coastal areas of the Persian Gulf and Makran Sea (Oman Sea), the northern Arabian Sea east to Gujarat in India, and some endorheic basins of Iran, Pakistan and the Arabian Peninsula.
    [Show full text]