New Mineral Names*,†

Total Page:16

File Type:pdf, Size:1020Kb

New Mineral Names*,† American Mineralogist, Volume 101, pages 487–492, 2016 New Mineral Names*,† DMITRIY I. BELAKOVSKIY1 AND FERNANDO CÁMARA2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2Dipartimento di Scienze della Terra, Universitá di degli Studi di Torino, Via Valperga Caluso, 35-10125 Torino, Italy IN THIS ISSUE This New Mineral Names has entries for 10 new minerals, including barikaite, deveroite-(Ce), hizenite-(Y), kobyashevite, leverettite, magnesiokoritnigite, mössbauerite, shimazakiite (4M and 4O polytypes), takanawaite-(Y), and veblenite. BARIKAITE* (650). The average of 5 electron probe WDS analyses is [wt% D. Topa, E. Makovicky, H. Tajedin, H. Putz, and G. Zagler (range)]: Ag 5.80 (4.93–5.87), Pb 35.77 (35.50–39.21), Sb 18.33 (17.49–18.37), As 15.64 (15.18–15.77), Tl 0.15(0.07–0.22), (2013) Barikaite, Pb10Ag3(Sb8As11)S19S40, a new member of the sartorite homologous series. Mineralogical Magazine, S 24.00 (23.65–23.92), total 99.69. The empirical formula on 77(7), 3039–3046. the basis of 32Me + 40S = 72 apfu is Pb9.31Ag2.90Tl0.04(Sb8.12 D. Topa and E. Makovicky (2013) The crystal structure of bari- As11.26)S19.36S40.37. The single crystal X-ray study shows barikaite kaite. Mineralogical Magazine, 77(8), 3093–3104. is monoclinic with space group P21/n and unit-cell parameters a = 8.533(1), b = 8.075(1), c = 24.828(2) Å, β = 99.077(6)°, V = 1689.2 Å3; Z = 1. The X-ray powder data was not be obtained due Barikaite (IMA 2012-055), ideally Pb10Ag3(Sb8As11)S19S40, is a new antimony-containing species of the sartorite homolo- to paucity of pure material. The strongest lines of the calculated gous series discovered at the Barika Au-Ag deposit, Azarbaijan X-ray powder diffraction pattern [d Å (I%; hkl)] are: 3.835 (63; Province of Western Iran. The lens-like deposit ~150 m long and 022), 3.646 (100; 016), 3.441 (60; 212), 3.408 (62; 214), 2.972 up to 20 m thick consists of massive banded pyrite and barite (66; 216), 2.769 (91; 222), 2.752 (78; 424), 2.133 (54; 402). ores accompanied by locally developed silica bands. Pyrite, The crystal structure of barikaite contains 8 cation sites and 10 sphalerite, galena, tetrahedrite-tennantite, and stibnite were anion sites. Four of the cation sites have mixed occupancies: the deposited during the synvolcanogenic hydrothermal activity of split sites As2-Sb2, As3-Sb3, Ag5-As5, and the site Me6 with Cretaceous age. Fractures host veinlets with Ag-As-Sb-Pb-rich three cations involved. Two sites, Pb1 and Pb2, have tricapped sulfosalts: tetrahedrite-tennantite, stephanite, pyrargyrite, trech- trigonal prismatic coordination and alternate along a. They form mannite, smithite, miargyrite, andorite, geocronite, seligmannite, zigzag walls parallel to (001). There are 3 distinct [100] columns guettardite and realgar and Ag-Au alloys. Barikaite is always of alternating cations, As1-(As,Sb)2, Sb4-(As,Sb)3, (As,Ag)5- found in association with guettardite in quartz veins hosting (Pb,Sb)6, which together form trapezoidally configured single irregular thin veinlets and nests of sulfosalts in a mass of quartz (013) layers. These layers aggregate into tightly bonded double and baryte. The mineral occurs as anhedral grains with no twin- layers, separated by lone electron pair micelles. The predomi- ning. It has been replaced by guettardite, resulting in corroded nantly As- and Sb-occupied sites are in a chess-board order. remnants of what was a solid barikaite aggregate. The mineral Barikaite is a member of the sartorite homologous series. The is grayish black, opaque, metallic with dark gray streak. It is empirical values of homolog order N derived from the chemical brittle with irregular fracture and no cleavage or parting. The analyses are in fair agreement with the crystallographic value 2 N = 4. Barikaite is a close homeotype of rathite and less closely microhardness VHN50 = 200 (192–212) kg/mm corresponds to ~3 of Mohs scale. The density could not be measured due to related to dufrénoysite (distinct, pure arsenian N = 4 members) 3 and completes the spectrum of Sb-rich members of the sartorite admixture of guettardite; Dcalc = 5.34 g/cm . In reflected light barikaite is grayish white with distinct pleochroism from white to homologous series. The mineral is named for the type locality. dark gray. Internal reflections are absent. Anisotropism is distinct The holotype specimen is deposited in the Natural History Mu- with rotation tints in shades of gray. The reflectance spectrum seum Vienna, Austria. D.B. was measured in air between 400 and 700 nm with 20 nm inter- DEVEROITE-(CE)* val. The values for COM wavelengths are [Rmin, Rmax % (nm)]: 37.0, 39.3 (470); 34.1, 36.9 (546); 33.1, 36.2 (589); 31.3, 34.1 A. Guastoni, F. Nestola, P. Gentile, F. Zorzi, M. Alvaro, A. Lanza, L. Peruzzo, M. Schiazza, and N.M. Casati (2013) Deveroite- (Ce): a new REE-oxalate from Mount Cervandone, Devero * All minerals marked with an asterisk have been approved by the IMA CNMMC. † For a complete listing of all IMA-validated unnamed minerals and their codes, Valley, Western-Central Alps, Italy. Mineralogical Magazine, see http://pubsites.uws.edu.au/ima-cnmnc/. 77(7), 3019–3026. 0003-004X/16/0002–487$05.00/DOI: http://dx.doi.org/10.2138/am-2016-NMN101216 487 488 NEW MINERAL NAMES Deveroite-(Ce) (IMA 2013-003), ideally Ce2(C2O4)3·10H2O, Neogen alkali olivine basalt closely associating with lokkaite- is a new mineral and the third natural oxalate discovered in the (Y), tengerite-(Y), and kimuraite-(Y). The mineral forms platy alpine fissures of Mount Cervandone, overlooking the Devero crystals up to 50 × 0.2 μm forming radial spherical aggregates up Valley, Piedmont, Italy. The area is characterized by swarms to 1 cm. Hizenite-(Y) is white with a white streak and vitreous to of pegmatite dikes crosscutting metamorphic rocks and hosted silky luster. The cleavage is perfect on {001}. The hardness, opti- 3 by leucocratic gneisses. These dikes containing Ba-Y-REE-As cal properties and density were not measured; Dcalc = 2.98 g/cm . minerals [aeschynite-(Y), agardite-(Y), Nb-anatase, As-fergu- The average of 5 electron probe EDS analyses [wt% (range)] is sonite-beta-(Y), cervandonite-(Ce), chernovite-(Y), crichtonite- Y2O3 27.61 (26.20–29.60), La2O3 1.11 (0.95–1.41), Pr2O3 0.65 senaite, fluorite, gadolinite-(Y), monazite-(Ce), paraniite-(Y), (0–0.89), Nd2O3 5.80 (4.69–6.72), Sm2O3 1.68 (1.04–1.97), synchysite-(Ce), and xenotime-(Y)] as well as meter-long quartz Eu2O3 0.73 (0–1.56), Gd2O3 3.82 (2.85–4.70), Tb2O3 0.24 veins crosscutting pegmatite dikes. Deveroite-(Ce) crystallization (0–0.79), Dy2O3 3.10 (2.75–3.54), Ho2O3 0.47 (0–0.93), Er2O3 related to circulation of meteoric waters enriched with oxalic 1.58 (1.02–1.83), Tm2O3 0.04 (0–0.22), Yb2O3 0.10 (0–0.51), acid. A source of oxalate is provided by incomplete oxidation CaO 5.93 (5.38–6.42), CO2 29.55 (28.78–30.32), H2O 15.03 of organic material such as decaying plant remains. A source of (14.85–15.21), total 97.44. The contents of H2O and CO2 were REE is provided by the hosting mineral, cervandonite-(Ce), and obtained by a CHN analyzer. The empirical formula based on not completely described REE-arsenosilicate. Deveroite-(Ce) oc- 47 O pfu is Ca1.76(Y4.08Nd0.58Gd0.35Dy0.28Sm0.16Er0.14La0.11Pr0.07Eu0.07 curs only on crystals of cervandonite-(Ce) and is associated with Ho0.04Tb0.02Yb0.01)Σ5.91(CO3)11.2·13.9H2O. The strongest lines of the agardite-(Ce), asbecasite, cafarsite, K-feldspar, muscovite, and X-ray powder diffraction pattern [d Å (I%; hkl)] are: 15.57 (20; quartz. It forms sprays of colorless elongated tabular or acicular 004), 10.63 (100; 006), 6.384 (77; 0.0.10), 3.962 (51; 0.0.16), prisms up to ~50 μm. It has a white streak, vitreous luster and a 3.821 (27; 029, 1.0.13), 2.060 (23; 306, 0.4.13). The orthorhom- perfect cleavage along {010}. The mineral is brittle with Mohs bic unit-cell parameters refined from the powder data are: a = hardness of ~2–2½. Density was not measured due to the size 6.295(1), b = 9.089(2), c = 63.49(1) Å, V = 3632(1) Å3, Z = 4. 3 of crystals; Dcalc = 2.352 g/cm . Fluorescence was not observed. Single-crystal X-ray diffraction study was not performed due to Deveroite-(Ce) is non-pleochroic, optically biaxial (–) with 2V the small crystal size. Unit-cell data were obtained using TEM of ~77°, and the extinction angle (Y^c) of ~27°. No twinning electron diffraction and then refined using XRD data. Hizenite- was observed. The refractive indexes were not measured but (Y) structure model suggests the alternating of Y-corrugated proposed to be very close to that of synthetic La2(C2O4)3·10H2O: sheets and Ca-H2O layers along c axes. The structure is related α = 1.473, β = 1.548, γ = 1.601°. The average of 11 electron to that of kimuraite-(Y), lokkaite-(Y), and tengerite-(Y). The probe EDS analyses [wt%, (range)] is CaO 0.34 (0.25–0.44), name is for “Hizen” the old name of the mineral type locality C2O3 (by stoichiometry) 29.7, Y2O3 1.66 (1.19–2.04), La2O3 7.29 between 7th and 16th century.
Recommended publications
  • This Is the Author Version Published As: QUT Digital Repository
    QUT Digital Repository: http://eprints.qut.edu.au/ This is the author version published as: Frost, Ray L. and Bahfenne, Silmarilly (2010) A Review of the Vibrational Spectroscopic Studies of Arsenite, Antimonite, and Antimonate Minerals. Applied Spectroscopy Reviews: an international journal of principles, methods, and applications, 45(2). pp. 101-129. Copyright Taylor & Francis 1 A Review of the Vibrational Spectroscopic Studies of Arsenite, Antimonite, and 2 Antimonate Minerals 3 4 Silmarilly Bahfenne and Ray L. Frost 5 6 Inorganic Materials Research program, School of Physical and Chemical Sciences, Queensland 7 University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia 8 9 Abstract 10 11 This review focuses on the vibrational spectroscopy of the compounds and minerals 12 containing the arsenite, antimonite and antimonate anions. The review collects and 13 correlates the published data. 14 15 Key words: Arsenite, antimonite, antimonate, infrared spectroscopy, Raman 16 spectroscopy 17 18 1 19 Arsenite, Antimonite and Antimonate Minerals 20 21 Introduction 22 23 Arsenic and antimony are found throughout the earth’s crust as a variety of minerals, although 24 not particularly abundant. It has been estimated that there are 2 grams of arsenic and 0.2 grams 25 of antimony in every tonne of crustal rocks [1]. Many arsenic-bearing minerals associated with 26 sulphides have been identified, such as arsenopyrite FeAsS, orpiment As2S3, and realgar α- 27 As4S4. When these ores are oxidised, As2O3 is obtained as a by-product. Antimony also 28 occurs with sulphur, Sb2S3 being the principal source. Many oxides have also been identified; 3+ 5+ 29 valentinite Sb2O3 and cervantite Sb Sb O4.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • GRAESERITE, Featisasol3(OH), a NEW MINERAL SPECIES of the DERBYLITE GROUP from the MONTE LEONE NAPPE, BINNTAL REGION, WESTERN AL
    1083 The Canadian Mineralogist Vol.36, pp. 1083-1088(1998) GRAESERITE,FeaTisAsOl3(OH), A NEWMINERAL SPECIES OF THE DERBYLITE GROUP FROM THE MONTELEONE NAPPE, BINNTAL REGION, WESTERN ALPS, SWITZERLAND MICHAEL S. KRZEMNICKII Mineralagisch-Petrographischzs Instint, Universitiit Ba$eI, Bemoullistr. 30, CH-4056 Basel, Switzerl.and ERIC REUSSERI Iwtitut fiir Mincralogie und Petrographie, ETH-7zntram, Sonneggstr. 5, CH-8092 Zurich SwitzerLanl AssrRAcr Graeserite, ideally Fe4t3AsOl3(OH), is a new mineral species of the derbylite gloup, which includes derbylite, tomichite, a"ndhemloite. It is found in needle-shapedcrystals, elongate along the c axis. Graeserils i5 6sn6alinig, spacegtoup AXm, with the cell paramelersa 7 .184(2), b 14.289(6),c 5.006(2) A, p 105.17(2)",V 495.9(2) At, z=2, D,a.. =!.56 g/cm3.The VHNxgis_52L (Mohs hardness -595). The strongest five lines of the X-ray powder-diffraction pattern [d in An)(hkD] are: 2.681(100)@31), 2.846(80X131), 1.583(50X351), 3.117 (30)(220), nd 2.029(30)(122). Graeserite is black and metallic, with a black streak; it displays a conchoidal fracture. Pleochroism, bireflectance a"ndinternal reflections were not observed. The measured values of reflecrance in air are compared with those of other members of the derbylite group. Electron-microprobe analyses gave TiO2 40.89, Fe2O333.64, FeO"6" 3.94, PbO 5.00, As2O3 13.51,Sb2O3 1.43, and H2O"a" 1.30, loral 99.80 wt.7o. The empirical formula, based on 13 atoms of oxygen and one hydroxyl group, is (Fe3*z.qrFe2*o.gsTlos+Pbo.rs)>r.grTi3(As3*s.9aSb3*e.m)>r.orOrg(OH).
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Materializing Rival Ground States in the Barlowite Family of Kagome Magnets: Quantum Spin Liquid, Spin Ordered, and Valence Bond Crystal States ✉ Rebecca W
    www.nature.com/npjquantmats ARTICLE OPEN Materializing rival ground states in the barlowite family of kagome magnets: quantum spin liquid, spin ordered, and valence bond crystal states ✉ Rebecca W. Smaha 1,2,12 , Wei He 1,3,12, Jack Mingde Jiang 1,4, Jiajia Wen 1, Yi-Fan Jiang 1, John P. Sheckelton 1, Charles J. Titus 5, Suyin Grass Wang 6, Yu-Sheng Chen 6, Simon J. Teat 7, Adam A. Aczel 8,9, Yang Zhao 10,11, Guangyong Xu10, ✉ Jeffrey W. Lynn 10, Hong-Chen Jiang 1 and Young S. Lee 1,4 1 fi The spin-2 kagome antiferromagnet is considered an ideal host for a quantum spin liquid (QSL) ground state. We nd that when the bonds of the kagome lattice are modulated with a periodic pattern, new quantum ground states emerge. Newly synthesized crystalline barlowite (Cu4(OH)6FBr) and Zn-substituted barlowite demonstrate the delicate interplay between singlet states and spin 1 order on the spin-2 kagome lattice. Comprehensive structural measurements demonstrate that our new variant of barlowite maintains hexagonal symmetry at low temperatures with an arrangement of distorted and undistorted kagome triangles, for which numerical simulations predict a pinwheel valence bond crystal (VBC) state instead of a QSL. The presence of interlayer spins eventually leads to an interesting pinwheel q = 0 magnetic order. Partially Zn-substituted barlowite (Cu3.44Zn0.56(OH)6FBr) has an ideal kagome lattice and shows QSL behavior, indicating a surprising robustness of the QSL against interlayer impurities. The magnetic susceptibility is similar to that of herbertsmithite, even though the Cu2+ impurities are above the percolation threshold 1234567890():,; for the interlayer lattice and they couple more strongly to the nearest kagome moment.
    [Show full text]
  • Download the Scanned
    THE AMERICAN MINERALOGIST, VOL. 52, SEPTEMSER_OCTOBER, 1967 NEW MINERAL NAMES Mrcn,rBr F-r-Brscnnn Lonsdaleite Cr.u'lonn FnoNoer. lNn Uxsule B. MenvrN (1967) Lonsdaleite, a hexagonai polymorph oi diamond. N atwe 214, 587-589. The residue (about 200 e) from the solution of 5 kg of the Canyon Diablo meteorite was found to contain about a dozen black cubes and cubo-octahedrons up to about 0.7 mm in size. They were found to consist of a transparent substance coated by graphite. X-ray data showed the material to be hexagonal, rvith o 2.51, c 4.12, c/a I.641. The strongest X-ray lines are 2.18 (4)(1010), 2.061 (10)(0002), r.257 (6)(1120), and 1.075 (3)(rrr2). Electron probe analysis showed only C. It is accordingly the hexagonal (2H) dimorph of diamond. Fragments under the microscope were pale brownish-yellow, faintly birefringent, a slightly higher than 2.404. The hexagonal dimorph is named lonsdaleite for Prof. Kathleen Lonsdale, distin- guished British crystallographer. It has been synthesized by the General Electric co. and by the DuPont Co. and has also been reported in the Canyon Diablo and Goalpara me- teorites by R. E. Hanneman, H. M. Strong, and F. P. Bundy of General Electric Co. lSci.enc e, 155, 995-997 (1967) l. The name was approved before publication by the Commission on New Minerals and Mineral Names, IMA. Roseite J. OrrnueNn nNl S. S. Aucusrrtnrs (1967) Geochemistry and origin of "platinum- nuggets" in lateritic covers from ultrabasic rocks and birbirites otW.Ethiopia.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 100, pages 1649–1654, 2015 New Mineral Names*,† DMITRIY I. BELAKOVSKIY1 AND OLIVIER C. GAGNE2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada IN THIS ISSUE This New Mineral Names has entries for 10 new minerals, including debattistiite, evdokimovite, ferdowsiite, karpovite, kolskyite, markhininite, protochabournéite, raberite, shulamitite, and vendidaite. DEBATTISTIITE* for 795 unique I > 2σ(I) reflections] corner-sharing As(S,Te)3 A. Guastoni, L. Bindi, and F. Nestola (2012) Debattistiite, pyramids form three-membered distorted rings linked by Ag atoms in triangular or distorted tetrahedral coordination. Certain Ag9Hg0.5As6S12Te2, a new Te-bearing sulfosalt from Len- genbach quarry, Binn valley, Switzerland: description and features of that linkage are similar to those in the structures of crystal structure. Mineralogical Magazine, 76(3), 743–750. trechmannite and minerals of pearceite–polybasite group. Of the seven anion positions, one is almost fully occupied by Te (Te0.93S0.07). The Hg atom is in a nearly perfect linear coordination Debattistiite (IMA 2011-098), ideally Ag9Hg0.5As6S12Te2, is a new mineral discovered in the famous for Pb-Cu-Ag-As-Tl with two Te/S atoms. One of five Ag sites and Hg site, which are bearing sulfosalts Lengenbach quarry in the Binn Valley, Valais, very close (separation 1.137 Å), are partially occupied (50%). Switzerland. Debattistiite has been identified in two specimens Thus there is a statistical distribution (50:50) between Hg(Te,S)2 from zone 1 of the quarry in cavities in dolomitic marble with and AgS2(Te,S)2 polyhedra in the structure.
    [Show full text]
  • Structures of the Pseudo-Trigonal Polymorphs of Cu2(OH)3Cl
    research papers Acta Crystallographica Section B Structural Structures of the pseudo-trigonal polymorphs of Science Cu2(OH)3Cl ISSN 0108-7681 Received 2 February 2009 Thomas Malcherek* and Jochen The crystal structure of Cu2(OH)3Cl has been determined Schlu¨ter using two natural samples with almost ideal stoichiometry. Accepted 14 April 2009 While one of the samples exhibits a twinned clinoatacamite structure, the other sample is characterized by the appearance Mineralogisch-Petrographisches Institut, Univer- of additional weak diffraction maxima at half integer positions sita¨t Hamburg, Grindelallee 48, D-20146 Hamburg, Germany of h and k. Structure refinement was carried out with the space group P11. The relationship between the triclinic phase, clinoatacamite, paratacamite and the herbertsmithite struc- Correspondence e-mail: ture is discussed in terms of symmetry as a function of Cu [email protected] concentration. 1. Introduction Pure Cu2(OH)3Cl so far has been known to occur in the form of the three polymorphs atacamite, botallackite and clino- atacamite. While atacamite is orthorhombic the other two polymorphs are monoclinic. Another, rhombohedral structure type of Cu2(OH)3Cl (paratacamite) has been described by Fleet (1975), but it is now believed that the rhombohedral substructure of paratacamite has to be stabilized by partial substitution of Zn or Ni for Cu (Jambor et al., 1996) at ambient temperature. The Zn end member of such a solid solution, Cu3Zn(OH)6Cl2, has been described as the mineral herbertsmithite (Braithwaite et al., 2004). Recently Clissold et al. (2007) reported the crystal structure of gillardite, the Ni analogue of herbertsmithite.
    [Show full text]
  • Site-Specific Structure at Multiple Length Scales in Kagome Quantum
    Site-Specific Structure at Multiple Length Scales in Kagome Quantum Spin Liquid Candidates 1, 2, 3, 4, 3, 1, 5, Rebecca W. Smaha, ⇤ Idris Boukahil, † Charles J. Titus, † Jack Mingde Jiang, † John P. Sheckelton,1 Wei He,1, 6 Jiajia Wen,1 John Vinson,7 Suyin Grass Wang,8 Yu-Sheng 8 9 1, 6 4 1, 5, Chen, Simon J. Teat, Thomas P. Devereaux, C. Das Pemmaraju, and Young S. Lee ‡ 1Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA 2Department of Chemistry, Stanford University, Stanford, California 94305, USA 3Department of Physics, Stanford University, Stanford, California 94305, USA 4Theory Institute for Materials and Energy Spectroscopies, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA 5Department of Applied Physics, Stanford University, Stanford, California 94305, USA 6Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA 7Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 8NSF’s ChemMatCARS, Center for Advanced Radiation Sources, c/o Advanced Photon Source/ANL, The University of Chicago, Argonne, Illinois 60439, USA 9Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Dated: November 14, 2020) Realizing a quantum spin liquid (QSL) ground state in a real material is a leading issue in con- densed matter physics research. In this pursuit, it is crucial to fully characterize the structure and influence of defects, as these can significantly a↵ect the fragile QSL physics. Here, we perform a variety of cutting-edge synchrotron X-ray scattering and spectroscopy techniques, and we advance new methodologies for site-specific di↵raction and L-edge Zn absorption spectroscopy.
    [Show full text]
  • Pyrostilpnite Ag3sbs3 C 2001-2005 Mineral Data Publishing, Version 1
    Pyrostilpnite Ag3SbS3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals tabular {010} giving flat rhombic forms; also laths by elongation k [001], to 1 mm; as subparallel sheaflike aggregates. Twinning: On {100} with (100) as composition plane. Physical Properties: Fracture: Conchoidal. Tenacity: Somewhat flexible in thin plates. Hardness = 2 VHN = 95–115, 107 average (100 g load). D(meas.) = 5.94 D(calc.) = 5.97 Optical Properties: Transparent. Color: Hyacinth-red; lemon-yellow by transmitted light. Streak: Yellow-orange. Luster: Adamantine. Optical Class: Biaxial (+). Orientation: Y = b; X ∧ c = 8–11◦. α = Very high. β = Very high. γ = Very high. R1–R2: (400) 36.3–36.9, (420) 36.3–36.5, (440) 36.1–35.8, (460) 35.7–35.1, (480) 34.9–34.2, (500) 33.9–33.2, (520) 32.3–31.8, (540) 30.8–30.3, (560) 29.6–29.2, (580) 28.6–28.2, (600) 27.8–27.5, (620) 27.1–26.7, (640) 26.6–26.2, (660) 26.2–25.8, (680) 25.9–25.4, (700) 25.6–25.2 ◦ 0 Cell Data: Space Group: P 21/c. a = 6.84 b = 15.84 c = 6.24 β = 117 09 Z=4 X-ray Powder Pattern: Pˇr´ıbram, Czech Republic. 2.85 (100), 2.65 (50), 2.42 (50), 1.895 (50b), 1.887 (50b), 1.824 (20b), 1.813 (20b) Chemistry: (1) (2) (3) Ag 59.44 59.7 59.76 Sb 22.30 23.7 22.48 S 18.11 16.8 17.76 Total 99.85 100.2 100.00 (1) St.
    [Show full text]
  • A New Mineral from Mn Ores of the Ushkatyn-III Deposit, 3 Central Kazakhstan and Metamorphic Rocks of the Wanni Glacier, Switzerland 4 5 Oleg S
    1 Revision 1 2 Gasparite-(La), La(AsO4), a new mineral from Mn ores of the Ushkatyn-III deposit, 3 Central Kazakhstan and metamorphic rocks of the Wanni glacier, Switzerland 4 5 Oleg S. Vereshchagin*1, Sergey N. Britvin1,6, Elena N. Perova1, Aleksey I. Brusnitsyn1, 6 Yury S. Polekhovsky1, Vladimir V. Shilovskikh2, Vladimir N. Bocharov2, 7 Ate van der Burgt3, Stéphane Cuchet4, and Nicolas Meisser5 8 1Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034 St. 9 Petersburg, Russia 10 2Geomodel Centre, St. Petersburg State University, Uliyanovskaya St. 1, 198504 St. 11 Petersburg, Russia 12 3Geertjesweg 39, NL-6706EB Wageningen, The Netherlands 13 4ch. des Bruyeres 14, CH-1007 Lausanne, Switzerland 14 5Musée cantonal de géologie, Université de Lausanne, Anthropole, 1015 Lausanne, 15 Switzerland 16 6Kola Science Center, Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, 17 Murmansk Region, Russia 18 *E-mail: [email protected] 19 1 20 Abstract 21 Gasparite-(La), La(AsO4), is a new mineral (IMA 2018-079) from Mn ores of the Ushkatyn- 22 III deposit, Central Kazakhstan (type locality) and from alpine fissures in metamorphic rocks 23 of the Wanni glacier, Binn Valley, Switzerland (co-type locality). Gasparite-(La) is named 24 for its dominant lanthanide, according to current nomenclature of rare-earth minerals. 25 Occurrence and parageneses in both localities is distinct: minute isometric grains up to 15 µm 26 in size, associated with fridelite, jacobsite, pennantite, manganhumite series minerals 27 (alleghanyite, sonolite), sarkinite, tilasite and retzian-(La) are typically embedded into 28 calcite-rhodochrosite veinlets (Ushkatyn-III deposit), versus elongated crystals up to 2 mm in 29 size in classical alpine fissures in two-mica gneiss without indicative associated minerals 30 (Wanni glacier).
    [Show full text]
  • Ag-Pb-Sb Sulfosalts and Se-Rich Mineralization of Anthony of Padua
    minerals Article Ag-Pb-Sb Sulfosalts and Se-rich Mineralization of Anthony of Padua Mine near Poliˇcany—Model Example of the Mineralization of Silver Lodes in the Historic Kutná Hora Ag-Pb Ore District, Czech Republic Richard Pažout 1,*, Jiˇrí Sejkora 2 and Vladimír Šrein 3 1 Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic 2 Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9–Horní Poˇcernice,Czech Republic 3 Czech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic * Correspondence: [email protected]; Tel.: +420-220444080 Received: 3 May 2019; Accepted: 6 July 2019; Published: 12 July 2019 Abstract: Significant selenium enrichment associated with selenides and previously unknown Ag-Pb-Sb, Ag-Sb and Pb-Sb sulfosalts has been discovered in hydrothermal ore veins in the Anthony of Padua mine near Poliˇcany, Kutná Hora ore district, central Bohemia, Czech Republic. The ore mineralogy and crystal chemistry of more than twenty silver minerals are studied here. Selenium mineralization is evidenced by a) the occurrence of selenium minerals, and b) significantly increased selenium contents in sulfosalts. Identified selenium minerals include aguilarite and selenides naumannite and clausthalite. The previously unknown sulfosalts from Kutná Hora are identified: Ag-excess fizélyite, fizélyite, andorite IV, andorite VI, unnamed Ag-poor Ag-Pb-Sb sulfosalts, semseyite, stephanite, polybasite, unnamed Ag-Cu-S mineral phases and uytenbogaardtite. Among the newly identified sulfides is argyrodite; germanium is a new chemical element in geochemistry of Kutná Hora. Three types of ore were recognized in the vein assemblage: the Pb-rich black ore (i) in quartz; the Ag-rich red ore (ii) in kutnohorite-quartz gangue; and the Ag-rich ore (iii) in milky quartz without sulfides.
    [Show full text]