Auchenorrhyncha (Insecta: Hemiptera): Catalogue. Fauna of New Zealand 63, 232 Pp

Total Page:16

File Type:pdf, Size:1020Kb

Auchenorrhyncha (Insecta: Hemiptera): Catalogue. Fauna of New Zealand 63, 232 Pp Larivière, M.-C.; Fletcher, M. J.; Larochelle, A. 2010: Auchenorrhyncha (Insecta: Hemiptera): catalogue. Fauna of New Zealand 63, 232 pp. The Copyright notice printed on page 4 applies to the use of this PDF. This PDF is not to be posted on websites. Links should be made to: FNZ.LandcareResearch.co.nz EDITORIAL BOARD Dr R. M. Emberson, c/- Department of Ecology, P.O. Box 84, Lincoln University, New Zealand Dr M. J. Fletcher, Director of the Collections, NSW Agricultural Scientific Collections Unit, Forest Road, Orange, NSW 2800, Australia Dr R. J. B. Hoare, Landcare Research, Private Bag 92170, Auckland, New Zealand Dr M.-C. Larivière, Landcare Research, Private Bag 92170, Auckland, New Zealand Mr R. L. Palma, Natural Environment Department, Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand SERIES EDITOR Dr T. K. Crosby, Landcare Research, Private Bag 92170, Auckland, New Zealand Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 63 Auchenorrhyncha (Insecta: Hemiptera): catalogue M.-C. Larivière1, M. J. Fletcher2, and A. Larochelle3 1, 3 Landcare Research, Private Bag 92170, Auckland, New Zealand 2 Industry & Investment NSW, Orange Agricultural Institute, Orange NSW 2800, Australia 1 [email protected], 2 [email protected], 3 [email protected] with colour photographs by B. E. Rhode Manaaki W h e n u a P R E S S Lincoln, Canterbury, New Zealand 2010 4 Larivière, Fletcher & Larochelle (2010): Auchenorrhyncha (Insecta: Hemiptera) Copyright © Landcare Research New Zealand Ltd 2010 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying, recording, taping information retrieval systems, or otherwise) without the written permission of the publisher. Cataloguing in publication Larivière, Marie-Claude Auchenorrhyncha (Insecta: Hemiptera) : catalogue / M.-C. Larivière, M. J. Fletcher and A. Larochelle ; with colour photographs by B. E. Rhode. – Lincoln, Canterbury, N.Z. : Manaaki Whenua Press, 2010. (Fauna of New Zealand, ISSN 0111-5383 (print), ISSN 1179-7193 (online) ; no. 63). ISBN 978-0-478-34720-3 (print) ISBN 978-0-478-34721-0 (online) I. Fletcher, M. J. II. Larochelle, André, 1940 Apr. 10– III. Title IV. Series UDC 595.753 Suggested citation: Larivière, M.-C.; Fletcher, M. J.; Larochelle, A. 2010. Auchenorrhyncha (Insecta: Hemiptera): catalogue. Fauna of New Zealand 63, 232 pp. Prepared for publication by the series editor and the authors using computer-based text processing, layout, and printing at Landcare Research, Private Bag 92170, Auckland, New Zealand. Colour photographs prepared by Dr B. E. Rhode using a 3-CCD colour video camera, software to increase depth-of-field, and the photoprocessing software PhotoShop® To access on-line extracts and medium-resolution pdfs from this series visit: http://fnz.landcareresearch.co.nz/ M~ori text by H. Jacob, Ætaki. Published by Manaaki Whenua Press, Landcare Research, P.O. Box 40, Lincoln, Canterbury, N.Z. Website: http://www.mwpress.co.nz/ Printed by PrintLink Ltd, Wellington Date of publication 16 June 2010 Front cover: Thanatodictya tillyardi Myers, family Dictyopharidae (Illustrator: D. W. Helmore). Publication of the Fauna of New Zealand series is the result of a research investment by the Foundation for Research, Science and Technology. Fauna of New Zealand 63 5 POPULAR SUMMARY HE WHAKARAPOPOTOTANGA Class Insecta Order Hemiptera Suborder Auchenorrhyncha Cicadas, leafhoppers, planthoppers, and allies (Auchenorrhyncha) The Auchenorrhyncha are generally regarded as a suborder of the Hemiptera. They include planthoppers, cicadas, froghoppers, spittlebugs, treehoppers, and leafhoppers. These insects are highly diverse and form a major component of the plant-feeding fauna of most terrestrial ecosystems. Auchenorrhyncha have adopted varied life habits on nearly Illustration / Whakaahua: Sulix tasmani (Muir), family all continents and islands (except Antarctica) and there may Delphacidae (Illustrator / Kaiwhakaahua: D. W. Helmore). be around 42 000 species described worldwide. The world fauna is divided into roughly 30 to 40 families. The number of species of better known continental faunas such as North America, Europe or Australia may include thousands of spe- Ng~ kihikihi, ng~ peke-rau, ng~ peke-tipu, me Ç r~tou cies. Compared with these larger regions the New Zealand uri tata (ar~ , a ng~ i Auchenorrhyncha) fauna – currently comprising 12 families, 68 genera and 196 E whakaaetia nuitia ana he pãtoi-iti a ng~i Auchenorrhyncha species – may appear relatively small but what it lacks in size nÇ ng~i Hemiptera. Kei t‘nei karangatanga ng~ ng~rara it makes up for in uniqueness, e.g., 82% of known species do peke-tipu, ng~ kihikihi, ng~ peke-poraka, ng~ p§tara-tuha, not occur anywhere else in the world. From this point of view ng~ peke-r~kau, me ng~ peke-rau. He matahuhua tonu te New Zealand can be regarded as a biodiversity “hot spot” for rÇpã nei, ~, ko r~tou t‘tahi w~hanga nui o ng~ hanga ora kai this group of insects. New genera and species will be discov- tipu o ng~ pãnaha hauropi noho papa. He maha ~ r~tou ered in the future and once fully described the New Zealand urutaunga taha whanonga i ng~ whenua me ng~ moutere fauna may reach 300 to 350 species. katoa (h~unga anÇ Te KÇpakatanga ki te Tonga), ~, e Auchenorrhyncha can be distinguished from other Hemi- whakapaetia ana kei te ~hua 42 000 ng~ momo i ng~ tini ptera suborders on the basis of three main characteristics: kokonga o te ao, kua oti te whakaahua ~-kupu. NÇ ng~ sucking mouthparts in the form of a beak extending from the wh~nau e 30–40 ‘nei momo. T‘r~ pea kei ng~ mano ng~ back of the head – the name Auchenorrhyncha literally means momo o ‘tahi o ng~ taupori e kaha ake ana te mÇhiotia, “neck-beaks”; relatively short and bristle-like antennae; and p‘r~ i ‘r~ o Amerika ki te Raki, o âropi, o Ahitereiria. Ina forewings of uniform texture (entirely membranous or leath- whakatairitea ng~ mea o konei ki ‘r~, he huinga iti tonu, in~ ery) resting rooflike over the abdomen. r~, 12 ng~ wh~nau, e, 68 ng~ puninga, 196 ng~ momo. In this volume, four questions most commonly asked Engari ahakoa iti, he pounamu. In~ r~, ko t‘tahi 82% o ng~ about a group of insects are being answered: What, where, momo o konei e mÇhiotia ana, k~ore i whenua k‘. N~ reira when and how? What Auchenorrhyncha occur in New Zealand, me k§ p‘nei ake, he w~hi whakahirahira a Aotearoa mÇ te what is their status (e.g., native, introduced from elsewhere, matahuhua-koiora o t‘nei karangatanga pepeke. K~ore e pests, disease vectors)? What are the resources available to kore ka kitea he puninga anÇ, he momo anÇ ~ tÇna w~, ~, ina identify and study them? Where do species and genera occur oti te whakaahua ~-kupu, t‘r~ ka piki te maha o ng~ momo (e.g., geographic distribution in New Zealand and overseas, ki te 300–350. habitats, dispersal abilities)? When are they active (e.g., sea- E toru ng~ ~huatanga matua e noho wehe ai ng~ sonal activity, mating, egg-laying, wintering)? How do they Auchenorrhyncha i ‘r~ atu pãtoi-iti o ng~i Hemiptera: ko live (e.g., food preferences, hostplants, natural enemies)? ng~ w~hanga ngote o te waha – ar~, he ngutu e toro ana atu New Zealand Auchenorrhyncha are generally active dur- i te murikÇkai — ko te tikanga hoki o te ingoa ing the day and live in lowland to mountain forests and Auchenorrhyncha, ko te “ngutu-kak§”; ko te poto o ng~ shrublands, although a number of groups are typically found pãhihi — me te tarakina te rite; kotahi anÇ te kakano o ng~ in more open habitats, such as tussock grasslands, and in parihau o mua (he kiriuhi katoa, he kirikau katoa r~nei) e subalpine environments. Native species usually live within noho ‘tuanui’ mai ana ki te puku. the confines of their natural habitats but some species also I t‘nei putanga, ka whakautua ng~ momo p~tai e wh~ e live in modified ecosystems and exotic tree plantations. De- uia nuitia ana mÇ ng~ aitanga pepeke, koia ‘nei: he aha, kei pending on families and genera, species can be predominantly hea, ~hea, p‘hea? He aha ng~ Auchenorrhyncha kei Aotearoa active on low plants, trees and shrubs, or even the ground e noho ana, he aha Ç r~tou tãranga (e.g., he momo m~ori, surface. Hostplants are known for less than 20% of species. he r~waho, he momo takakino, he whakawhiti tahumaero)? The recognisable features and biology of the immature stages He aha ng~ rauemi e w~tea ana hei tautohu, hei rangahau i (nymphs) are unknown for the majority of species. Anec- ng~ pepeke nei? Kei hea ake ng~ momo me ng~ puninga dotal evidence suggests that parasitic wasps, birds, predatory (e.g., i Aotearoa, i t~w~hi, ng~ k~inga noho, te kaha ki te beetles, spiders, and mites may be among the major natural whakap§rara haere)? }hea ka kori ake (e.g., ng~ koringa ~- enemies of New Zealand Auchenorrhyncha. Overall, about kaupeka, te whakaputa uri, te wh~nau hua, te ~hua i te 25% of the fauna is short-winged or wingless. Active dispersal takurua)? He p‘hea te ~hua o te noho (e.g., ng~ tino kai, ng~ by flight is therefore unlikely for these species. tipu ka ~ta nohoia, ng~ hoariri m~ori)? (continued overleaf) (haere tonu) 6 The described New Zealand fauna, with 196 species, is Ko te nuinga o ng~ Auchenorrhyncha o Aotearoa, he about 13% the size of the known Australian fauna which has kori awatea.
Recommended publications
  • Dmitriev Cybertaxonomy.Pdf
    Cybertaxonomic approach to revision of larger groups: 3i experience Dmitry A. Dmitriev & Chris H. Dietrich Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak st., Champaign IL, 61820. E-mail: [email protected], Http://ctap.inhs.uiuc.edu/dmitriev/ WHAT IS CYBERTAXONOMY? 3i PROGRAM DETAILS Taxonomists have always been at the forefront of efforts to document • 3i is an abbreviation for Internet-accessible 2 global biodiversity. Unfortunately, despite our best efforts over the 250 years Interactive Identification. This is a set of tools since Linnaeus established the present system for classifying and naming intended to facilitate the efficient production of species, the vast majority (perhaps 90% or more) of species remain Internet-based virtual taxonomic revisions, undocumented. Taxonomists currently describe ~20,000 new species per published monographs, and checklists. The year, but recent estimates suggest that between 27,000 and 130,000 species package facilitates storage, retrieval and are being lost each year to extinction. Thus, efforts to document the world’s integration of taxonomic nomenclature, species need to be accelerated. specimen-level data on distributions and Because the number of practicing taxonomists is not likely to increase ecological associations, morphological character appreciably in the near future, the most practical solution to addressing the data and associated illustrations, and need for more rapid species discovery and documentation is to make bibliographic information. taxonomists more efficient. • Data is stored in a customized MS Access Revisionary study is a crucial part of the job of any taxonomist. A good 2000 relational database residing on Microsoft taxonomic revision summarizes knowledge about a group of organisms and web server.
    [Show full text]
  • Three New Species of the Leafhopper Genus Dayus Mahmood from China (Hemiptera, Cicadellidae, Typhlocybinae, Empoascini)
    A peer-reviewed open-access journal ZooKeys 355: 1–8 (2013)Three new species of the leafhopper genusDayus Mahmood from China... 1 doi: 10.3897/zookeys.355.6277 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Three new species of the leafhopper genus Dayus Mahmood from China (Hemiptera, Cicadellidae, Typhlocybinae, Empoascini) Xiaofei Yu1,2,†, Maofa Yang1,2,‡ 1 Institute of Entomology, Guizhou University, Guiyang Guizhou, 550025, P. R. China 2 Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang Guizhou, 550025, P. R. China † http://zoobank.org/872D7371-CDF4-4044-95DF-B2705F6293E2 ‡ http://zoobank.org/79B3BA54-5CBD-43CD-B50C-FAABBBFA4904 Corresponding author: Maofa Yang ([email protected]) Academic editor: Mick Webb | Received 19 September 2013 | Accepted 18 November 2013 | Published 25 November 2013 http://zoobank.org/9412C02F-6433-4090-BF17-18A280B90782 Citation: Yu XF, Yang MF (2013) Three new species of the leafhopper genus Dayus Mahmood from China (Hemiptera, Cicadellidae, Typhlocybinae, Empoascini). ZooKeys 355: 1–8. doi: 10.3897/zookeys.355.6277 Abstract Three new species of the Oriental empoascine leafhopper genus Dayus Mahmood are described from China: D. bifurcatus sp. n., D. trifurcatus sp. n. and D. serratus sp. n. A key to distinguish all Chinese species of the genus is provided. Keywords Auchenorrhyncha, leafhopper, taxonomy, morphology Introduction The Oriental typhlocybine leafhopper genus Dayus was established by Mahmood in 1967 with D. elongatus Mahmood (Singapore) as its type species. Subsequently, Dworakowska (1971) described D. takagii Dworakowska (Japan) and transferred D. upoluanus (Osborn, 1934) (Western Samoa) and D. euryphaessus (Kirkaldy, 1907) (Fiji) to the geuns, Dworakowska and Viraktamath (1978) added a new species: D.
    [Show full text]
  • The Planthopper Genus Trypetimorpha: Systematics and Phylogenetic Relationships (Hemiptera: Fulgoromorpha: Tropiduchidae)
    JOURNAL OF NATURAL HISTORY, 1993, 27, 609-629 The planthopper genus Trypetimorpha: systematics and phylogenetic relationships (Hemiptera: Fulgoromorpha: Tropiduchidae) J. HUANG and T. BOURGOINt* Pomological Institute of Shijiazhuang, Agricultural and Forestry Academy of Sciences of Hebei, 5-7 Street, 050061, Shijiazhuang, China t Mus#um National d'Histoire Naturelle, Laboratoire d'Entomologie, 45 rue Buffon, F-75005, Paris, France (Accepted 28 January 1993) The genus Trypetimorpha is revised with the eight currently recognized species described or re-described. Four new species are described and seven new synonymies are proposed. Within Trypetimorphini sensu Fennah (1982), evidences for the monophyly of each genus are selected, but Caffrommatissus is transferred to the Cixiopsini. Monophyly of Trypetimorphini, restricted to Trypetimorpha and Ommatissus, is discussed. A key is given for the following Trypetimorpha species: (1) T. fenestrata Costa ( = T. pilosa Horvfith, syn. n.); (2) T. biermani Dammerman (= T. biermani Muir, syn. n.; = T. china (Wu), syn. n.; = T. formosana Ishihara, syn. n.); (3) T. japonica Ishihara ( = T. koreana Kwon and Lee, syn. n.); (4) T. canopus Linnavuori; (5) T. occidentalis, sp. n. (= T. fenestrata Costa, sensu Horvfith); (6) T. aschei, sp. n., from New Guinea; (7) T. wilsoni, sp. n., from Australia; (8) T. sizhengi, sp. n., from China and Viet Nam. Study of the type specimens of T. fenestrata Costa shows that they are different from T. fenestrata sensu Horvfith as usually accepted, which one is redescribed here as T. occidentalis. KEYWORDS: Hemiptera, Fulgoromorpha, Tropiduchidae, Trypetimorpha, Ommatissus, Cafrommatissus, systematics, phylogeny. Downloaded by [University of Delaware] at 10:13 13 January 2016 Introduction This revision arose as the result of a study of the Chinese Fulgoromorpha of economic importance (Chou et al., 1985) and the opportunity for J.H.
    [Show full text]
  • Penestragania Apicalis (Osborn & Ball, 1898), Another Invasive
    ©Arbeitskreis Zikaden Mitteleuropas e.V. - download unter www.biologiezentrum.at Cicadina 13 (2013): 5‐15 Penestragania apicalis (Osborn & Ball, 1898), another invasive Nearctic leafhopper found in Europe (Hemiptera: Cicadellidae, Iassinae) Herbert Nickel*, Henry Callot, Eva Knop, Gernot Kunz, Klaus Schrameyer, Peter Sprick, Tabea Turrini‐Biedermann, Sabine Walter Summary: In 2010 the Nearctic leafhopper Penestragania apicalis (Osb. & Ball) was found for the first time in Europe. Altogether there are now 16 known localities in France, Switzerland, Germany and Austria indicating that the species is well es‐ tablished for a rather long period and more widespread in Europe and perhaps worldwide. As in North America it lives on honeylocust (Gleditsia triacanthos L.), overwinters in the egg stage and probably has one or two generations a year, with adults at least from late June until early October. It is yet unclear if it causes relevant damage to the host plant in Europe. Keywords: alien species, neozoa, plant pests, Iassinae, Gleditsia 1. Introduction In 2012 a leafhopper was found in several localities in central Europe that was hitherto unknown to European hemipterists. Extensive search in taxonomic litera‐ ture from all around the world revealed that it was Penestragania apicalis (Osborn & Ball, 1898). This species was originally described from Iowa and Nebraska as a member of the genus Macropsis Lewis, 1834 (see Osborn & Ball 1898a), later placed into Bythoscopus Germar, 1833, Stragania Stål, 1862 (see Metcalf 1966a), and finally Penestragania Beamer & Lawson, 1945. The latter was originally erected as a subge‐ nus only and later raised to genus level by Blocker (1979) who limited the genus Stragania to the type species St.
    [Show full text]
  • Correlation of Stylet Activities by the Glassy-Winged Sharpshooter, Homalodisca Coagulata (Say), with Electrical Penetration Graph (EPG) Waveforms
    ARTICLE IN PRESS Journal of Insect Physiology 52 (2006) 327–337 www.elsevier.com/locate/jinsphys Correlation of stylet activities by the glassy-winged sharpshooter, Homalodisca coagulata (Say), with electrical penetration graph (EPG) waveforms P. Houston Joosta, Elaine A. Backusb,Ã, David Morganc, Fengming Yand aDepartment of Entomology, University of Riverside, Riverside, CA 92521, USA bUSDA-ARS Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave, Parlier, CA 93648, USA cCalifornia Department of Food and Agriculture, Mt. Rubidoux Field Station, 4500 Glenwood Dr., Bldg. E, Riverside, CA 92501, USA dCollege of Life Sciences, Peking Univerisity, Beijing, China Received 5 May 2005; received in revised form 29 November 2005; accepted 29 November 2005 Abstract Glassy-winged sharpshooter, Homalodisca coagulata (Say), is an efficient vector of Xylella fastidiosa (Xf), the causal bacterium of Pierce’s disease, and leaf scorch in almond and oleander. Acquisition and inoculation of Xf occur sometime during the process of stylet penetration into the plant. That process is most rigorously studied via electrical penetration graph (EPG) monitoring of insect feeding. This study provides part of the crucial biological meanings that define the waveforms of each new insect species recorded by EPG. By synchronizing AC EPG waveforms with high-magnification video of H. coagulata stylet penetration in artifical diet, we correlated stylet activities with three previously described EPG pathway waveforms, A1, B1 and B2, as well as one ingestion waveform, C. Waveform A1 occured at the beginning of stylet penetration. This waveform was correlated with salivary sheath trunk formation, repetitive stylet movements involving retraction of both maxillary stylets and one mandibular stylet, extension of the stylet fascicle, and the fluttering-like movements of the maxillary stylet tips.
    [Show full text]
  • Two New Leafhopper Genera of the Alebroides Genus Group (Hemiptera: Cicadellidae: Typhlocybinae) from China, with a Key to Genera of the Group
    Entomological Science (2017) doi: 10.1111/ens.12260 ORIGINAL ARTICLE Two new leafhopper genera of the Alebroides genus group (Hemiptera: Cicadellidae: Typhlocybinae) from China, with a key to genera of the group Ye XU1,SihanLU1, Yuru WANG1, Christopher H. DIETRICH2 and Daozheng QIN1 1 Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, China and 2 Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, USA Abstract Two new microleafhopper genera in the Alebroides genus group, Nulliata Lu, Xu & Qin, gen. nov., based on the type species N. rubrostriata Lu, Xu & Qin, sp. nov.,andInflatopina Lu, Dietrich & Qin, gen. nov., based on the type species I. intonsa Lu, Dietrich & Qin, sp. nov., are described from southwest China. Five known species in the Alebroides sohii species group are transferred to Inflatopina as new combinations. Keys to genera of the Alebroides genus group and species of Inflatopina are given. Key words: Auchenorrhyncha, microleafhopper, morphology, taxonomy. INTRODUCTION the cosmopolitan genus Empoasca Walsh, 1862). In contrast, the Alebroides group appears more stable in The microleafhopper tribe Empoascini comprises more classification, comprising 156 species in 25 genera so than 1,000 species in 85 previously described genera far, widely distributed in the Oriental, Palaearctic, from throughout the world. It can be distinguished from Afrotropical and Australian Regions but absent from other tribes of Typhlocybinae as follows: ocelli usually the New World (Xu et al. 2016). well developed; forewing without appendix; hind wing In China, the Alebroides group includes 14 genera and submarginal vein extended between apices of veins 58 species known to date (see checklist).
    [Show full text]
  • The First New Zealand Insects Collected on Cook's
    Pacific Science (1989), vol.43, 43, nono.. 1 © 1989 by UniversityUniversity of Hawaii Press.Pres s. All rights reserved TheThe First New Zealand Zealand InsectsInsects CollectedCollectedon Cook'sCook's Endeavour Voyage!Voyage! 2 J. R. H. AANDREWSNDREWS2 AND G.G . W. GIBBSGmBS ABSTRACT:ABSTRACT: The Banks collection of 40 insect species, species, described by J. J. C.C. Fabricius in 1775,1775, is critically examined to explore the possible methods of collection and to document changesto the inseinsectct fauna andto the original collection localities sincsincee 1769.The1769. The aassemblagessemblageof species is is regarded as unusual. unusual. It includes insects that are large large and colorful as well as those that are small and cryptic;cryptic; some species that were probably common were overlooked, but others that are today rare were taken.taken. It is concluded that the Cook naturalists caught about 15species with a butterfly net, but that the majority (all CoColeoptera)leoptera) were discoveredin conjunction with other biobiologicallogical specimens, especially plantsplants.. PossibPossiblele reasons for the omission ofwetwetasas,, stick insects, insects, etc.,etc., are discussed. discussed. This early collection shows that marked changesin abundance may have occurred in some speciespeciess since European colonizationcolonization.. One newrecord is is revealed:revealed: The cicada NotopsaltaNotopsaltasericea sericea (Walker) was found to be among the Fabricius speci­speci­ mens from New Zealand,Zealand, but itsits description evidentlyevidently
    [Show full text]
  • The Leafhoppers of Minnesota
    Technical Bulletin 155 June 1942 The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station Accepted for publication June 19, 1942 CONTENTS Page Introduction 3 Acknowledgments 3 Sources of material 4 Systematic treatment 4 Eurymelinae 6 Macropsinae 12 Agalliinae 22 Bythoscopinae 25 Penthimiinae 26 Gyponinae 26 Ledrinae 31 Amblycephalinae 31 Evacanthinae 37 Aphrodinae 38 Dorydiinae 40 Jassinae 43 Athysaninae 43 Balcluthinae 120 Cicadellinae 122 Literature cited 163 Plates 171 Index of plant names 190 Index of leafhopper names 190 2M-6-42 The Leafhoppers of Minnesota John T. Medler INTRODUCTION HIS bulletin attempts to present as accurate and complete a T guide to the leafhoppers of Minnesota as possible within the limits of the material available for study. It is realized that cer- tain groups could not be treated completely because of the lack of available material. Nevertheless, it is hoped that in its present form this treatise will serve as a convenient and useful manual for the systematic and economic worker concerned with the forms of the upper Mississippi Valley. In all cases a reference to the original description of the species and genus is given. Keys are included for the separation of species, genera, and supergeneric groups. In addition to the keys a brief diagnostic description of the important characters of each species is given. Extended descriptions or long lists of references have been omitted since citations to this literature are available from other sources if ac- tually needed (Van Duzee, 1917).
    [Show full text]
  • Characterization of the Feeding Behavior of Three Erythroneura Species on Grapevine by Histological and DC-Electrical Penetration Graph Techniques
    DOI: 10.1111/eea.12353 Characterization of the feeding behavior of three Erythroneura species on grapevine by histological and DC-electrical penetration graph techniques Julien Saguez1*, Pierre Lemoyne1, Philippe Giordanengo2,3,ChrystelOlivier4, Jacques Lasnier5,YvesMauffette6 & Charles Vincent1 1Agriculture et Agroalimentaire Canada, 430 Boulevard Gouin, Saint-Jean-sur-Richelieu, Quebec J3B 3E6, Canada, 2Universite de Picardie Jules Verne, 33 Rue St Leu, 80039 Amiens Cedex, France, 3Institut Sophia Agrobiotech, UMR 1355 INRA/Universite Nice Sophia Antipolis/7254 CNRS, 400 route des Chappes, 06903 Sophia Antipolis Cedex, France, 4Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada, 5Co-Lab R&D div. Ag-Cord, 655 Rue Delorme, Granby, Quebec J2J 2H4, Canada, and 6UniversiteduQuebec a Montreal, 141 Rue du President-Kennedy, Montreal, Quebec H2X 3Y5, Canada Accepted: 22 July 2015 Key words: mesophyll-feeder, piercing-sucking insect, plant tissues, salivary sheath, stylet penetration, Vitis, xylem, Auchenorrhyncha, Hemiptera, Cicadellidae, Vitaceae, DC-EPG Abstract Feeding behavior of three leafhopper species – Erythroneura vitis (Harris), Erythroneura ziczac (Walsh), and Erythroneura elegantula (Say) (Hemiptera: Cicadellidae) – reared on grapevine, Vitis vinifera L. cv. ‘Seyval blanc’ (Vitaceae), was investigated using histological techniques and DC-electri- cal penetration graphs (DC-EPG). Histological studies revealed that the Erythroneura species induced white stipples on the leaves and that these leafhoppers produced thin salivary sheaths in grapevine leaf tissues. The DC-EPG system allowed the characterization of five waveforms associated with stylet penetration and feeding in leaf tissues. These waveforms were characteristic of feeding phases corre- sponding to epidermis penetration pathway, salivation, and ingestion. We calculated 28 parameters (e.g., number of probes, duration of phases, and time spent in the various tissues) to describe and compare the feeding behavior of the Erythroneura species.
    [Show full text]
  • List of Insect Species Which May Be Tallgrass Prairie Specialists
    Conservation Biology Research Grants Program Division of Ecological Services © Minnesota Department of Natural Resources List of Insect Species which May Be Tallgrass Prairie Specialists Final Report to the USFWS Cooperating Agencies July 1, 1996 Catherine Reed Entomology Department 219 Hodson Hall University of Minnesota St. Paul MN 55108 phone 612-624-3423 e-mail [email protected] This study was funded in part by a grant from the USFWS and Cooperating Agencies. Table of Contents Summary.................................................................................................. 2 Introduction...............................................................................................2 Methods.....................................................................................................3 Results.....................................................................................................4 Discussion and Evaluation................................................................................................26 Recommendations....................................................................................29 References..............................................................................................33 Summary Approximately 728 insect and allied species and subspecies were considered to be possible prairie specialists based on any of the following criteria: defined as prairie specialists by authorities; required prairie plant species or genera as their adult or larval food; were obligate predators, parasites
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • 46601932.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OAR@UM BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2012) Vol. 5 : 57-72 A preliminary account of the Auchenorrhyncha of the Maltese Islands (Hemiptera) Vera D’URSO1 & David MIFSUD2 ABSTRACT. A total of 46 species of Auchenorrhyncha are reported from the Maltese Islands. They belong to the following families: Cixiidae (3 species), Delphacidae (7 species), Meenoplidae (1 species), Dictyopharidae (1 species), Tettigometridae (2 species), Issidae (2 species), Cicadidae (1 species), Aphrophoridae (2 species) and Cicadellidae (27 species). Since the Auchenorrhyncha fauna of Malta was never studied as such, 40 species reported in this work represent new records for this country and of these, Tamaricella complicata, an eastern Mediterranean species, is confirmed for the European territory. One species, Balclutha brevis is an established alien associated with the invasive Fontain Grass, Pennisetum setaceum. From a biogeographical perspective, the most interesting species are represented by Falcidius ebejeri which is endemic to Malta and Tachycixius remanei, a sub-endemic species so far known only from Italy and Malta. Three species recorded from Malta in the Fauna Europaea database were not found during the present study. KEY WORDS. Malta, Mediterranean, Planthoppers, Leafhoppers, new records. INTRODUCTION The Auchenorrhyncha is represented by a large group of plant sap feeding insects commonly referred to as leafhoppers, planthoppers, cicadas, etc. They occur in all terrestrial ecosystems where plants are present. Some species can transmit plant pathogens (viruses, bacteria and phytoplasmas) and this is often a problem if the host-plant happens to be a cultivated plant.
    [Show full text]