A Repeat Protein Links Rubisco to Form the Eukaryotic Carbon-Concentrating Organelle

Total Page:16

File Type:pdf, Size:1020Kb

A Repeat Protein Links Rubisco to Form the Eukaryotic Carbon-Concentrating Organelle A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle Luke C. M. Mackindera, Moritz T. Meyerb, Tabea Mettler-Altmannc,1, Vivian K. Chena,d, Madeline C. Mitchellb,2, Oliver Casparib, Elizabeth S. Freeman Rosenzweiga,d, Leif Pallesena, Gregory Reevesa,3, Alan Itakuraa,d, Robyn Rothe, Frederik Sommerc,4, Stefan Geimerf, Timo Mühlhausc,4, Michael Schrodac,4, Ursula Goodenoughe, Mark Stittc, Howard Griffithsb, and Martin C. Jonikasa,d,5 aDepartment of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305; bDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom; cMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; dDepartment of Biology, Stanford University, Stanford, CA 94305; eDepartment of Biology, Washington University in Saint Louis, St. Louis, MO 63130; and fInstitute of Cell Biology, University of Bayreuth, 95440 Bayreuth, Germany Edited by Paul G. Falkowski, Rutgers, The State University of New Jersey, New Brunswick, NJ, and approved April 7, 2016 (received for review November 20, 2015) Biological carbon fixation is a key step in the global carbon cycle that traversed by membrane tubules continuous with the photosynthetic regulates the atmosphere’s composition while producing the food we thylakoid membranes (18). This matrix is thought to consist primarily eat and the fuels we burn. Approximately one-third of global carbon of tightly packed Rubisco and its chaperone, Rubisco activase (19). fixation occurs in an overlooked algal organelle called the pyrenoid. In higher plants and non–pyrenoid-containing photosynthetic eu- The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances karyotes, Rubisco is instead soluble throughout the chloroplast stroma. carbon fixation by supplying Rubisco with a high concentration of The molecular mechanism by which Rubisco aggregates to form the CO2. Since the discovery of the pyrenoid more that 130 y ago, the pyrenoid matrix remains enigmatic. molecular structure and biogenesis of this ecologically fundamental Two mechanisms for Rubisco accumulation in the pyrenoid have organelle have remained enigmatic. Here we use the model green been proposed: (i) Rubisco holoenzymes could bind each other alga Chlamydomonas reinhardtii to discover that a low-complexity directly through hydrophobic residues (20), or (ii) a linker protein repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco may link Rubisco holoenzymes together (18, 20). The second model CELL BIOLOGY to form the pyrenoid. We find that EPYC1 is of comparable abun- is based on analogy to the well-characterized prokaryotic carbon dance to Rubisco and colocalizes with Rubisco throughout the pyre- concentrating organelle, the β-carboxysome, where Rubisco aggre- noid. We show that EPYC1 is essential for normal pyrenoid size, gation is mediated by a linker protein consisting of repeats of a number, morphology, Rubisco content, and efficient carbon fixation at low CO2. We explain the central role of EPYC1 in pyrenoid bio- Significance genesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1’s four repeats could Eukaryotic algae, which play a fundamental role in global CO produce the observed lattice arrangement of Rubisco in the Chlamy- 2 fixation, enhance the performance of the carbon-fixing enzyme domonas pyrenoid. Our results suggest a surprisingly simple molecu- Rubisco by placing it into an organelle called the pyrenoid. De- lar mechanism for how Rubisco can be packaged to form the pyrenoid spite the ubiquitous presence and biogeochemical importance of matrix, potentially explaining how Rubisco packaging into a pyrenoid this organelle, how Rubisco assembles to form the pyrenoid could have evolved across a broad range of photosynthetic eukary- remains a long-standing mystery. Our discovery of an abundant otes through convergent evolution. In addition, our findings repre- repeat protein that binds Rubisco in the pyrenoid represents a sent a key step toward engineering a pyrenoid into crops to enhance critical advance in our understanding of pyrenoid biogenesis. their carbon fixation efficiency. The repeat sequence of this protein suggests elegant models to explain the structural arrangement of Rubisco enzymes in the pyrenoid | Rubisco | carbon fixation | Chlamydomonas reinhardtii | pyrenoid. Beyond advances in basic understanding, our findings CO -concentrating mechanism 2 open doors to the engineering of algal pyrenoids into crops to enhance yields. ubisco, the most abundant enzyme in the biosphere (1), fixes RCO2 into organic carbon that supports nearly all life on Earth Author contributions: L.C.M.M., M.T.M., T.M.-A., M. Schroda, M. Stitt, H.G., and M.C.J. (2, 3). Over the past 3 billion y, the enzyme became a victim of its designed research; L.C.M.M., M.T.M., T.M.-A., V.K.C., M.C.M., O.C., E.S.F.R., L.P., G.R., A.I., own success as it drew down the atmospheric CO concentration to R.R., F.S., S.G., and T.M. performed research; L.C.M.M., M.T.M., T.M.-A., L.P., M. Schroda, 2 and U.G. contributed new reagents/analytic tools; L.C.M.M., M.T.M., T.M.-A., M.C.M., F.S., trace levels (4) and as the oxygen-producing reactions of photo- S.G., T.M., and M.C.J. analyzed data; and L.C.M.M., M.T.M., T.M.-A., U.G., M. Stitt, H.G., synthesis filled our atmosphere with O2 (4). In today’s atmosphere, and M.C.J. wrote the paper. O2 competes with CO2 at Rubisco’s catalytic site, producing the Conflict of interest statement: The authors wish to note that the Carnegie Institution for toxic compound phosphoglycolate (5). Phosphoglycolate must be Science has submitted a provisional patent application on aspects of the findings. metabolized at the expense of energy and loss of fixed carbon and This article is a PNAS Direct Submission. nitrogen (6). To overcome Rubisco’s limitations, many photosyn- Freely available online through the PNAS open access option. thetic organisms have evolved carbon-concentrating mechanisms 1Present address: Cluster of Excellence in Plant Sciences and Institute of Plant Biochemis- try, Heinrich-Heine University, 40225 Düsseldorf, Germany. (CCMs) (7, 8). CCMs increase the CO2 concentration around 2Present address: Agriculture, Commonwealth Scientific and Industrial Research Organi- Rubisco, decreasing O2 competition and enhancing carbon fixation. At the heart of the CCM of eukaryotic algae is an organelle zation, Canberra, ACT 2601, Australia. 3Present address: Department of Plant Sciences, University of Cambridge, Cambridge CB2 known as the pyrenoid (9). The pyrenoid is a spherical structure in 3EA, United Kingdom. the chloroplast stroma, discovered more than 130 y ago (10–12). 4Present address: Institute of Molecular Biotechnology and Systems Biology, Technical Pyrenoids have been found in nearly all of the major oceanic University of Kaiserslautern, 67663 Kaiserslautern, Germany. ∼ – eukaryotic primary producers and mediate 28 44% of global 5To whom correspondence should be addressed. Email: [email protected]. SI Appendix – carbon fixation ( ,TableS1)(3,1317). A pyrenoid This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. typically consists of a matrix surrounded by a starch sheath and 1073/pnas.1522866113/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1522866113 PNAS Early Edition | 1of6 Downloaded by guest on September 26, 2021 pyrenoid fraction was increased by ∼12-fold after the shift from high ABLow CO 9 2 to low CO (Fig. 1B and SI Appendix,Fig.S1D and Dataset S1), an rbcL 2 8 increase similar to that of rbcL (7-fold), RBCS (7-fold), and RCA1 RBCS EPYC1 (19-fold). To confirm the pyrenoid localization of EPYC1, we 7 coexpressed fluorescently tagged EPYC1 and RBCS. Venus-tagged RCA1 EPYC1 showed clear colocalization with mCherry-tagged RBCS in Whole cell 6 the pyrenoid (Fig. 1C and SI Appendix,Fig.S1E). pyrenoid fraction 2 5 protein abundance in EPYC1 Is Essential for a Functional CCM. The high abundance of 10 4 EPYC1 in the pyrenoid led us to ask whether EPYC1 is required low CO Log for the CCM. We isolated a mutant in the 5′ UTR of the EPYC1 3 Pellet gene (SI Appendix,Fig.S2A and Table S2), which contains mark- -4 -3 -2 -1 0 1 2 3 4 5 EPYC1 SI Appendix B Log protein abundance change (low CO edly reduced levels of mRNA ( ,Fig.S2 and 2 2 Table S3) and EPYC1 protein (Fig. 2A), and lacks transcriptional pyrenoid fraction / high CO2 pyrenoid fraction) regulation in response to CO2 (SI Appendix,Fig.S2B). Similar to C Venus mCherry Chlorophyll previously described mutants in other components of the CCM, the epyc1 mutant showed defective photoautotrophic growth in low CO2, which was rescued by high CO2 and by reintroducing the EPYC1 gene (Fig. 2B and SI Appendix,Fig.S2C–E). We further tested the CCM activity in the epyc1 mutant by measuring whole-cell affinity for inorganic carbon, inferred from photosynthetic O2 evolution. When grown under low CO2,the epyc1 mutant showed a reduced affinity for inorganic carbon (in- Fig. 1. EPYC1 is an abundant pyrenoid protein. (A) TEM images of Chlamy- creased K0.5)relativetoWT(P = 0.0055, Student’s t test; n = 5) domonas whole cells and pyrenoid-enriched pellet fraction from cells grown at C SI Appendix F low CO . The yellow arrow indicates the pyrenoid, and green arrows indicate (Fig. 2 and ,Fig.S2 and Table S4). The affinity of the 2 epyc1 pyrenoid-like structures. (Scale bar: 2 μm.) (B) Mass spectrometry analysis of 366 mutant under low CO2 was slightly greater than that of WT at proteins in pyrenoid-enriched pellet fractions from low- and high-CO2–grown high CO2, indicating a residual level of CCM activity. This activity cells (mean of four biological replicates; raw data are provided in SI Appendix may be due to trace levels of EPYC1 in the epyc1 mutant (SI Ap- and Dataset S1).
Recommended publications
  • Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa)*
    Biologia 63/6: 799—805, 2008 Section Botany DOI: 10.2478/s11756-008-0101-4 Siderocelis irregularis (Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa)* Maya P. Stoyneva1, Elisabeth Ingolič2,WernerKofler3 &WimVyverman4 1Sofia University ‘St Kliment Ohridski’, Faculty of Biology, Department of Botany, 8 bld. Dragan Zankov, BG-1164 Sofia, Bulgaria; e-mail: [email protected], [email protected]fia.bg 2Graz University of Technology, Research Institute for Electron Microscopy, Steyrergasse 17,A-8010 Graz, Austria; e-mail: [email protected] 3University of Innsbruck, Institute of Botany, Sternwartestrasse 15,A-6020 Innsbruck, Austria; e-mail: werner.kofl[email protected] 4Ghent University, Department Biology, Laboratory of Protistology and Aquatic Ecology, Krijgslaan 281-S8,B-9000 Gent, Belgium; e-mail: [email protected] Abstract: Siderocelis irregularis Hindák, representing a genus Siderocelis (Naumann) Fott that is known from European temperate waters, was identified as a common phytoplankter in Lake Tanganyika. It was found aposymbiotic as well as ingested (possibly endosymbiotic) in lake heterotrophs, mainly Strombidium sp. and Vorticella spp. The morphology and ultrastructure of the species, studied with LM, SEM and TEM, are described with emphasis on the structure of the cell wall and the pyrenoid. Key words: Chlorophyta; cell wall; pyrenoid; symbiosis; ciliates; Strombidium; Vorticella Introduction ics of symbiotic species in general came into alignment with that of free-living algae and the term ‘zoochlorel- Tight partnerships between algae and aquatic inver- lae’ was abandoned as being taxonomically ambiguous tebrates, including symbiotic relationships, have long (e.g. Bal 1968; Reisser & Wiessner 1984; Taylor 1984; been of interest and a number of excellent reviews are Reisser 1992a).
    [Show full text]
  • Toxicity, Physiological, and Ultrastructural Effects of Arsenic
    International Journal of Environmental Research and Public Health Article Toxicity, Physiological, and Ultrastructural Effects of Arsenic and Cadmium on the Extremophilic Microalga Chlamydomonas acidophila Silvia Díaz 1, Patricia De Francisco 1,2, Sanna Olsson 3 , Ángeles Aguilera 2,*, Elena González-Toril 2 and Ana Martín-González 1 1 Department of Genetics, Physiology and Microbiology, Faculty of Biology, Universidad Complutense de Madrid (UCM), C/José Antonio Novais, 12, 28040 Madrid, Spain; [email protected] (S.D.); [email protected] (P.d.F.); [email protected] (A.M.-G.) 2 Astrobiology Center (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain; [email protected] 3 Department of Forest Ecology and Genetics, INIA Forest Research Center (INIA-CIFOR), Carretera de A Coruña km 7.5, 28040 Madrid, Spain; sanna.olsson@helsinki.fi * Correspondence: [email protected]; Tel.: +34-91-520-6434 Received: 17 December 2019; Accepted: 24 February 2020; Published: 3 March 2020 Abstract: The cytotoxicity of cadmium (Cd), arsenate (As(V)), and arsenite (As(III)) on a strain of Chlamydomonas acidophila, isolated from the Rio Tinto, an acidic environment containing high metal(l)oid concentrations, was analyzed. We used a broad array of methods to produce complementary information: cell viability and reactive oxygen species (ROS) generation measures, ultrastructural observations, transmission electron microscopy energy dispersive x-ray microanalysis (TEM–XEDS), and gene expression. This acidophilic microorganism was affected differently by the tested metal/metalloid: It showed high resistance to arsenic while Cd was the most toxic heavy metal, showing an LC50 = 1.94 µM.
    [Show full text]
  • Closing the Circle in Chlamydomonas the Different Stages of the Calvin-Benson Cycle Take Place in Separate Locations Within the Chloroplast
    INSIGHT CARBON FIXATION Closing the circle In Chlamydomonas the different stages of the Calvin-Benson cycle take place in separate locations within the chloroplast. MARYLOU C MACHINGURA AND JAMES V MORONEY terrestrial plants and both groups have Rubisco Related research article Ku¨ ken A, Sommer enzymes with similar properties. However, land F, Yaneva-Roder L, Mackinder LCM, Ho¨ hne plants rarely have pyrenoids because CO2 dif- M, Geimer S, Jonikas MC, Schroda M, Stitt fuses 10,000 times more rapidly in air than in M, Nikoloski Z, Mettler-Altmann T. 2018. water. Once an aquatic organism has fixed CO2, Effects of microcompartmentation on flux it takes a long time for the next molecule to distribution and metabolic pools in Chlamy- arrive, hence the need for a carbon concentra- domonas reinhardtii chloroplasts. eLife 7: tion mechanism that kicks in when the levels of e37960. DOI: 10.7554/eLife.37960 CO2 get too low. The carbon concentration mechanism in Chla- - mydomonas takes bicarbonate (HCO3 ) from outside the cells and converts it into CO2 that can be used by Rubisco inside the pyrenoid. hen the unicellular green alga Chla- There, Rubisco catalyzes the addition of CO2 mydomonas reinhardtii is viewed onto a molecule known as RuBP to create two W under a microscope, the most promi- molecules of a compound called 3PGA; this is nent object in the cell is a structure called the the first step in the Calvin-Benson cycle, a chain pyrenoid. Located within the chloroplast, the of reactions which results in the creation of organelle where photosynthesis takes place, the organic molecules that the cell needs.
    [Show full text]
  • Effects of Microcompartmentation on Flux Distribution and Metabolic Pools
    RESEARCH ARTICLE Effects of microcompartmentation on flux distribution and metabolic pools in Chlamydomonas reinhardtii chloroplasts Anika Ku¨ ken1,2, Frederik Sommer1†, Liliya Yaneva-Roder1, Luke CM Mackinder3‡, Melanie Ho¨ hne1, Stefan Geimer4, Martin C Jonikas3§, Michael Schroda1†, Mark Stitt1, Zoran Nikoloski1,2, Tabea Mettler-Altmann1,5,6* 1Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; 2Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany; 3Department of Plant Biology, Carnegie Institution for Science, Stanford, United States; 4Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany; 5Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Du¨ sseldorf, Germany; 6Institute of Plant Biochemistry, Heinrich-Heine University, Du¨ sseldorf, Germany Abstract Cells and organelles are not homogeneous but include microcompartments that alter *For correspondence: [email protected] the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a † Present address: Molecular microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the Biotechnology and Systems photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained Biology, University of experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM- Kaiserslautern, Kaiserslautern,
    [Show full text]
  • Cryptophyte Farming by Symbiotic Ciliate Host Detected in Situ
    Cryptophyte farming by symbiotic ciliate host detected in situ Dajun Qiua, Liangmin Huanga, and Senjie Linb,1 aChinese Academy of Sciences Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; and bDepartment of Marine Sciences, University of Connecticut, Groton, CT 06340 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved September 8, 2016 (received for review July 28, 2016) Protist–alga symbiosis is widespread in the ocean, but its character- as the causative species of the bloom, with no detectable crypto- istics and function in situ remain largely unexplored. Here we report phytes and hardly any other organisms present in the bloom water − the symbiosis of the ciliate Mesodinium rubrum with cryptophyte (Fig. 1B). At 1.03 × 106 cells L 1, M. rubrum abundance in the bloom cells during a red-tide bloom in Long Island Sound. In contrast to was over 100-fold higher than the annual peak in Long Island Sound the current notion that Mesodinium retains cryptophyte chloroplasts (15). Each Mesodinium cell harbored 20 to 30 cryptophyte cells (n = or organelles, our multiapproach analyses reveal that in this bloom 16), which packed the peripheral region of the M. rubrum cells (Fig. the endosymbiotic Teleaulax amphioxeia cells were intact and 1E), with complete cell structures, including cell membranes, nuclei, expressing genes of membrane transporters, nucleus-to-cytoplasm and chloroplasts (Fig. 1C). Taking advantage of the large cell size of RNA transporters, and all major metabolic pathways. Among the Mesodinium spp. (width, 20 to 23 μm; length, 25 to 26 μm), we most highly expressed were ammonium transporters in both organ- picked M.
    [Show full text]
  • A Taxonomic Reassessment of Chlamydomonas Meslinii (Volvocales, Chlorophyceae) with a Description of Paludistella Gen.Nov
    Phytotaxa 432 (1): 065–080 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.432.1.6 A taxonomic reassessment of Chlamydomonas meslinii (Volvocales, Chlorophyceae) with a description of Paludistella gen.nov. HANI SUSANTI1,6, MASAKI YOSHIDA2, TAKESHI NAKAYAMA2, TAKASHI NAKADA3,4 & MAKOTO M. WATANABE5 1Life Science Innovation, School of Integrative and Global Major, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. 2Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan. 3Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan. 4Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-8520, Japan. 5Algae Biomass Energy System Development and Research Center, University of Tsukuba. 6Research Center for Biotechnology, Indonesian Institute of Sciences, Jl. Raya Bogor KM 46 Cibinong West Java, Indonesia. Corresponding author: [email protected] Abstract Chlamydomonas (Volvocales, Chlorophyceae) is a large polyphyletic genus that includes numerous species that should be classified into independent genera. The present study aimed to examine the authentic strain of Chlamydomonas meslinii and related strains based on morphological and molecular data. All the strains possessed an asteroid chloroplast with a central pyrenoid and hemispherical papilla; however, they were different based on cell and stigmata shapes. Molecular phylogenetic analyses based on 18S rDNA, atpB, and psaB indicated that the strains represented a distinct subclade in the clade Chloromonadinia. The secondary structure of ITS-2 supported the separation of the strains into four species.
    [Show full text]
  • The Fine Structure of Chloroplasts and Pyrenoids in Some Marine Dinoflagellates
    J. Cell Sri. 3, 41-48 (1968) 41 Printed in Great Britain THE FINE STRUCTURE OF CHLOROPLASTS AND PYRENOIDS IN SOME MARINE DINOFLAGELLATES J. D. DODGE Department of Botany, Birkbeck College, London, W.C. 1 SUMMARY The chloroplasts of some members of the Dinophyceae are bounded by an envelope consist- ing of three membranes and having a mean thickness of 230 A. Within the chloroplast are arranged, in a more or less parallel manner, many lamellae normally composed of three apposed thylakoids, although the number of thylakoids often varies and may reach 30 in a single stack. By study of disintegrated chloroplasts it was found that the thylakoids are circular in shape with a diameter of 0*15-3-6 /* and a mean thickness of 240 A. Ribosomes, lipid droplets and DNA areas are present in the chloroplast stroma. No connexions were seen between the chloroplasts and any other organelles, nor did the chloroplasts contain girdle lamellae. Stalked pyrenoids, which are found in some dinoflagellates, are shown to arise from the inner face of the chloroplasts, to contain a finely granular material and to be frequently surrounded by an electron-transparent area. These findings are discussed in relation to the fine structure of the chloroplasts and pyrenoids of other algal classes. INTRODUCTION Although the chloroplasts and pyrenoids of many algae have been extensively studied by electron microscopy over the past few years, those of dinoflagellates have received little attention. The first published electron micrograph of a sectioned dinoflagellate was of Amphidinium elegans (Grell & Wohlfarth-Botterman, 1957). This showed the chloroplast to be lamellate with each lamella consisting of a number of parallel membranes.
    [Show full text]
  • Variation of Storage Polysaccharides in Phototrophic Microorganisms
    J. Appl. Glycosci., 60, 21‒27 (2013) doi:10.5458/jag.jag.JAG-2012_016 ©2013 The Japanese Society of Applied Glycoscience Special Issue: Starch Metabolism, Structure and Properties Review Variation of Storage Polysaccharides in Phototrophic Microorganisms (Received October 24, 2012; Accepted December 3, 2012) (J-STAGE Advance Published Date: January 25, 2013) Eiji Suzuki1,* and Ryuichiro Suzuki1 1Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University (241‒438 Kaidobata-Nishi, Nakano, Shimoshinjo, Akita 010‒0195, Japan) Abstract: Phototrophic eukaryotes were established by the engulfment of oxygenic phototrophic prokary- otes (cyanobacteria) by a heterotrophic host. This process, called primary endosymbiosis, gave rise to the taxon Archaeplastida, which comprises green plants, rhodophytes and glaucophytes. Further rounds of endosymbiotic events produced a variety of phototrophic organisms, which could accumulate α-1,4-/α-1,6- glucans (including starch) or β-1,3-/β-1,6-glucans. In this article, we review the recent progress in the study of the intracellular localization and molecular forms of storage glucan, especially starch, among the known phototrophs and related organisms. Key words: Archaeplastida, cyanobacteria, endosymbiosis, semi-amylopectin, starch Starch is produced and stored in plastids of plant tissues characteristics of these polysaccharides, especially starch-like (chloroplasts in leaves and amyloplasts in seeds and tubers). α-glucans in representative organisms from each lineage, as It is widely accepted that the organelle was derived from an revealed by recent studies are discussed. independent organism, which was closely related to the extant cyanobacteria, through an event known as endosym- The form of storage polysaccharide and the site of its biosis.1) During the course of evolution of photosynthetic accumulation in various phototrophic organisms.
    [Show full text]
  • Principles of Plant Taxonomy, VIII
    PRINCIPLES OF PLANT TAXONOMY, VIII*. JOHN H. SCHAFFNER. In the seventh paper of this series, a phylogenetic synopsis was presented of the orders of the META-THALLOPHYTA. A similar synopsis is now given of the orders of THALLOPHYTA. The two diagramatic "trees" of relationships may be put together and thus a crude picture of the phyletic relationships of the entire plant kingdom will be represented from the lowest stage to the highest with all the multitudinous ramifications out to the orders. The Archemycetas as described in the Ohio Jour, of Sci. 27: 250, 1927, should be shifted in the list to immediately follow the Myxomycetae and re-defined as being mostly sexual; since it now appears that most of them have some sort of a conjugation process. There are many problems of a fundamental nature in the thallophytes which cannot be solved at present, because of a lack of knowledge of life histories. This is especially true of the lower green algae, the lower brown algae, the archemycetes, and the ascomycetes. So long as the genera and families are not properly segregated, it will be impossible to deal con- clusively with the larger groups. This fact should not deter us, however, from attempting to make a correct phyletic taxonomy. Every careful attempt will bring the true tax- onomic view nearer. The older morphological speculations, which did not distinguish progressive series from digressive movements or segregations, could not construct a true tax- onomic system because they made no definite attempt to judge structures and individuals on a phyletic basis, but merely compared similarities and differences, and frequently deduced phylogenetic sequences which required a series of re-creations, if the one form was actually to be evolved from the other.
    [Show full text]
  • Flagellar Regeneration in Chlamydomonas Introduction: Chlamydomonas Are Single-Celled, Motile Green Algae
    Biology 29 Cell Structure and Function Spring, 2009 Lab 4 - Flagellar regeneration in Chlamydomonas Introduction: Chlamydomonas are single-celled, motile green algae. They move by rotating two flagella that extend from the anterior end of the cell. Figure 1 shows a typical cell. These are photosynthetic eukaryotic cells that contain a nucleus, and a single large cup-shaped chloroplast. Within the chloroplast is a carbon-fixation region called the pyrenoid. The pyrenoid is encased in highly refractive starch molecules and so appears as a bright spot in phase microscopy. The flagella contain cytoskeletal structures called Figure 1: Phase contrast image of microtubules which are in turn polymers of protein called C. reinhardtii, showing locations of chloroplast, pyrenoid and flagella tubulin (see Figure 2). The microtubules are arrayed into a cylindrical shape called an axoneme (see Figure 3), surrounded by an extension of the cell membrane. Chlamydomonas loses its flagella just before dividing and after mating. The cell can regenerate its flagella by rebuilding the microtubule polymers of the axoneme. As the new flagellum grows, monomeric tubulins are transported to the distal end by molecular motors called kinesins, and added to the growing structure at this end. The process of regeneration is triggered by signals transduced through both Calcium ion and cAMP-activated pathways. Figure 3: Cross-section of a flagellar axoneme, with microtubule polymers visible as rings (adapted from Alberts et al, 2008) Figure 2: composition of microtubules showing tubulin monomers (adapted from Alberts et al, 2008) 1 The experiment 1. Each lab group will start by familiarizing themselves with Chlamydomonas reinhardtii cells with intact flagella.
    [Show full text]
  • <I>Ceratodon Purpureus</I>
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 3-23-2018 Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus Caitlin Ann Maraist Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons, and the Plant Sciences Commons Let us know how access to this document benefits ou.y Recommended Citation Maraist, Caitlin Ann, "Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus" (2018). Dissertations and Theses. Paper 4353. https://doi.org/10.15760/etd.6246 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus by Caitlin Ann Maraist A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Thesis Committee: Sarah M. Eppley, Chair Todd N. Rosenstiel Mitchell B. Cruzan Bitty A. Roy Portland State University 2018 © 2018 Caitlin Ann Maraist ABSTRACT The microorganisms colonizing plants can have a significant effect on host phenotype, mediating such processes as pathogen resistance, stress tolerance, nutrient acquisition, growth, and reproduction. Research regarding plant-microbe interactions has focused almost exclusively on vascular plants, and we know comparatively little about how bryophytes – including mosses, liverworts, and hornworts – are influenced by their microbiomes. Ceratodon purpureus is a dioecious, cosmopolitan moss species that exhibits sex-specific fungal communities, yet we do not know whether these microbes have a differential effect on the growth and physiology of male and female genotypes.
    [Show full text]
  • Kingdom Protistaprotista Brown Algae Green Algae
    KingdomKingdom ProtistaProtista Brown algae Green algae Simple Eukaryotes Red algae J e KingdomKingdom ProtistaProtista DivisionDivision Phaeophyta,Phaeophyta, first brown plants land plants evolve •Recentplants, ~500 mya • “Standard” eukaryote cells No multinucleate cells Motile cells usual • Non-standard chloroplasts ThingsThings wewe willwill covercover forfor brownbrown algaealgae •• GeneralGeneral featuresfeatures -- definingdefining characteristicscharacteristics •• MorphologicalMorphological lineageslineages –– -- useuse morphologymorphology toto anticipateanticipate evolutionevolution -- revealreveal variationsvariations inin lifelife historyhistory && gametesgametes •• EcologyEcology –– understandingunderstanding interactionsinteractions withwith environmentenvironment andand otherother speciesspecies •• CommercialCommercial interestsinterests –– exploitexploit ecologyecology && lifelife historyhistory •• EvolutionEvolution –– diversitydiversity && changechange overover timetime GeneralGeneral featuresfeatures OceanOcean loverslovers 2,0002,000 speciesspecies (60(60 inin HIHI oceans)oceans) Ocean Forests 250+250+ generagenera (29(29 inin HI)HI) MorphologicalMorphological RangeRange:: filaments to complex multicell organisms Intertidal RecentlyRecently arrivedarrived Subtidal eukaryoteseukaryotes -- Reef algae wellwell suitedsuited toto Natives and invasives coastalcoastal habitatshabitats Natives and invasives DiversityDiversity GeneralGeneral featuresfeatures PigmentsPigments -- StorageStorage GrowthGrowth photosynthesis ProductsProducts
    [Show full text]