Speaker Biographies

Total Page:16

File Type:pdf, Size:1020Kb

Speaker Biographies Speaker Biographies (Arranged Alphabetically) Contents Keynote Speakers David Danielson ............................................................................................................................................ 6 Peter W. Davidson ........................................................................................................................................ 7 Christopher Grundler ..................................................................................................................................... 8 Amy Klobuchar .............................................................................................................................................. 9 Jonathan Male ............................................................................................................................................. 10 Franklin Orr ................................................................................................................................................. 11 Gregory Rorrer ............................................................................................................................................ 12 Reuben Sarkar ............................................................................................................................................ 13 Plenary and Breakout Speakers, Including Session Moderators Robert C. Abt .............................................................................................................................................. 15 Toby Ahrens ................................................................................................................................................ 16 James E. Anderson ..................................................................................................................................... 17 Matthew Atwood .......................................................................................................................................... 18 David Babson .............................................................................................................................................. 19 Brian Baynes ............................................................................................................................................... 20 Jacques Beaudry-Losique........................................................................................................................... 21 Doug Berven ............................................................................................................................................... 22 Abhijeet P. Borole ....................................................................................................................................... 23 Matt Carr ..................................................................................................................................................... 25 Ronald R. Chance ....................................................................................................................................... 26 Sunil Chandran ........................................................................................................................................... 27 Wilfred Chen ............................................................................................................................................... 28 Tim Cohn ..................................................................................................................................................... 29 Randy D. Cortright ...................................................................................................................................... 30 Bill Crump .................................................................................................................................................... 31 Daniel Cummings ........................................................................................................................................ 32 Claire Curry ................................................................................................................................................. 33 Bruce E. Dale .............................................................................................................................................. 34 Bioenergy 2015 | June 23–24, 2015 | Opportunities in a Changing Energy Landscape 2 | P a g e Paul J. Dauenhauer .................................................................................................................................... 35 Bob Dineen ................................................................................................................................................. 36 Corinne Drennan ......................................................................................................................................... 37 Geoffrey Duyk ............................................................................................................................................. 38 Jennifer Dunn .............................................................................................................................................. 39 Lisa Dyson................................................................................................................................................... 40 Laurence Eaton ........................................................................................................................................... 41 John Eichberger .......................................................................................................................................... 42 Mark Elless .................................................................................................................................................. 43 John Farrell ................................................................................................................................................. 44 Daniel Fishman ........................................................................................................................................... 45 Jay Fitzgerald .............................................................................................................................................. 46 Nichole Fitzgerald ....................................................................................................................................... 47 Jason Force ................................................................................................................................................ 48 Lori Giver ..................................................................................................................................................... 49 Robert Graham ........................................................................................................................................... 50 Noah Helman .............................................................................................................................................. 51 Doug Hoelscher .......................................................................................................................................... 52 Suzanne Hunt ............................................................................................................................................. 53 Kristen Johnson .......................................................................................................................................... 54 Brendan Jordan ........................................................................................................................................... 55 Jeffrey S. Kanel ........................................................................................................................................... 56 Jim Lane ...................................................................................................................................................... 57 Lee R. Lynd ................................................................................................................................................. 58 G. Jeremy Leong ......................................................................................................................................... 59 Bruce E. Logan ........................................................................................................................................... 60 Tryg Lundquist ............................................................................................................................................ 61 Michael McAdams ....................................................................................................................................... 62 Taite R. McDonald ...................................................................................................................................... 63 John McGowen ........................................................................................................................................... 64 Jim Millis ...................................................................................................................................................... 65 Fred Moesler ............................................................................................................................................... 66 Molly
Recommended publications
  • The Selective Synthesis of Aromatics and Furans From
    THE SELECTIVE SYNTHESIS OF AROMATICS AND FURANS FROM BIOMASS-DERIVED COMPOUNDS by Eyas Mahmoud A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering Summer 2016 © 2016 Eyas Mahmoud All Rights Reserved THE SELECTIVE SYNTHESIS OF AROMATICS AND FURANS FROM BIOMASS-DERIVED COMPOUNDS by Eyas Mahmoud Approved: __________________________________________________________ Abraham M. Lenhoff, Ph.D. Chair of the Department of Chemical and Biomolecular Engineering Approved: __________________________________________________________ Babatunde A. Ogunnaike, Ph.D. Dean of the College of Engineering Approved: __________________________________________________________ Ann L. Ardis, Ph.D. Senior Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Raul F. Lobo, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Dionisios G. Vlachos, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Donald A. Watson, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Synthesis, Catalysis, and Chemistry
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses July 2017 Nanoporous Solid Acid Materials for Biomass Conversion into Value-Added Chemicals: Synthesis, Catalysis, and Chemistry Hong Je Cho University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Catalysis and Reaction Engineering Commons Recommended Citation Cho, Hong Je, "Nanoporous Solid Acid Materials for Biomass Conversion into Value-Added Chemicals: Synthesis, Catalysis, and Chemistry" (2017). Doctoral Dissertations. 952. https://doi.org/10.7275/9584937.0 https://scholarworks.umass.edu/dissertations_2/952 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. NANOPOROUS SOLID ACID MATERIALS FOR BIOMASS CONVERSION INTO VALUE-ADDED CHEMICALS: SYNTHESIS, CATALYSIS, AND CHEMISTRY A Dissertation Presented by HONG JE CHO Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2017 Chemical Engineering © Copyright by Hong Je Cho 2017 All Rights Reserved NANOPOROUS SOLID ACID MATERIALS FOR BIOMASS CONVERSION INTO VALUE-ADDED CHEMICALS: SYNTHESIS, CATALYSIS, AND CHEMISTRY A Dissertation Presented by HONG JE CHO Approve as to style and content by: ______________________________________ Wei Fan, Chair ______________________________________ Friederike Jentoft, Member ______________________________________ Ashwin Ramasubramaniam, Member ___________________________________ John Klier, Department Head Department of Chemical Engineering ACKNOWLEDGEMENTS This work was supported by Catalysis Center for Energy Innovation (funded by the US Dept.
    [Show full text]
  • Catalysis and Reaction Engineering Division 2020
    Catalysis and Reaction Engineering Division 2020 Held at the 2020 AIChE Annual Meeting Online 16 – 20 November 2020 Volume 1 of 2 ISBN: 978-1-7138-2313-1 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2020) by AIChE All rights reserved. Printed with permission by Curran Associates, Inc. (2021) For permission requests, please contact AIChE at the address below. AIChE 120 Wall Street, FL 23 New York, NY 10005-4020 Phone: (800) 242-4363 Fax: (203) 775-5177 www.aiche.org Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS VOLUME 1 (19A) CATALYTIC REACTION PATHWAYS AND PROCESS SYNTHESIS FOR BIOMASS CONVERSION TO HIGH-VALUE CHEMICALS FOR ORGANIC DYE AND POLYMER APPLICATIONS .................................................................................................................................................. 1 Hochan Chang, Ishan Bajaj, George W. Huber, Christos T. Maravelias, James A. Dumesic (19B) SUPERACID POLYMER CATALYSTS FOR HYDROXYMETHYLFURFURAL PRODUCTION .................................................................................................................................................... 2 Ibeh S. Omodolor, Sarah A. Walz, Subhash Kalidindi, Vimantha Bamunuarachchi, Ravikumar Gogar,
    [Show full text]
  • Dr. Lisa Dyson
    DR. LISA DYSON BIO Dr. Dyson is the CEO of Air Protein, which is focused on feeding the world's population with food made from the most sustainable protein, protein that is made from elements found in the air. Using a proprietary probiotic production process, Air Protein is forging the way into a new era of sustainable food production, and has introduced the world's first food from CO2. Watch Dr. Dyson’s TED Talk about the technology here. Dr. Dyson is also the CEO of Kiverdi, which is remaking supply chains with carbon transformation. Dr. Dyson is a scientist and entrepreneur to her core, taught to solve problems. She was raised by an entrepreneur where she saw ideas come to fruition and she thrives when she is able to use her scientific knowledge to solve problems that are good for business and good for the planet. Lisa has spent the last decade of her career working on climate-positive technologies. As a mission-driven entrepreneur, Dr. Dyson is passionate about challenging business leaders to adopt innovative, sustainable ways of producing. EXPERIENCE AND BACKGROUND ● Management Consultant at The Boston Consulting Group ● PhD in physics from MIT ● Bachelor’s Degree in Mathematics and Physics from Brandeis University ● Master of Science and Fulbright Scholar at the Imperial College London ● Conducted research in bioengineering, energy and physics at Stanford University, UC Berkeley, and Princeton University ACCOLADES ● Inc Magazine - Top 100 Female Founders 2019 ● 2019 Verge Vanguard Award ● Most Creative People in Business 2017 by Fast Company ● San Francisco Business Times’ Forever Influential Honor Roll ● C3E award from MIT and the Department of Energy for her entrepreneurial leadership in energy Dr.
    [Show full text]
  • Basic Research Needs for Catalysis Science
    Basic Research Needs for Catalysis Science Report of the Basic Energy Sciences Workshop on Basic Research Needs for Catalysis Science to Transform Energy Technologies May 8–10, 2017 Image courtesy of Argonne National Laboratory. DISCLAIMER This report was prepared as an account of a workshop sponsored by the U.S. Department of Energy. Neither the United States Government nor any agency thereof, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Copyrights to portions of this report (including graphics) are reserved by original copyright holders or their assignees, and are used by the Government’s license and by permission. Requests to use any images must be made to the provider identified in the image credits. This report is available in pdf format at https://science.energy.gov/bes/community-resources/reports/ REPORT OF THE BASIC RESEARCH NEEDS WORKSHOP FOR CATALYSIS SCIENCE Basic Research Needs for Catalysis Science TO TRANSFORM ENERGY TECHNOLOGIES Report from the U.S. Department of Energy, Office of Basic Energy Sciences Workshop May 8–10, 2017, in Gaithersburg, Maryland CHAIR: ASSOCIATE CHAIRS: Carl A.
    [Show full text]
  • Deciphering Biomass Fragmentation Using Millisecond Micro-Reactor Kinetics
    Deciphering Biomass Fragmentation using Millisecond Micro-Reactor Kinetics A DISSERTATION SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY SAURABH MADUSKAR IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Adviser: Paul J. Dauenhauer MAY 2018 © Saurabh Maduskar 2018 Acknowledgements First and foremost, I would like to thank my advisor, Paul Dauenhauer, who guided me throughout my Ph.D. and provided mentorship in research and professional development. His excitement and creativity towards solving challenging problems motivated me to complete the research projects. The work culture in Dauenhauer research group helped me accomplish both professional and personal goals in my graduate life. I would like to thank Dauenhauer group alumni Andrew Teixeria, Christoph Krumm, Alex Paulsen, Luke Williams for their support, mentoring, and guidance during initial years of my PhD. I would also like to thank my current lab mates Kristeen Joseph, Katherine Vinter, Omar Abdelrehman, Greg Fracas, Vineet Mallikal for their continued support and encouragement. I specially thank my batchmates Kristeen and Katie for baring with me throughout the long journey of graduate school. I would like to thank the department of Chemical Engineering and Materials Science, University of Minnesota and the department of Chemical Engineering, University of Massachusetts Amherst for giving me an opportunity to work as a research assistant and graduate student with some of the brightest people I have known. I would like to thank the professors and mentors I have had at both the universities, continually igniting that spark of curiosity, forcing me to work harder. Finally, I would like to thank my family, and friends; without their support, I undoubtedly would not have made it to this point today.
    [Show full text]
  • Topics in Cosmology: Island Universes, Cosmological Perturbations and Dark Energy
    TOPICS IN COSMOLOGY: ISLAND UNIVERSES, COSMOLOGICAL PERTURBATIONS AND DARK ENERGY by SOURISH DUTTA Submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy Department of Physics CASE WESTERN RESERVE UNIVERSITY August 2007 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. To the people who have believed in me. Contents Dedication iv List of Tables viii List of Figures ix Abstract xiv 1 The Standard Cosmology 1 1.1 Observational Motivations for the Hot Big Bang Model . 1 1.1.1 Homogeneity and Isotropy . 1 1.1.2 Cosmic Expansion . 2 1.1.3 Cosmic Microwave Background . 3 1.2 The Robertson-Walker Metric and Comoving Co-ordinates . 6 1.3 Distance Measures in an FRW Universe . 11 1.3.1 Proper Distance . 12 1.3.2 Luminosity Distance . 14 1.3.3 Angular Diameter Distance . 16 1.4 The Friedmann Equation . 18 1.5 Model Universes . 21 1.5.1 An Empty Universe . 22 1.5.2 Generalized Flat One-Component Models . 22 1.5.3 A Cosmological Constant Dominated Universe . 24 1.5.4 de Sitter space . 26 1.5.5 Flat Matter Dominated Universe . 27 1.5.6 Curved Matter Dominated Universe . 28 1.5.7 Flat Radiation Dominated Universe . 30 1.5.8 Matter Radiation Equality . 32 1.6 Gravitational Lensing . 34 1.7 The Composition of the Universe .
    [Show full text]
  • Frontiers at the Interface of Homogeneous and Heterogeneous Catalysis
    FRONTIERS AT THE INTERFACE OF HOMOGENEOUS AND HETEROGENEOUS CATALYSIS Meeting of the Catalysis Science Program Chemical Sciences, Geosciences and Biosciences Division Office of Basic Energy Sciences U.S. Department of Energy Westin Annapolis Annapolis, Maryland June 30 – July 2, 2013 This document was produced under contract number DE-AC05-060R23100 between the U.S. Department of Energy and Oak Ridge Associated Universities. FOREWORD The 2013 Catalysis Science Program Meeting is sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences (BES), U.S. Department of Energy. It is being held on June 30 through July 2, 2013, at the Westin Annapolis Hotel, Annapolis, Maryland. The purposes of this meeting are to discuss the recent advances in the chemical, physical, and biological bases of catalysis science, to foster exchange of ideas and cooperation among participants, and to discuss the new challenges and opportunities recently emerging in energy technologies. Catalysis activities within BES emphasize fundamental research aimed at initially understanding and finally controlling the chemical conversion of natural and artificial feedstocks. The long-term goal of this research is to discover fundamental principles and produce ever more insightful approaches to predict structure-reactivity behavior. Such knowledge, integrated with advances in chemical and materials synthesis, in situ and operando analytical instrumentation, and chemical kinetics and quantum chemistry methods, will allow the control of chemical reactions along desired pathways. Ultimately, this new knowledge should impact the efficiency of conversion of natural resources into fuels, chemicals, materials, or other forms of energy, while minimizing the impact to the environment. This year’s meeting is focused on three topical areas: (i) the interface of homogeneous and heterogeneous catalysis, (ii) catalysis for biomass or solar energy conversion, and (iii) molecular catalysis, with an emphasis on organic synthesis.
    [Show full text]
  • Twenty Years of Debate with Stephen
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server SU-ITP 02-11 hep-th/0204027 Twenty Years of Debate with Stephen L. Susskind Department of Physics Stanford University Stanford, CA 94305-4060 Abstract This is my contribution to Stephen Hawking's 60th birthday party. Happy Birth- day Stephen! 1 Crisis and Paradigm Shift Stephen, as we all know, is by far the most stubborn and infuriating person in the universe. My own scientific relation with him I think can be called adversarial. We have disagreed profoundly about deep issues concerning black holes, information and all that kind of thing. At times he has caused me to pull my hair out in frustration – and you can plainly see the result. I can assure you that when we began to argue more than two decades ago, Ihadafullheadofhair. I can also say that of all the physicists I have known he has had the strongest influence on me and on my thinking. Just about everything I have thought about since 1980 has in one way or another been a response to his profoundly insightful question about the fate of information that falls into a black hole [1]. While I firmly believe his answer was wrong, the question and his insistence on a convincing answer has forced us to rethink the foundations of physics. The result is a wholly new paradigm that is now taking shape. I am deeply honored to be here to celebrate Stephen’s monumental contributions and especially his magnificent stubbornness.
    [Show full text]
  • Demystifying Mass Transfer in Electrolyzers Through Rapid Prototyping with 3D Printed Parallel Plate Cells
    Catalysis and Reaction Engineering Division 2019 Held at the 2019 AIChE Annual Meeting Orlando, Florida, USA 10 - 15 November 2019 Volume 1 of 2 ISBN: 978-1-7138-0541-0 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2019) by AIChE All rights reserved. Printed with permission by Curran Associates, Inc. (2020) For permission requests, please contact AIChE at the address below. AIChE 120 Wall Street, FL 23 New York, NY 10005-4020 Phone: (800) 242-4363 Fax: (203) 775-5177 www.aiche.org Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2633 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS VOLUME 1 (8A) DEMYSTIFYING MASS TRANSFER IN ELECTROLYZERS THROUGH RAPID PROTOTYPING WITH 3D PRINTED PARALLEL PLATE CELLS ............................................................................1 Stéphane Weusten, Luc Murrer, Mattheus De Groot, John Van Der Schaaf (8B) ADDITIVE MANUFACTURING OF CATALYST SUPPORT STRUCTURES WITH IN OPERANDO ADJUSTABLE MASS TRANSPORT AND FLOW CHARACTERISTICS............................................3 Sebastian Trunk, Giang Do, Wilhelm Schwieger, Hannsjörg Freund (8C) ROLE OF 3D PRINTED AND LED-DRIVEN PHOTOSTATION IN PHOTOCATALYTIC AND PHOTO-FENTON ACTIVITY OF IRON OXIDE DOPED GRAPHITIC CARBON NITRIDE ........................4 Mathew M. Desipio,
    [Show full text]
  • Stimulating Methods for Promoting Catalytic Resonance
    doi.org/10.26434/chemrxiv.12818174.v1 The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance Manish Shetty, Amber Walton, Sallye R. Gathmann, M. Alexander Ardagh, Joshua Gopeesingh, Joaquin Resasco, Turan Birol, Qi Zhang, Michael Tsapatsis, Dionisios Vlachos, Phillip Christopher, C. Daniel Frisbie, Omar Abdelrahman, Paul Dauenhauer Submitted date: 17/08/2020 • Posted date: 24/08/2020 Licence: CC BY-NC-ND 4.0 Citation information: Shetty, Manish; Walton, Amber; Gathmann, Sallye R.; Ardagh, M. Alexander; Gopeesingh, Joshua; Resasco, Joaquin; et al. (2020): The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12818174.v1 Transformational catalytic performance in rate and selectivity is obtainable through catalysts that change on the time scale of catalytic turnover frequency. In this work, dynamic catalysts are defined in the context and history of forced and passive dynamic chemical systems, with classification of unique catalyst behaviors based on temporally-relevant linear scaling parameters. The conditions leading to catalytic rate and selectivity enhancement are described as modifying the local electronic or steric environment of the active site to independently accelerate sequential elementary steps of an overall catalytic cycle. These concepts are related to physical systems and devices that stimulate a catalyst using light, vibrations, strain, and electronic manipulations including electrocatalysis,
    [Show full text]
  • Wins 35 Wins 35
    Scott Cooper, President and CEO of the Academy of Natural Sciences of Drexel University, invites you to a special evening dedicated to women in science. Women In Natural Sciences (WINS) is the Academy of Natural Sciences’ free summer and after-school mentoring and science enrichment program for high school women, particularly from underserved families WINS 35 and schools in Philadelphia. Founded 35 years ago in response to the Wednesday, May 9, 2018 growing interest in science education programs for female high school students, WINS encourages these young women to pursue science, The Academy of Natural Sciences technology, engineering, and math (STEM) in college and as a career. of Drexel University WINS is the only program of its kind in Philadelphia. Join us in celebrating this groundbreaking program that has made a profound difference in the lives of so many young Philadelphia women. During this special evening, Lisa Dyson, PhD, will receive the WINS 35 Committee first-ever WINS award to recognize an “outstanding female innovator in science, technology, engineering, and math whose visionary Jane and John Bales contributions in science have made a positive impact on the world. WINS 35 Amy Branch and Jeff Benoliel Peter and Ellen Evans WEDNESDAY, MAY 9 , 2018 Dagmar McGill 5 p.m. 6 p.m. 7 p.m. 8 p.m. Sandy and John Nesbitt Celebrate Women in Science at – – – – the Academy of Natural Sciences of Drexel University Judith Soltz and Richard Belas VIP Cocktail Registration, Program Conclusion Hour Reception, Silent Sarah Woods Auction “Let us develop systems and ways of living that will be beneficial to our lives and to the WINS 35 Sponsors 10 billion people who will be Connector living on this planet by 2050.” Amy Branch and Jeff Benoliel Ellen Harvey and Tad Sperry The Issue Judith Soltz and Richard Belas Scientists and activists have focused on reducing carbon dioxide emissions, but few Hamilton Family Foundation have looked to reuse CO2 that has already Lisa Dyson been released into the air.
    [Show full text]