THE DRAGON TAMED? A MOLECULAR PHYLOGENY OF THE CONOIDEA (GASTROPODA) N. PUILLANDRE1, YU. I. KANTOR2,A.SYSOEV3,A.COULOUX4, C. MEYER5, T. RAWLINGS6,J.A.TODD7 AND P. BOUCHET1 1Departement Systematique et Evolution, UMR 7138, Muse´um National d’Histoire Naturelle, 55, Rue Buffon, 75231 Paris, France; 2A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninski Prosp. 33, Moscow 119071, Russia; 3Zoological Museum of Moscow State University, Bolshaya Nikitskaya str. 6, Moscow 125009, Russia; 4GENOSCOPE, Centre National de Se´quencage, 2 rue Gaston Cre´mieux, CP 5706, 91057 Evry Cedex, France; 5Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA; 6Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada; and 7Department of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, UK Correspondence: N. Puillandre; e-mail:
[email protected] (Received 14 October 2010; accepted 29 March 2011) Downloaded from ABSTRACT The superfamily Conoidea constitutes one of the most diverse and taxonomically challenging groups among marine molluscs. Classifications based on shell or radular characters are highly contradictory and disputed. Whereas the monophyly of the Conidae and Terebridae has not been challenged, the http://mollus.oxfordjournals.org/ other constituents of the superfamily are placed in a ‘trash’ group, the turrids, the non-monophyly of which has been demonstrated by anatomical and molecular evidence. We present here a new molecu- lar phylogeny based on a total of 102 conoidean genera (87 ‘turrids’, 5 cones and 10 terebrids) and three mitochondrial genes [cytochrome oxidase I (COI), 12S rRNA and 16S rRNA].