Iasinstitute for Advanced Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stability Conditions and the A2 Quiver 10
STABILITY CONDITIONS AND THE A2 QUIVER TOM BRIDGELAND, YU QIU AND TOM SUTHERLAND Abstract. For each integer n > 2 we describe the space of stability conditions on the derived category of the n-dimensional Ginzburg algebra associated to the A2 quiver. The form of our results points to a close relationship between these spaces and the Frobenius- Saito structure on the unfolding space of the A2 singularity. 1. Introduction In this paper we study spaces of stability conditions [2] on the sequence of CYn trian- gulated categories Dn associated to the A2 quiver. Our main result is Theorem 1.1 below. There are several striking features. Firstly, we obtain uniform results for all n > 2: the space of stability conditions quotiented by the action of the spherical twists is independent of n, although the identification maps are highly non-trivial. Secondly, there is a close link between our spaces of stability conditions and the Frobenius-Saito structure on the unfolding space of the A2 singularity: in fact this structure is precisely what encodes the identifications between our stability spaces for various n. A third interesting feature is that the space of stability conditions on the derived category of the path algebra of the A2 quiver arises as a kind of limit of the spaces for the categories Dn as n ! 1. 1.1. Statement of results. For each integer n > 2 we let Dn = DCYn (A2) denote the bounded derived category of the CYn complex Ginzburg algebra associated to the A2 quiver. It is a triangulated category of finite type over C, and is characterised by the following two properties: (a) It is CYn, i.e. -
June 2014 Society Meetings Society and Events SHEPHARD PRIZE: NEW PRIZE Meetings for MATHEMATICS 2014 and Events Following a Very Generous Tions Open in Late 2014
LONDONLONDON MATHEMATICALMATHEMATICAL SOCIETYSOCIETY NEWSLETTER No. 437 June 2014 Society Meetings Society and Events SHEPHARD PRIZE: NEW PRIZE Meetings FOR MATHEMATICS 2014 and Events Following a very generous tions open in late 2014. The prize Monday 16 June donation made by Professor may be awarded to either a single Midlands Regional Meeting, Loughborough Geoffrey Shephard, the London winner or jointly to collaborators. page 11 Mathematical Society will, in 2015, The mathematical contribution Friday 4 July introduce a new prize. The prize, to which an award will be made Graduate Student to be known as the Shephard must be published, though there Meeting, Prize will be awarded bienni- is no requirement that the pub- London ally. The award will be made to lication be in an LMS-published page 8 a mathematician (or mathemati- journal. Friday 4 July cians) based in the UK in recog- Professor Shephard himself is 1 Society Meeting nition of a specific contribution Professor of Mathematics at the Hardy Lecture to mathematics with a strong University of East Anglia whose London intuitive component which can be main fields of interest are in page 9 explained to those with little or convex geometry and tessella- Wednesday 9 July no knowledge of university math- tions. Professor Shephard is one LMS Popular Lectures ematics, though the work itself of the longest-standing members London may involve more advanced ideas. of the LMS, having given more page 17 The Society now actively en- than sixty years of membership. Tuesday 19 August courages members to consider The Society wishes to place on LMS Meeting and Reception nominees who could be put record its thanks for his support ICM 2014, Seoul forward for the award of a in the establishment of the new page 11 Shephard Prize when nomina- prize. -
Density of Algebraic Points on Noetherian Varieties 3
DENSITY OF ALGEBRAIC POINTS ON NOETHERIAN VARIETIES GAL BINYAMINI Abstract. Let Ω ⊂ Rn be a relatively compact domain. A finite collection of real-valued functions on Ω is called a Noetherian chain if the partial derivatives of each function are expressible as polynomials in the functions. A Noether- ian function is a polynomial combination of elements of a Noetherian chain. We introduce Noetherian parameters (degrees, size of the coefficients) which measure the complexity of a Noetherian chain. Our main result is an explicit form of the Pila-Wilkie theorem for sets defined using Noetherian equalities and inequalities: for any ε> 0, the number of points of height H in the tran- scendental part of the set is at most C ·Hε where C can be explicitly estimated from the Noetherian parameters and ε. We show that many functions of interest in arithmetic geometry fall within the Noetherian class, including elliptic and abelian functions, modular func- tions and universal covers of compact Riemann surfaces, Jacobi theta func- tions, periods of algebraic integrals, and the uniformizing map of the Siegel modular variety Ag . We thus effectivize the (geometric side of) Pila-Zannier strategy for unlikely intersections in those instances that involve only compact domains. 1. Introduction 1.1. The (real) Noetherian class. Let ΩR ⊂ Rn be a bounded domain, and n denote by x := (x1,...,xn) a system of coordinates on R . A collection of analytic ℓ functions φ := (φ1,...,φℓ): Ω¯ R → R is called a (complex) real Noetherian chain if it satisfies an overdetermined system of algebraic partial differential equations, i =1,...,ℓ ∂φi = Pi,j (x, φ), (1) ∂xj j =1,...,n where P are polynomials. -
Gaps Between Primes
P. I. C. M. – 2018 Rio de Janeiro, Vol. 2 (363–380) GAPS BETWEEN PRIMES J M Abstract We discuss recent advances on weak forms of the Prime k-tuple Conjecture, and its role in proving new estimates for the existence of small gaps between primes and the existence of large gaps between primes. 1 Introduction It follows from the Prime Number Theorem that the average gap between primes less than X is of size roughly log X when X is large. We expect, however, that occasionally these gaps are rather smaller than log X, and occasionally rather larger. Specifically, based on random models and numerical evidence, we believe that the largest and smallest gaps are as described in the following two famous conjectures1. Conjecture 1 (Twin Prime Conjecture). There are infinitely many pairs of primes which differ by exactly 2. th Conjecture 2 (Cramér’s Conjecture, weak form). Let pn denote the n prime. Then 2+o(1) sup (pn+1 pn) = (log X) : pn X Ä Moreover, the Twin Prime Conjecture can be thought of as a special case of the far- reaching Prime k-tuple Conjecture describing more general patterns of many primes. Conjecture 3 (Prime k-tuple Conjecture). Let L1;:::;Lk be integral linear functions k Li (n) = ai n + bi such that for every prime p there is an integer np with Qi=1 Li (np) coprime to p. Then there are infinitely many integers n such that all of L1(n);:::;Lk(n) are primes. The author is funded by a Clay Research Fellowship. -
President's Report
Newsletter VOLUME 43, NO. 6 • NOVEMBER–DECEMBER 2013 PRESIDENT’S REPORT As usual, summer flew by all too quickly. Fall term is now in full swing, and AWM is buzzing with activity. Advisory Board. The big news this fall is the initiation of an AWM Advisory Board. The Advisory Board, first envisioned under Georgia Benkart’s presidency, con- The purpose of the Association for Women in Mathematics is sists of a diverse group of individuals in mathematics and related disciplines with distinguished careers in academia, industry, or government. Through their insights, • to encourage women and girls to breadth of experience, and connections with broad segments of the mathematical study and to have active careers in the mathematical sciences, and community, the Board will seek to increase the effectiveness of AWM, help with fund- • to promote equal opportunity and raising, and contribute to a forward-looking vision for the organization. the equal treatment of women and Members of the Board were selected to represent a broad spectrum of academia girls in the mathematical sciences. and industry. Some have a long history with AWM, and others are new to the orga- nization; all are committed to forwarding our goals. We are pleased to welcome the following Board members: Mary Gray, Chair (American University) Jennifer Chayes (Microsoft Research) Nancy Koppel (Boston University) Irwin Kra (Stony Brook University) Joan Leitzel (University of New Hampshire, Ohio State University) Jill Mesirov (Broad Institute) Linda Ness (Applied Communication Sciences) Richard Schaar (Texas Instruments) IN THIS ISSUE Mary Spilker (Pfizer) Jessica Staddon (Google) 4 AWM Election 14 Benkart Named In addition, the President, Past President (or President Elect) and Executive Noether Lecturer Director of AWM are also members of the Board. -
Langlands Program, Trace Formulas, and Their Geometrization
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 50, Number 1, January 2013, Pages 1–55 S 0273-0979(2012)01387-3 Article electronically published on October 12, 2012 LANGLANDS PROGRAM, TRACE FORMULAS, AND THEIR GEOMETRIZATION EDWARD FRENKEL Notes for the AMS Colloquium Lectures at the Joint Mathematics Meetings in Boston, January 4–6, 2012 Abstract. The Langlands Program relates Galois representations and auto- morphic representations of reductive algebraic groups. The trace formula is a powerful tool in the study of this connection and the Langlands Functorial- ity Conjecture. After giving an introduction to the Langlands Program and its geometric version, which applies to curves over finite fields and over the complex field, I give a survey of my recent joint work with Robert Langlands and NgˆoBaoChˆau on a new approach to proving the Functoriality Conjecture using the trace formulas, and on the geometrization of the trace formulas. In particular, I discuss the connection of the latter to the categorification of the Langlands correspondence. Contents 1. Introduction 2 2. The classical Langlands Program 6 2.1. The case of GLn 6 2.2. Examples 7 2.3. Function fields 8 2.4. The Langlands correspondence 9 2.5. Langlands dual group 10 3. The geometric Langlands correspondence 12 3.1. LG-bundles with flat connection 12 3.2. Sheaves on BunG 13 3.3. Hecke functors: examples 15 3.4. Hecke functors: general definition 16 3.5. Hecke eigensheaves 18 3.6. Geometric Langlands correspondence 18 3.7. Categorical version 19 4. Langlands functoriality and trace formula 20 4.1. -
A Chapter from "Art in the Life of Mathematicians", Ed
A chapter from "Art in the Life of Mathematicians", ed. Anna Kepes Szemeredi American Mathematical Society, 2015 69 Edward Frenkel Mathematics, Love, and Tattoos1 The lights were dimmed... After a few long seconds of silence the movie theater went dark. Then the giant screen lit up, and black letters appeared on the white background: Red Fave Productions in association with Sycomore Films with support of Fondation Sciences Mathématiques de Paris present Rites of Love and Math2 The 400-strong capacity crowd was watching intently. I’d seen it countless times in the editing studio, on my computer, on TV... But watching it for the first time on a panoramic screen was a special moment which brought up memories from the year before. I was in Paris as the recipient of the firstChaire d’Excellence awarded by Fonda- tion Sciences Mathématiques de Paris, invited to spend a year in Paris doing research and lecturing about it. ___ 1 Parts of this article are borrowed from my book Love and Math. 2 For more information about the film, visit http://ritesofloveandmath.com, and about the book, http://edwardfrenkel.com/lovemath. ©2015 Edward Frenkel 70 EDWARD FRENKEL Paris is one of the world’s centers of mathematics, but also a capital of cinema. Being there, I felt inspired to make a movie about math. In popular films, math- ematicians are usually portrayed as weirdos and social misfits on the verge of mental illness, reinforcing the stereotype of mathematics as a boring and irrel- evant subject, far removed from reality. Would young people want a career in math or science after watching these movies? I thought something had to be done to confront this stereotype. -
Love and Math: the Heart of Hidden Reality
Book Review Love and Math: The Heart of Hidden Reality Reviewed by Anthony W. Knapp My dream is that all of us will be able to Love and Math: The Heart of Hidden Reality see, appreciate, and marvel at the magic Edward Frenkel beauty and exquisite harmony of these Basic Books, 2013 ideas, formulas, and equations, for this will 292 pages, US$27.99 give so much more meaning to our love for ISBN-13: 978-0-465-05074-1 this world and for each other. Edward Frenkel is professor of mathematics at Frenkel’s Personal Story Berkeley, the 2012 AMS Colloquium Lecturer, and Frenkel is a skilled storyteller, and his account a 1989 émigré from the former Soviet Union. of his own experience in the Soviet Union, where He is also the protagonist Edik in the splendid he was labeled as of “Jewish nationality” and November 1999 Notices article by Mark Saul entitled consequently made to suffer, is gripping. It keeps “Kerosinka: An Episode in the History of Soviet one’s attention and it keeps one wanting to read Mathematics.” Frenkel’s book intends to teach more. After his failed experience trying to be appreciation of portions of mathematics to a admitted to Moscow State University, he went to general audience, and the unifying theme of his Kerosinka. There he read extensively, learned from topics is his own mathematical education. first-rate teachers, did mathematics research at a Except for the last of the 18 chapters, a more high level, and managed to get some of his work accurate title for the book would be “Love of Math.” smuggled outside the Soviet Union. -
The Top Mathematics Award
Fields told me and which I later verified in Sweden, namely, that Nobel hated the mathematician Mittag- Leffler and that mathematics would not be one of the do- mains in which the Nobel prizes would The Top Mathematics be available." Award Whatever the reason, Nobel had lit- tle esteem for mathematics. He was Florin Diacuy a practical man who ignored basic re- search. He never understood its impor- tance and long term consequences. But Fields did, and he meant to do his best John Charles Fields to promote it. Fields was born in Hamilton, Ontario in 1863. At the age of 21, he graduated from the University of Toronto Fields Medal with a B.A. in mathematics. Three years later, he fin- ished his Ph.D. at Johns Hopkins University and was then There is no Nobel Prize for mathematics. Its top award, appointed professor at Allegheny College in Pennsylvania, the Fields Medal, bears the name of a Canadian. where he taught from 1889 to 1892. But soon his dream In 1896, the Swedish inventor Al- of pursuing research faded away. North America was not fred Nobel died rich and famous. His ready to fund novel ideas in science. Then, an opportunity will provided for the establishment of to leave for Europe arose. a prize fund. Starting in 1901 the For the next 10 years, Fields studied in Paris and Berlin annual interest was awarded yearly with some of the best mathematicians of his time. Af- for the most important contributions ter feeling accomplished, he returned home|his country to physics, chemistry, physiology or needed him. -
Calculus Redux
THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA VOLUME 6 NUMBER 2 MARCH-APRIL 1986 Calculus Redux Paul Zorn hould calculus be taught differently? Can it? Common labus to match, little or no feedback on regular assignments, wisdom says "no"-which topics are taught, and when, and worst of all, a rich and powerful subject reduced to Sare dictated by the logic of the subject and by client mechanical drills. departments. The surprising answer from a four-day Sloan Client department's demands are sometimes blamed for Foundation-sponsored conference on calculus instruction, calculus's overcrowded and rigid syllabus. The conference's chaired by Ronald Douglas, SUNY at Stony Brook, is that first surprise was a general agreement that there is room for significant change is possible, desirable, and necessary. change. What is needed, for further mathematics as well as Meeting at Tulane University in New Orleans in January, a for client disciplines, is a deep and sure understanding of diverse and sometimes contentious group of twenty-five fac the central ideas and uses of calculus. Mac Van Valkenberg, ulty, university and foundation administrators, and scientists Dean of Engineering at the University of Illinois, James Ste from client departments, put aside their differences to call venson, a physicist from Georgia Tech, and Robert van der for a leaner, livelier, more contemporary course, more sharply Vaart, in biomathematics at North Carolina State, all stressed focused on calculus's central ideas and on its role as the that while their departments want to be consulted, they are language of science. less concerned that all the standard topics be covered than That calculus instruction was found to be ailing came as that students learn to use concepts to attack problems in a no surprise. -
Giuseppe Gaeta – List of Publications∗
Giuseppe Gaeta { List of publications∗ Books [B1 ] G. Gaeta: \Nonlinear symmetries and nonlinear equations" (series: Math- ematics and Its Application, vol. 299); Kluwer Academic Publishers (Dor- drecht) 1994; ISBN 0-7923-3048-X [B2 ] G. Gaeta and G. Cicogna: \Symmetry and perturbation theory in non- linear dynamics" (series: Lecture Notes in Physics, vol. M57); Springer (Berlin) 1999; ISBN 3-540-65904 Monographs [M1 ] G. Gaeta: \Bifurcation and symmetry breaking"; Physics Reports 189 (1990), n. 1, 1-87 [M2 ] G. Gaeta, C. Reiss, M. Peyrard and T. Dauxois: \Simple models of DNA nonlinear dynamics"; Rivista del Nuovo Cimento 17 (1994), n.4, 1-48 Edited volumes [E1 ] D. Bambusi and G. Gaeta (eds.): \Symmetry and Perturbation Theory" (Proceedings of Torino Workshop, I.S.I., December 1996); G.N.F.M. { C.N.R. (Gruppo Nazionale di Fisica Matematica { Consiglio Nazionale delle Ricerche), Roma, 1997 [E2 ] A. Degasperis and G. Gaeta (eds.): \Symmetry and Perturbation Theory II { SPT98" (Proceedings of Roma Workshop, Universit´a\La Sapienza", December 1998); World Scientific, Singapore, 1999; ISBN 981-02-4166-6 ∗Only research and review papers and monographs are listed; in particular, this list does not include contributions to conferences or schools proceedings (as these reproduce results obtained in research papers). Note that books and monographs (not edited volumes nor textbook) also appear in the list of published research works. Last modified 5/12/2015. 1 [E3 ] D. Bambusi, G. Gaeta and M. Cadoni (eds.): \Symmetry and Pertur- bation Theory { SPT2001" (Proceedings of the international conference SPT2001, Cala Gonone, Sardinia, Italy, 6-13 May 2001); World Scientific, Singapore, 2001; ISBN 981-02-4793-1 [E4 ] G. -
Analytic Number Theory in Honor of Helmut Maier’S 60Th Birthday
springer.com Carl Pomerance, Michael Th. Rassias (Eds.) Analytic Number Theory In Honor of Helmut Maier’s 60th Birthday Presents the latest developments and applications by leading experts in Analytic Number Theory Contains contributions by mathematicians who have published jointly with Helmut Maier Contains practical material for graduate students and research mathematicians, as well as for computer scientists and engineers??????? ? This volume contains a collection of research and survey papers written by some of the most eminent mathematicians in the international community and is dedicated to Helmut Maier, whose own research has been groundbreaking and deeply influential to the field. Specific emphasis is given to topics regarding exponential and trigonometric sums and their behavior in short intervals, anatomy of integers and cyclotomic polynomials, small gaps in sequences of sifted prime numbers, oscillation theorems for primes in arithmetic progressions, inequalities related to the distribution of primes in short intervals, the Möbius function, Euler’s totient 1st ed. 2015, VIII, 379 p. function, the Riemann zeta function and the Riemann Hypothesis. Graduate students, research mathematicians, as well as computer scientists and engineers who are interested in pure and Printed book interdisciplinary research, will find this volume a useful resource. Contributors to this volume: Hardcover Bill Allombert, Levent Alpoge, Nadine Amersi, Yuri Bilu, Régis de la Bretèche, Christian Elsholtz, 99,99 € | £89.99 | $119.99 John B. Friedlander, Kevin Ford, Daniel A. Goldston, Steven M. Gonek, Andrew Granville, Adam J. [1] 106,99 € (D) | 109,99 € (A) | CHF Harper, Glyn Harman, D. R. Heath-Brown, Aleksandar Ivi, Geoffrey Iyer, Jerzy Kaczorowski, 118,00 Daniel M.