Characterisation and Evolution of Periglacial Landscapes in Northern Siberia During the Late Quaternary – Remote Sensing and GIS Studies

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation and Evolution of Periglacial Landscapes in Northern Siberia During the Late Quaternary – Remote Sensing and GIS Studies Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam Working Group “Periglacial Dynamics” Characterisation and evolution of periglacial landscapes in Northern Siberia during the Late Quaternary – Remote sensing and GIS studies Dissertation zur Erlangung des akademischen Grades „doctor rerum naturalium“ (Dr. rer. nat.) in der Wissenschaftsdisziplin „Geologie“ eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Guido Grosse Potsdam, März 2005 Table of contents Table of contents .........................................................................................................................I Abstract ....................................................................................................................................IV Kurzfassung..............................................................................................................................VI 1. Introduction......................................................................................................................... 1 1.1 Scientific background................................................................................................. 1 1.1.1 Permafrost and permafrost distribution.............................................................. 1 1.1.2 Permafrost in the Quaternary ............................................................................. 2 1.1.3 Permafrost as palaeoclimate archive.................................................................. 3 1.1.4 Permafrost and changing climate ....................................................................... 4 1.2 Aims and approaches ................................................................................................. 5 1.2.1 Basic ideas.......................................................................................................... 5 1.2.2 Field work .......................................................................................................... 7 1.3 Study area................................................................................................................... 7 1.3.1 Geography of the Laptev Sea region.................................................................. 7 1.3.2 Geology and tectonics ........................................................................................ 9 1.3.3 Palaeogeography during the Late Pleistocene.................................................. 10 1.3.4 Ice Complex and thermokarst .......................................................................... 13 1.4 Synopsis ................................................................................................................... 14 2. The use of CORONA images in remote sensing of periglacial geomorphology: An illustration from the NE Siberian coast ............................................................................ 16 2.1 Abstract .................................................................................................................... 16 2.2 Introduction .............................................................................................................. 16 2.3 The CORONA program and its satellite images...................................................... 17 2.4 Investigation area ..................................................................................................... 17 2.5 Image processing...................................................................................................... 19 2.6 Mapping of thermokarst and water surfaces ............................................................ 22 2.7 Results ...................................................................................................................... 25 2.8 Conclusions .............................................................................................................. 26 3. Application of Landsat-7 satellite data for the quantification of thermokarst-affected terrain types in the periglacial Lena-Anabar coastal lowland .......................................... 27 3.1 Abstract .................................................................................................................... 27 3.2 Introduction .............................................................................................................. 27 3.3 Approach .................................................................................................................. 31 I 3.4 Investigation area ..................................................................................................... 31 3.5 Fieldwork ................................................................................................................. 34 3.6 Digital elevation data ............................................................................................... 35 3.7 Remote sensing data................................................................................................. 35 3.7.1 Basic information ............................................................................................. 35 3.7.2 Classification approach .................................................................................... 37 3.8 Results and analyses................................................................................................. 39 3.8.1 Classification results ........................................................................................ 39 3.8.2 Evaluation and accuracy assessment of the classification ............................... 39 3.8.3 Analysis of the classification result.................................................................. 42 3.9 Discussion ................................................................................................................ 46 3.10 Conclusion................................................................................................................ 48 4. Geological and geomorphological evolution of a periglacial landscape complex in Northeast Siberia during the Late Quaternary.................................................................. 50 4.1 Abstract .................................................................................................................... 50 4.2 Introduction .............................................................................................................. 50 4.3 Study area................................................................................................................. 54 4.4 Methods and Materials............................................................................................. 57 4.4.1 Compilation of a cryolithological field data base ............................................ 58 4.4.2 Satellite remote sensing data............................................................................ 63 4.4.3 Digital elevation data ....................................................................................... 64 4.5 Results ...................................................................................................................... 64 4.5.1 Sediment studies............................................................................................... 64 4.5.2 Derivation of landscape development stages from surface structures ............. 72 4.5.3 Terrain analysis ................................................................................................ 76 4.6 Evolution of the landscape and discussion............................................................... 77 4.6 Evolution of the landscape and discussion............................................................... 78 4.6.1 Pliocene – Early Pleistocene ............................................................................ 78 4.6.2 Early Weichselian (Zyryan Stadial) ................................................................. 78 4.6.3 Middle Weichselian (Kargin Interstadial)........................................................ 81 4.6.4 Late Weichselian (Sartan Stadial).................................................................... 82 4.6.5 Transition period from Late Weichselian (Sartan Stadial) – Early Holocene.. 83 4.6.6 Early Holocene................................................................................................. 85 4.6.7 Middle-Late Holocene...................................................................................... 87 II 4.7 Conclusions .............................................................................................................. 88 5. Synthesis........................................................................................................................... 91 5.1 Intention ................................................................................................................... 91 5.2 Methods and techniques........................................................................................... 92 5.3 Results ...................................................................................................................... 94 5.3.1 Periglacial surface structures and thermokarst quantification.......................... 94 5.3.2 Reconstruction of the Palaeo-landscape evolution........................................... 95 5.4 Outlook..................................................................................................................... 97 5.4.1 Further investigations of important processes.................................................
Recommended publications
  • Mineral Element Stocks in the Yedoma Domain
    Discussions https://doi.org/10.5194/essd-2020-359 Earth System Preprint. Discussion started: 8 December 2020 Science c Author(s) 2020. CC BY 4.0 License. Open Access Open Data Mineral element stocks in the Yedoma domain: a first assessment in ice-rich permafrost regions Arthur Monhonval1, Sophie Opfergelt1, Elisabeth Mauclet1, Benoît Pereira1, Aubry Vandeuren1, Guido Grosse2,3, Lutz Schirrmeister2, Matthias Fuchs2, Peter Kuhry4, Jens Strauss2 5 1Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium 2Permafrost Research Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany 3Institute of Geosciences, University of Potsdam, Potsdam, Germany 4Department of Physical Geography, Stockholm University, Stockholm, Sweden 10 Correspondence to: Arthur Monhonval ([email protected]) Abstract With permafrost thaw, significant amounts of organic carbon (OC) previously stored in frozen deposits are unlocked and 15 become potentially available for microbial mineralization. This is particularly the case in ice-rich regions such as the Yedoma domain. Excess ground ice degradation exposes deep sediments and their OC stocks, but also mineral elements, to biogeochemical processes. Interactions of mineral elements and OC play a crucial role for OC stabilization and the fate of OC upon thaw, and thus regulate carbon dioxide and methane emissions. In addition, some mineral elements are limiting nutrients for plant growth or microbial metabolic activity. A large ongoing effort is to quantify OC stocks and their lability in permafrost 20 regions, but the influence of mineral elements on the fate of OC or on biogeochemical nutrient cycles has received less attention. The reason is that there is a gap of knowledge on the mineral element content in permafrost regions.
    [Show full text]
  • State of Circumpolar Walrus Populations Odobenus Rosmarus
    REPORT WWF ARCTIC PROGRAMME State of Circumpolar Walrus Populations Odobenus rosmarus Prepared by Jeff W. Higdon and D. Bruce Stewart Published in May 2018 by the WWF Arctic Programme. Any reproduction in full or in part must mention the title and credit the above-mentioned pub- lisher as copyright holder. Prepared by Jeff W. Higdon1 and D. Bruce Stewart2 3, May 2018 Suggested citation Higdon, J.W., and D.B. Stewart. 2018. State of circumpolar walrus (Odobenus rosmarus) populations. Prepared by Higdon Wildlife Consulting and Arctic Biological Consultants, Winni- peg, MB for WWF Arctic Programme, Ottawa, ON. 100 pp. Acknowledgements Tom Arnbom (WWF Sweden), Mette Frost (WWF Greenland), Kaare Winther Hansen (WWF Denmark), Melanie Lancaster (WWF Canada), Margarita Puhova (WWF Russia), and Clive Tesar (WWF Canada) provided constructive review comments on the manuscript. We thank our external reviewers, Maria Gavrilo (Deputy Director, Russian Arctic National Park), James MacCracken (USFWS) and Mario Acquarone (University of Tromsø) for their many help- ful comments. Helpful information and source material was also provided by Chris Chenier (Ontario Ministry of Natural Resources), Chad Jay (United States Geological Survey), Allison McPhee (Department of Fisheries and Oceans Canada), Kenneth Mills (Ontario Ministry of Natural Resources), Julie Raymond-Yakoubian (Kawerak Inc.), and Fernando Ugarte (Green- land Institute of Natural Resources). Monique Newton (WWF-Canada) facilitated the work on this report. Rob Stewart (retired - Department of Fisheries and Oceans Canada) provided welcome advice, access to his library and permission to use his Foxe Basin haulout photo. Sue Novotny provided layout. Cover image: © Wild Wonders of Europe / Ole Joergen Liodden / WWF Icons: Ed Harrison / Noun Project About WWF Since 1992, WWF’s Arctic Programme has been working with our partners across the Arctic to combat threats to the Arctic and to preserve its rich biodiversity in a sustainable way.
    [Show full text]
  • Otchet-0381-2014-0002-2016.Pdf
    Реферат Отчет 56 с., рис. 23, табл. 1, приложение 1 на 17 с. Ключевые слова: ТЕКТОНИКА, ГЕОДИНАМИКА, МАГМАТИЗМ, ОСАДОЧНЫЕ БАССЕЙНЫ, СЕЙСМИЧНОСТЬ, ЛИТОСФЕРА, ЭВОЛЮЦИЯ, АРКТИКА, ВЕРХОЯНО- КОЛЫМСКАЯ СКЛАДЧАТАЯ ОБЛАСТЬ, СЕВЕРО-ВОСТОК СИБИРСКОГО КРАТОНА Объект исследования: арктические территории Якутии (континентальная и пришельфовая области – север Сибирского кратона), север Верхояно-Колымской складчатой области (ВКСО), Верхоянского складчато-надвигового пояса (ВСНП). Научное направление: Геодинамические закономерности вещественно-структурной эволю- ции твердых оболочек Земли. Актуальность обусловлена необходимостью создания обобщающей модели геодинамического развития Северной Азии в позднем докембрии и фанерозое. Цель про- екта – установление строения и геодинамических закономерностей вещественно-структурной эволюции литосферы арктического сектора ВКСО и северо-востока Сибирской кратона; разработ- ка палеогеографических и геодинамических моделей формирования этой части Арктики для соз- дания региональной тектонической основы при проведении поисковых и геологосъемочных работ. Проводились исследования по двум блокам: 1) От эволюции и динамики развития неопротерозой- ско-фанерозойских осадочных бассейнов к формированию орогенных поясов: корреляция разно- возрастных седиментационных и тектоно-магматических событий арктического сектора ВКСО, СВ Сибирской платформы и о–вов Новосибирского архипелага; 2) Мезозойский магматизм аркти- ческого сектора ВКСО. Содержание работ в 2016 г.: Изучение проявления раннекембрийского бимодального магматизма Хараулахского
    [Show full text]
  • 5.3.3 Onshore Coastal Studies - Coastal Dynamics at Key Sites of the New Siberian Lslands, Dmitry Laptev Strait, and Buor-Khaya Bay Mikhail N
    5 The New Siberian lslands The Ex~editionLENA 2002 5.3.3 Onshore coastal studies - coastal dynamics at key sites of the New Siberian lslands, Dmitry Laptev Strait, and Buor-Khaya Bay Mikhail N. Grigoriev, Feliks E. Are, Hans-W., Hubberten, Volker Rachold, Sergey 0. Razumov and Waldemar Schneider 5.3.3.1 lntroduction The main objective of the onshore coastal studies was to quantitatively assess coastal change rates (shoreline and cliff edge) focussing On erosive coasts. Twelve key sites along the coast of the Laptev and East-Siberian Seas were studied (Fig. 5.3.1-1): New Siberian Archipelago: north-eastern coast of Stolbovoy lsland (lce Complex and thermokarst deposits, ice-poor Pleistocene-Holocene coasts); northern coast of Kotelny lsland, Anisy Cape (lce Complex and thermokarst deposits, ice-poor Pleistocene-Holocene coasts); southern coast of Belkovsky Island, Skalisty Cape (rocky and other types of non-icy coasts); south-eastern coast of Kotelny Island, Khomurgunnakh River mouth area (lce Complex and thermokarst deposits, ice-poor Pleistocene-Holocene coasts); south-western coast of Bunge Land, Bunge polar station ("high sand" area, marine terrace); southern coast of Novoya Sibir Island, Wood Mountain Cape (rocky and other types of non-icy coasts, ice-poor Pleistocene coasts); south-western coast of Novoya Sibir Island (lce Complex and thermokarst deposits, ice-rich marine deposits, ice-poor Pleistocene- Holocene coasts); southern coast of Bunge Land ("low sand" area, marine terrace); north-western coast of Maly Lyakhovsky Island (lce Complex and thermokarst deposits, ice-poor Pleistocene-Holocene coasts); Dmitry Laptev Sfraif (mainland coasf): 10) Svyatoy Nos Cape (ice-poor and ice-rich Pleistocene-Holocene coasts, rocky and other types of non-icy coasts); II) Oyagossky Yar, mouth of Kondratev River area (lce Complex and thermokarst deposits); Buor-Khaya Bay: 12) north-western coast of Muostakh Island (lce Complex).
    [Show full text]
  • Kazan Golovkinsky Stratigraphic Meeting
    Kazan Golovkinsky Stratigraphic Meeting 2017 Kazan Federal University Institute of Geology and Petroleum Technologies Kazan Golovkinsky Stratigraphic Meeting,19 - 23 September , 201 7 , Kazan, Russia ISBN 978-5-00019-273-3 9 785908010 810962279323 > Kazan Federal University Institute of Geology and Petroleum Technologies Kazan Golovkinsky Stratigraphic Meeting – 2017 and Fourth All-Russian Conference “Upper Palaeozoic of Russia” Upper Palaeozoic Earth systems high-precision biostratigraphy, geochronology and petroleum resources Abstract Volume 19–23 September 2017, Kazan, Russia KAZAN 2017 UDC 551.736.3(470.4) К25 Scientific editors: Danis K. Nurgaliev, Vladimir V. Silantiev Technical editor Veronika V. Zharinova Kazan Golovkinsky Stratigraphic Meeting – 2017 and Fourth All-Russian Conference К25 “Upper Palaeozoic of Russia”. Upper Palaeozoic Earth systems: high-precision biostratigraphy, geochronology and petroleum resources. Abstract volume. Kazan, September, 19–23, 2017 / D.K. Nurgaliev, V.V. Silantiev (Eds.). – Kazan: Kazan University Press, 2017. – 234 p. ISBN 978-5-00019-855-1 Abstract Volume was compiled for the Kazan Golovkinsky Stratigraphic Meeting, 2017 and Fourth All-Russian Conference “Upper Palaeozoic of Russia”. The publication was supported by the Russian Foundation for Basic Research (project no. 17-05-20511) UDC 551.736.3(470.4) ISBN 978-5-00019-855-1 © Kazan University Press, 2017 Казанский федеральный университет Институт геологии и нефтегазовых технологий Международная стратиграфическая конференция Головкинского – 2017 и Четвертая Всероссийская конференция «Верхний палеозой России» Планетарные системы верхнего палеозоя биостратиграфия, геохронология и углеводородные ресурсы Сборник тезисов 19–23 сентября 2017 г., Казань, Россия КАЗАНЬ 2017 УДК 551.736.3(470.4) М43 Научные редакторы Д.К. Нургалиев, В.В. Силантьев Составитель В.В.
    [Show full text]
  • USS Queenfish
    UNKNOWN WATERS Unknown Waters A Firsthand Account of the Historic Under- Ice Survey of the Siberian Continental Shelf by USS Queenfi sh (SSN-651) Alfred S. McLaren Captain, U.S. Navy (Ret.) With a foreword by Captain William R. Anderson, U.S. Navy (Ret.) THE UNIVERSITY OF ALABAMA PRESS Tuscaloosa Copyright © 2008 The University of Alabama Press Tuscaloosa, Alabama 35487-0380 All rights reserved Manufactured in the United States of America Typeface: AGaramond ∞ The paper on which this book is printed meets the minimum requirements of American National Standard for Information Sciences- Permanence of Paper for Printed Library Materials, ANSI Z39.48-1984. Library of Congress Cataloging- in- Publication Data McLaren, Alfred Scott. Unknown waters : a fi rsthand account of the historic under- ice survey of the Siberian continental shelf by USS Queenfi sh / Alfred S. McLaren, Captain, U.S. Navy (Ret.) ; with a foreword by Captain William R. Anderson, U.S. Navy (Ret.). p. cm. Includes bibliographical references and index. ISBN 978-0-8173-1602-0 (cloth : alk. paper) — ISBN 978-0-8173-8006-9 (electronic) 1. Queenfi sh (Submarine) 2. McLaren, Alfred Scott. 3. Arctic regions— Discovery and exploration— American. 4. Continental shelf— Arctic regions. 5. Continental shelf— Russia (Federation)—Siberia. 6. Underwater exploration— Arctic Ocean. I. Title. II. Title: Firsthand account of the historic under- ice survey of the Siberian continental shelf by USS Queenfi sh. VA65.Q44M33 2008 359.9′330973—dc22 2007032113 All chartlets were taken from the International Bathymetric Chart of the Arctic Ocean (IBCAO), Research Publication RP-2, National Geophysical Data Center, Boulder, Colorado USA 80305, 2004.
    [Show full text]
  • Tectonic Map of the Arctic 2019 PARIS.Indd
    SCIENTIFIC CONTRIBUTIONS TO THE TECTONIC MAP OF THE ARCTIC Editors-in-chief O. V. Petrov, М. Pubellier CGMW Paris • 2019 UDC: 551.24(98)(084.3) Scientifi c contributions to the Tectonic Map of the Arctic / eds. O. V. Petrov, М. Pubel- lier (VSEGEI/CGMW). Paris: CGMW, 2019. 64 p. This booklet is devoted to the Tectonic Map of the Arctic (TeMAr) that has been compiled under the International project “Atlas of Geological Maps of the Circumpolar Arctic in scale 1:5M”. The project has been carried out since 2004 by Geological Surveys of the Arctic coun- tries supported by the UNESCO Commission for the Geological Map of the World (CGMW) and national programs for scientifi c substantiation for the United Nations Commission for the Law of the Sea (UNCLOS). The TeMAr working group coordinated by Russia (VSEGEI) includes leading scientists from Geological Surveys, universities and national Academies of Sciences of Denmark, Sweden, Norway, Russia, Canada, the USA, France, Germany and Great Britain. The booklet includes brief descriptions of the Tectonic Map of the Arctic; the descriptions of the geotransect, scheme of the Arctic tectonic provinces, geophysical maps that illustrate the deep structure of the Earth’s crust and upper mantle of the Circumpolar Arctic, and brief notes on tectonic model and geodynamic evolution of the Arctic. The Tectonic Map of the Arctic is attached to the booklet. The Tectonic map is recommended for publishing by the expert council of the Commission for the Geological Map of the World Manuel Pubellier, President, Commission for the Geological Map of the World Philippe Rossi, President (till 02.2018) of the Commission for the Geological Map of the World Oleg Petrov, Vice-President of the CGMW for Northern Eurasia Sergey Shokalsky, Secretary General of the CGMW Subcommission for Northern Eurasia Marc St-Оnge, Vice-President of the CGMW for Northern and Central America Alexander Khanchuk, President of the Subcommission for Tectonic maps Igor Pospelov, Secretary General of the Subcommission for Tectonic maps © CGMW, 2019 © A.P.
    [Show full text]
  • U/Pb Dating of Detrital Zircons from Late Palaeozoic Deposits of Bel’Kovsky Island (New Siberian Islands): Critical Testing of Arctic Tectonic Models Victoria B
    This article was downloaded by: [5.18.96.160] On: 16 April 2015, At: 10:08 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK International Geology Review Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tigr20 U/Pb dating of detrital zircons from late Palaeozoic deposits of Bel’kovsky Island (New Siberian Islands): critical testing of Arctic tectonic models Victoria B. Ershovaa, Andrei V. Prokopievb, Andrey K. Khudoleya, Nikolay N. Sobolevc & Eugeny O. Petrovc a Institute of Earth Science, Saint Petersburg State University, Saint Petersburg, Russia b Diamond and Precious Metal Geology Institute, Siberian Branch, Russian Academy of Sciences, Yakutsk, Russia c All Russian Geological Institute (VSEGEI), Saint Petersburg, Russia Published online: 29 Jan 2015. Click for updates To cite this article: Victoria B. Ershova, Andrei V. Prokopiev, Andrey K. Khudoley, Nikolay N. Sobolev & Eugeny O. Petrov (2015) U/Pb dating of detrital zircons from late Palaeozoic deposits of Bel’kovsky Island (New Siberian Islands): critical testing of Arctic tectonic models, International Geology Review, 57:2, 199-210, DOI: 10.1080/00206814.2014.999358 To link to this article: http://dx.doi.org/10.1080/00206814.2014.999358 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content.
    [Show full text]
  • Climate Drivers of the North
    TERRATERRA NOSTRANOSTRA Schriften der Alfred-Wegener-Stiftung 2002/3 Climate Drivers of the North Program and Abstracts vers o ri d r m i l c K i 02 l, May 8-11, Funded by the German Ministry of Education and Research & Russian Ministry of Industry, Sciences and Technologies IMPRESSUM TERRA NOSTRA Heft 2002/3 Climate Drivers of the North Herausgeber: Alfred-Wegener-Stiftung, Arno-Holz-Straße 14, Alexander von Humboldt-Haus, D-12165 Berlin Telefon: +49-30-790-1374-0; Telefax: +49-30-790-1374-1 Schriftleitung: Prof. Dr. H. Ristedt, Institut für Paläontologie, Universität Bonn, Nussallee 8, D-53115 Bonn Telefon: +49-228-732935, Telefax: +49-228-733509; E-Mail: [email protected] Verantwortlich: H. Kassens1, N. Biebow2, W.-Chr. Dullo1, E. Galimov3, G. Cherkashov4, H.-W. Hubberten5, V. Kotlyakov6, A.P. Lisitzin7, J.W.F. Negendank8, S. Pryamikov9, J. Thiede10, V. Troyan11 (1) GEOMAR Forschungszentrum für marine Geowissenschaften, Wischhofstraße 1-3, D-24148 Kiel, Germany (2) TETHYS Geoconsulting GmbH, Wischhofstraße 1-3, D-24148 Kiel, Germany (3) Vernadsky Institut of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin Street 19, 117975 Moscow, Russia (4) VNIIOkeangeologia, Angliskaya ave. 1, 190121 St. Petersburg, Russia (5) Alfred-Wegener-Institut für Polar- und Meeresforschung, Forschungsstelle Potsdam, Telegrafenberg A 43, D- 14473 Potsdam, Germany (6) Institute of Geography, Russian Academy of Sciences, Staromonetny per., 109017 Moscow, Russia (7) P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky ave. 36, 117851 Moscow, Russia (8) GeoForschungsZentrum Potsdam, Telegrafenberg A 17, D-14407 Potsdam, Germany (9) State Research Center – Arctic and Antarctic Research Institute, Department of International Science Corporation, Bering Street 38, 199397 St.
    [Show full text]
  • 5.3.4 Water Temperature and Hydrometeorological Characteristics Along the Coasts of the New Siberian Islands Sergey 0
    5 The New Siberian Islands The Expedition LENA 2002 5.3.4 Water temperature and hydrometeorological characteristics along the coasts of the New Siberian Islands Sergey 0. Razumov and Mikhail N. Grigoriev During the expedition "Lena-New Siberian Islands 2002" measurements of water temperature on vertical profiles at 11 stations were conducted. At two sites serial measurements during 1 and 3 days were carried out. The measurements in the eastern Laptev Sea (west of the Sannikov Strait) have revealed a rather warm water layer (0-0.3 'C) in a water depth of 18-22 m (Fig. 5.3.4-1, Table 5.3.4-1). Apparently this layer was formed as a result of advection of a warmed up (0.1-0.4 ¡C salt water mass (30-31 %o) from the Yana Bay. East of the Sannikov Strait (near Novoya Sibir Island) the temperature in the water column (0-15 m depth) changed from 2.7-3 'C at the surface to 1.6 OC at the bottom. The hydrothermal profile along the Sannikov Strait (Fig. 5.3.4-2) shows that according to water temperature distribution cold water (down to -1 .I'C) can be supplied to the Sannikov strait from the Laptev Sea, and warmer water from the East Siberian Sea. During our observations the water temperature varied from - 1.I to 1.8 OC near the bottom and from 1.3 to 3.7 'C near the surface. The direction of the water currents in the strait mainly depends on the wind regime. During western winds and calm conditions the current is directed from the Laptev to the East Siberian Sea.
    [Show full text]
  • Chapter 9 Holocene History of The
    Chapter 9 Holocene History of the Laptev Sea Continental Shelf 1 M. L. HOLMES 2 AND J. S. CREAGER 2 Abstract Introduction The 400-km-wide, low gradient Laptev Sea conti­ The Laptev Sea is one of three epicontinental nental shelf consists of flat terrace-like features at seas lying along the northern coast of central regular depth intervals from 10 to 40 m below present Asiatic Russia (see Fig. 1, Naugler et al., this sea level. The five large submarine valleys traversing the volume). Field work was carried out during July shelf do not continuously grade seaward, but contain and August 1963, aboard the U.S. Coast Guard elongated, closed basins. These terraces and closed ice-breaker Northwind. Ninety-nine stations were basins plus deltaic sediments associated with the sub­ occupied along approximately 4000 km of track, marine valleys quite possibly mark sea level stillstands, and enable reconstruction of the paleogeography of the and bottom samples collected include 58 gravity Laptev Sea shore line at five periods during post-Wis­ cores and 62 grab samples (Fig. 1). This paper is consin (Holocene) time. concerned with the analysis of bathymetric data Radiocarbon dates on the silty-clay to clayey-silt and the study of 14 cores from the northeastern sediments from cores of the northeastern Laptev Sea Laptev Sea, and discusses sea-level history and indicate average sedimentation intensity of 2 to 15 paleogeography of coast lines of the Laptev Sea mglcm2/yr. The presence of manganese nodules and during Holocene (post-Wisconsin) time. crusts in surface samples from less than 55 m depths The climatic and physiographic features of and a general decrease in total foraminiferal abun­ the surrounding area are described by Suslov dances with depth in the cores suggest that the present (1961, p.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italics refer to Figures. Page numbers in bold refer to Tables. Alaska-Chukotka, Sector B 3,4 Palaeogene 86, 87 Alert Geomagnetic Anomaly 13 Palaeozoic, early 66–69 Aleutian Basin 102–103 Palaeozoic, late 69–72 Aleutian subduction complex 103 Permian-Triassic 72 Allen Bay Formation 49, 50 Precambrian 62–65 Allman Bay Reverse Fault 49, 49, 50 zircon U-Pb dates 63, 138–140 Alpha Horst 91, 93 see also Provideniya-Chaplino region Alpha Ridge 14, 87, 452, 456 Arctic Alaska Chukotka (AAC) terrane 183–185 Cretaceous magmatism 288, 306, 388–389, 443, 449 geological setting 186–187 map 20, 398, 420, 442 integrated zircon studies Moho depth 91, 446 methods 188–191 sediment thickness 91 results 191–197 transect C data 91–93 results discussed 197–202 Amerasia Basin 1, 21, 61, 178, 443, 445, 446, 449, 456 Arctic lithosphere map 2, 83, 398, 442 Canada Basin 431–432 palaeo-reconstruction 386–388 Canadian Arctic Archipelago 432–433 transect C data 87 craton-ocean boundaries 432 Amerasia Basin Transform Fault 240, 256, 258 cratons 432 Amundsen Basin 420 Eurasia Basin 432 Anadyr 160 Iceland plume 434–435 Angayucham Belt 160 intraplate volcanism 434 Angayucham Terrane 62, 84 Siberian Traps 434 Angayukaqsraq, Mount 184 structure 431, 443, 444, 445 Anisin Formation 242 crust and sedimentary basins 445 Anisin Rift 243, 256, 271, 273, 280 mantle lithosphere 446 Anzhu Islands 239, 241 sub-lithospheric pressure 445–446 Anzhu Rift Zone 270, 273 Arctic Ocean apatite fission track (AFT) analysis 315, 318 basins 1, 2 Lomonosov Ridge 401, 403
    [Show full text]