A Homozygous Nonsense Variant in IFT52 Is Associated with a Human Skeletal Ciliopathy

Total Page:16

File Type:pdf, Size:1020Kb

A Homozygous Nonsense Variant in IFT52 Is Associated with a Human Skeletal Ciliopathy Clin Genet 2016 © 2016 John Wiley & Sons A/S. Printed in Singapore. All rights reserved Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12762 Short Report A homozygous nonsense variant in IFT52 is associated with a human skeletal ciliopathy a a Girisha K.M., Shukla A., Trujillano D., Bhavani G.S., Hebbar M., K. M. Girisha ,A.Shukla , Kadavigere R., Rolfs A. A homozygous nonsense variant in IFT52 is D. Trujillanob,G.S.Bhavania, associated with a human skeletal ciliopathy. M. Hebbara, R. Kadavigered Clin Genet 2016. © John Wiley & Sons A/S. Published by John Wiley & and A. Rolfsb,c Sons Ltd, 2016 aDepartment of Medical Genetics, Intraflagellar transport (IFT) is vital for the functioning of primary cilia. Kasturba Medical College, Manipal b Defects in several components of IFT complexes cause a spectrum of University, Manipal, India, Department of ciliopathies with variable involvement of skeleton, brain, eyes, ectoderm and Bioinformatics, Centogene AG, Rostock, Germany, cAlbrecht-Kossel-Institute for kidneys. We examined a child from a consanguineous family who had short Neuroregeneration, Medical University stature, narrow thorax, short hands and feet, postaxial polydactyly of hands, Rostock, Rostock, Germany, and pigmentary retinopathy, small teeth and skeletal dysplasia. The clinical dDepartment of Radiodiagnosis and phenotype of the child shows significant overlap with cranioectodermal Imaging, Kasturba Medical College, dysplasia type I (Sensenbrenner syndrome). Whole-exome sequencing Manipal University, Manipal, India revealed a homozygous nonsense variant p.R142* in IFT52 encoding an Key words: chondrodysplasia – IFT-B core complex protein as the probable cause of her condition. This is ciliopathy – exome sequencing – the first report of a human disease associated with IFT52. intraflagellar transport – sensenbrenner syndrome – short rib thoracic dysplasia Conflictofinterest Corresponding author: Dr Katta M. None declared. Girisha, Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal 576104, India. Tel.: +91 820 2923149; fax: +91 820 2571934; e-mail: [email protected] Received 9 December 2015, revised and accepted for publication 12 February 2016 Human ciliopathies comprise a group of multisystemic Materials and methods genetic disorders caused by mutations in genes required Case report for ciliary assembly and maintenance (1). Defective intraflagellar transport (IFT) due to mutations in genes The proband was evaluated at 3 years of age. She was coding components of kinesin, dynein, IFT-A and IFT-B born at term by lower segment cesarean section to con- complexes are associated with a wide variety of human sanguineously married parents (Fig. S1). She weighed diseases with significant overlapping clinical features. 3.75 kg (normal) at birth. Bilateral postaxial polydactyly To date all IFT-A and five IFT-B components have in the hands was noted at birth and was surgically been reported to cause human diseases, most of which excised. Mild respiratory distress was evident in the are skeletal ciliopathies (Table S1, Supporting Infor- immediate newborn period and was managed symp- mation) (2). Mutations in genes encoding components tomatically. She had a significant delay of motoric func- of IFT-B core complex have been previously reported tions. She achieved neck holding at 18 months of age, with reno-ocular ciliopathies (3). Here we report the first sat at 2 years and walked without support at two and a human skeletal ciliopathy associated with a nonsense half years. Cognitive and language development are age variant in IFT52, encoding an IFT-B core complex appropriate. She speaks in complete sentences and is toi- protein. let trained. She had several episodes of wheezing and 1 Girisha et al. (a) (c) (e) (h) (f) (d) (b) (g) Fig. 1. Proband at 3 years of age has short limbs, narrow thorax, dolicocephaly, tall forehead, telecanthus, mid-face hypoplasia, depressed nasal bridge, thick and everted vermilion of upper and lower lips, small and widely spaced teeth and low set ears (a–d). She also has short hands with brachydactyly (e) and stump of surgically excised postaxial polydactyly on the right hand (arrow; f). Feet show sandal gap and brachydactyly (g). Chromatogram of proband shows homozygous nonsense mutation (c.424C > TinIFT52 NM_016004.3) and heterozygous status in parents for the same (h: proband – upper panel, mother – middle panel, father – lower panel). required bronchodilators. She has progressive deteriora- changes. The visual evoked potential and brainstem tion of peripheral vision and now has only central vision. evoked response audiometry study were normal. Her occipito-frontal circumference was 49.5 cm (nor- Vineland Social Maturity Scale revealed borderline mal), height 88 cm (normal) and weight 15 kg [+2 deficits in social and adaptive functioning. Her kary- standard deviation (SD), 85th centile] as per Cen- otype was normal. The parents consented for the study ter for Disease Control and Prevention growth charts and publication of photographs. The study has the (4). She had dolichocephaly, tall forehead, telecanthus, approval of institutional ethics committee. The pheno- mid-face hypoplasia, broad and depressed nasal bridge, typic information can be accessed at PhenomeCentral full cheeks, thick and everted vermilion of the upper and (https://www.phenomecentral.org/P0002186). lower lips and low set ears. Her teeth were small, widely spaced and carious. The thorax was short and narrow Chromosomal microarray with a protuberant abdomen. She had short limbs with marked brachydactyly and laxity in both hands and feet. Chromosomal microarray was performed using both The stumps of surgically excised postaxial polydactyly in copy number changes and single nucleotide poly- hands and sandal gap in feet were noted (Fig. 1). A soft morphism probes on a whole genome array (Illumina liver was palpable for 3 cm below the right costal mar- HumanCytoSNP-12, Illumina Inc., San Diego, CA) gin. Her gait was normal. She had nystagmus. Scalp hair from the peripheral blood DNA. All data were analyzed was normal. All other results of the systemic examination and reported using GenomeStudio and KaryoStudio were unremarkable. softwares (NCBI human genome build 37.1, hg19) Radiological survey at 3 years revealed short and follows International System for Cytogenetic metacarpals, short metatarsals, short phalanges, cone- Nomenclature (ISCN) guidelines. shaped epiphysis of phalanges, hypoplastic distal pha- langes and striking angel-shaped middle phalanges. A complete hemogram, liver function, renal parameters, Exome sequencing urinalysis were unremarkable. Ultrasound imaging Genomic DNA was extracted from the whole blood of the abdomen revealed normal liver and kidneys. using the standard phenol-chloroform method. Genomic Echocardiography revealed trivial tricuspid regurgita- capture was carried out with Illumina’s Nextera Rapid tion and mild pulmonary arterial hypertension without Capture Exome Kit. Massively parallel sequencing any structural malformations. Magnetic resonance was done using the NextSeq500 Sequencer (Illumina, imaging of the brain at 6 months of age showed a Inc., San Diego, CA, USA.) in combination with the hypoplastic corpus callosum (Fig. 2). Ophthalmology NextSeq™ 500 High Output Kit (2 × 150 bp). Raw evaluation revealed hypermetropia and salt and pepper sequencing reads were converted to standard fastq for- appearance of the fundus suggesting retinal degenerative mat using bcl2fastq software 2.17.1.14 (Illumina, Inc.), 2 A homozygous nonsense variant in IFT52 (a) (b) (c) (d) (h) (i) (e) (f) (g) (j) (k) (l) Fig. 2. Skeletal survey at age 3 years reveals an unremarkable skull (a, b), short and stubby metacarpals and phalanges, cone-shaped epiphysis of phalanges, hypoplastic distal phalanges and angel-shaped middle phalanges (c, d). Pelvis, hip joints, knee joints and lumbar vertebrae are unremarkable (f–i) and short metatarsals and phalanges in feet (j). Magnetic resonance imaging of the brain at 6 months of age shows hypoplastic corpus callosum (arrows; k, l). and fed to an in-house developed pipeline for the analysis cranioectodermal dysplasia type I (Sensenbrenner syn- of whole-exome sequencing (WES) data, based on the drome; MIM 218330), short rib polydactyly syndrome 1000 Genomes Project (1000G) data analysis pipeline type 3 (MIM 613091) and asphyxiating thoracic dyspla- and GATK best practice recommendations, which sia (MIM 263510) (5). Hence we expected a mutation includes widely used open source software projects. The in a gene encoding a protein in ciliary–centrosome short-reads are aligned to the GRCh37 (hg19) build of complex. Chromosomal microarray revealed no copy the human reference genome using bwa software with the number changes. A total of 16 regions of homozygosity mem algorithm. The alignments were converted to binary representing 3.1% of the genome were observed to bam file format, sorted on the fly and de-duplicated. include IFT52 on chromosome 20 (Table S4). On WES The primary alignment files for each sample are further of the trio, a homozygous nonsense pathogenic variant refined and augmented by additional information follow- p.R142* (c.424C > T, NM_016004.3) was identified ing GATK best practices recommendations. Afterwards in the proband in exon 6 of IFT52. No other sequence variant calling was performed on the secondary align- variants of pathogenic significance were detected in ment files using three different variant callers
Recommended publications
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Molecular Subtypes of Diffuse Large B-Cell Lymphoma Arise by Distinct Genetic Pathways
    Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways Georg Lenza, George W. Wrightb, N. C. Tolga Emrea, Holger Kohlhammera, Sandeep S. Davea, R. Eric Davisa, Shannon Cartya, Lloyd T. Lama, A. L. Shaffera, Wenming Xiaoc, John Powellc, Andreas Rosenwaldd, German Ottd,e, Hans Konrad Muller-Hermelinkd, Randy D. Gascoynef, Joseph M. Connorsf, Elias Campog, Elaine S. Jaffeh, Jan Delabiei, Erlend B. Smelandj,k, Lisa M. Rimszal, Richard I. Fisherm,n, Dennis D. Weisenburgero, Wing C. Chano, and Louis M. Staudta,q aMetabolism Branch, bBiometric Research Branch, cCenter for Information Technology, and hLaboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892; dDepartment of Pathology, University of Wu¨rzburg, 97080 Wu¨rzburg, Germany; eDepartment of Clinical Pathology, Robert-Bosch-Krankenhaus, 70376 Stuttgart, Germany; fBritish Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4E6; gHospital Clinic, University of Barcelona, 08036 Barcelona, Spain; iPathology Clinic and jInstitute for Cancer Research, Rikshospitalet Hospital, Oslo, Norway; kCentre for Cancer Biomedicine, Faculty Division the Norwegian Radium Hospital, N-0310, Oslo, Norway; lDepartment of Pathology, University of Arizona, Tucson, AZ 85724; mSouthwest Oncology Group, 24 Frank Lloyd Wright Drive, Ann Arbor, MI 48106 ; nJames P. Wilmot Cancer Center, University of Rochester, Rochester, NY 14642; and oDepartments of Pathology and Microbiology, University of Nebraska, Omaha, NE 68198 Edited by Ira
    [Show full text]
  • Rabbit Anti-Human HIPPI Polyclonal Antibody (DPABH-04510) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Rabbit anti-Human HIPPI polyclonal antibody (DPABH-04510) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description Required for the formation of cilia. Plays an indirect role in sonic hedgehog signaling, cilia being required for all activity of the hedgehog pathway (By similarity). Has pro-apoptotic function via its interaction with HIP1, leading to recruit caspase-8 (CASP8) and trigger apoptosis. Has the ability to bind DNA sequence motif 5-AAAGACATG-3 present in the promoter of caspase genes such as CASP1, CASP8 and CASP10, suggesting that it may act as a transcription regulator; however the relevance of such function remains unclear. Immunogen Recombinant fragment corresponding to a region within amino acids 71-361 of Human HIPPI (Uniprot ID: Q9NWB7). Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Immunogen affinity purified Conjugate Unconjugated Applications WB, IHC-P Format Liquid Size 100 μl Buffer pH: 7.00; Constituents: 0.75% Glycine, 1.21% Tris, 10% Glycerol Preservative None Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. GENE INFORMATION Gene Name IFT57 intraflagellar transport 58 homolog (Chlamydomonas) [ Homo sapiens ] Official Symbol IFT57 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Synonyms IFT57; intraflagellar transport 57 homolog (Chlamydomonas); HIPPI; MHS4R2; ESRRBL1; intraflagellar transport
    [Show full text]
  • TCTE1 Is a Conserved Component of the Dynein Regulatory Complex and Is Required for Motility and Metabolism in Mouse Spermatozoa
    TCTE1 is a conserved component of the dynein PNAS PLUS regulatory complex and is required for motility and metabolism in mouse spermatozoa Julio M. Castanedaa,b,1, Rong Huac,d,1, Haruhiko Miyatab, Asami Ojib,e, Yueshuai Guoc,d, Yiwei Chengc,d, Tao Zhouc,d, Xuejiang Guoc,d, Yiqiang Cuic,d, Bin Shenc, Zibin Wangc, Zhibin Huc,f, Zuomin Zhouc,d, Jiahao Shac,d, Renata Prunskaite-Hyyrylainena,g,h, Zhifeng Yua,i, Ramiro Ramirez-Solisj, Masahito Ikawab,e,k,2, Martin M. Matzuka,g,i,l,m,n,2, and Mingxi Liuc,d,2 aDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; bResearch Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; cState Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People’s Republic of China; dDepartment of Histology and Embryology, Nanjing Medical University, Nanjing 210029, People’s Republic of China; eGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871, Japan; fAnimal Core Facility of Nanjing Medical University, Nanjing 210029, People’s Republic of China; gCenter for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030; hFaculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland; iCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; jWellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom; kThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 1088639, Japan; lDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; mDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; and nDepartment of Pharmacology, Baylor College of Medicine, Houston, TX 77030 Contributed by Martin M.
    [Show full text]
  • Mesenchymal Stem Cells from Multiple Myeloma Patients Display Distinct Genomic Profile As Compared with Those from Normal Donors
    Leukemia (2009) 23, 1515–1527 & 2009 Macmillan Publishers Limited All rights reserved 0887-6924/09 $32.00 www.nature.com/leu ORIGINAL ARTICLE Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors M Garayoa1,5,6, JL Garcia1,2,6, C Santamaria3, A Garcia-Gomez1, JF Blanco4, A Pandiella1, JM Herna´ndez3, FM Sanchez-Guijo3,5, M-C del Can˜izo3,5, NC Gutie´rrez3, and JF San Miguel1,3,5 1Centro de Investigacio´n del Ca´ncer, Instituto de Biologı´a Molecular y Celular del Ca´ncer, Universidad de Salamanca-CSIC, Salamanca, Spain; 2Unidad de Investigacio´n, Instituto de Estudio de Ciencias de la Salud de Castilla y Leo´n (IECSCYL) – Hospital Universitario de Salamanca. Salamanca, Spain; 3Servicio de Hematologı´a. Hospital Universitario de Salamanca. Salamanca, Spain; 4Servicio de Traumatologı´a. Hospital Universitario de Salamanca. Salamanca, Spain and 5Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y Leo´n, Salamanca, Spain It is an open question whether in multiple myeloma (MM) bone directly by interactions of myeloma cells with BM stromal cells marrow stromal cells contain genomic alterations, which may and extracellular matrix proteins or indirectly by secretion of contribute to the pathogenesis of the disease. We conducted an array-based comparative genomic hybridization (array-CGH) soluble cytokine and growth factors by myeloma cells and/or analysis to compare the extent of unbalanced genomic altera- stromal cells. These interactions and growth factor circuits tions in mesenchymal stem cells from 21 myeloma patients ultimately lead to the activation of pleiotrophic signalling (MM-MSCs) and 12 normal donors (ND-MSCs) after in vitro cascades, which promote proliferation, cell survival, anti- culture expansion.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Atlas Journal
    Atlas of Genetics and Cytogenetics in Oncology and Haematology Home Genes Leukemias Solid Tumours Cancer-Prone Deep Insight Portal Teaching X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA Atlas Journal Atlas Journal versus Atlas Database: the accumulation of the issues of the Journal constitutes the body of the Database/Text-Book. TABLE OF CONTENTS Volume 12, Number 4, Jul-Aug 2008 Previous Issue / Next Issue Genes AKR1C3 (aldo-keto reductase family 1, member C3 (3-alpha hydroxysteroid dehydrogenase, type II)) (10p15.1). Hsueh Kung Lin. Atlas Genet Cytogenet Oncol Haematol 2008; Vol (12): 498-502. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/AKR1C3ID612ch10p15.html CASP1 (caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, convertase)) (11q22.3). Yatender Kumar, Vegesna Radha, Ghanshyam Swarup. Atlas Genet Cytogenet Oncol Haematol 2008; Vol (12): 503-518. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/CASP1ID145ch11q22.html GCNT3 (glucosaminyl (N-acetyl) transferase 3, mucin type) (15q21.3). Prakash Radhakrishnan, Pi-Wan Cheng. Atlas Genet Cytogenet Oncol Haematol 2008; Vol (12): 519-524. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/GCNT3ID44105ch15q21.html HYAL2 (Hyaluronoglucosaminidase 2) (3p21.3). Lillian SN Chow, Kwok-Wai Lo. Atlas Genet Cytogenet Oncol Haematol 2008; Vol (12): 525-529. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/HYAL2ID40904ch3p21.html LMO2 (LIM domain only 2 (rhombotin-like 1)) (11p13) - updated. Pieter Van Vlierberghe, Jean Loup Huret. Atlas Genet Cytogenet Oncol Haematol 2008; Vol (12): 530-535. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/RBTN2ID34.html PEBP1 (phosphatidylethanolamine binding protein 1) (12q24.23).
    [Show full text]
  • Antibodies for Cell Biology: Cell Death
    ptglab.com 1 ANTIBODIES FOR CELL BIOLOGY CELL DEATH www.ptglab.com 2 Antibodies For Cell Biology: Cell Death Front Cover: Immunohistochemical of paraffin-embedded human ovary using DHCR24 antibody (10471-1-AP) at a dilution of 1:100 (10x objective). ptglab.com 3 WELCOME Foreword Billions of cells undergo apoptosis in our bodies each day. Although this process ends in the death of a cell it is a process essential to life. The inhibition of apoptosis can result in a number of cancers, autoimmune complications and inflammatory diseases. We have included a range of antibodies related to both extrinsic and intrinsic apoptotic pathways in this catalog. As well as apoptosis, cell death can occur in Another destructive process essential several other ways such as necrosis and nerve for health is autophagy. Though initially excitotoxicity. These processes differ in nature considered to be a form of non-apoptotic from apoptosis and autophagy in that they cell death, a consensus has emerged that are uncontrolled and lead to the lysis of cells, autophagy, in reality, functions primarily to inflammatory responses and potentially, to uphold cellular and organismal health and serious health problems. As another important not end exclusively in cell death. You can find aspect of cell death, we have also included more about autophagy – one of cell biology’s some of our antibodies relating to lytic death most intriguing phenomena – in the focus and proteolysis in this comprehensive selection articles in this catalog, including how it plays of our cell death-related antibodies. a role in cardiac health and how it may play a role in balance sensing in mammals.
    [Show full text]
  • Transcriptome Analysis of Nautilus and Pygmy Squid Developing Eye Provides Insights in Lens and Eye Evolution
    Transcriptome Analysis of Nautilus and Pygmy Squid Developing Eye Provides Insights in Lens and Eye Evolution Konstantinos Sousounis1, Atsushi Ogura2*, Panagiotis A. Tsonis1* 1 Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, Ohio, United States of America, 2 Ochadai Academic Production, Ochanomizu University, Tokyo, Japan Abstract Coleoid cephalopods like squids have a camera-type eye similar to vertebrates. On the other hand, Nautilus (Nautiloids) has a pinhole eye that lacks lens and cornea. Since pygmy squid and Nautilus are closely related species they are excellent model organisms to study eye evolution. Having being able to collect Nautilus embryos, we employed next-generation RNA sequencing using Nautilus and pygmy squid developing eyes. Their transcriptomes were compared and analyzed. Enrichment analysis of Gene Ontology revealed that contigs related to nucleic acid binding were largely up-regulated in squid, while the ones related to metabolic processes and extracellular matrix-related genes were up-regulated in Nautilus. These differences are most likely correlated with the complexity of tissue organization in these species. Moreover, when the analysis focused on the eye-related contigs several interesting patterns emerged. First, contigs from both species related to eye tissue differentiation and morphogenesis as well as to cilia showed best hits with their Human counterparts, while contigs related to rabdomeric photoreceptors showed the best hit with their Drosophila counterparts. This bolsters the idea that eye morphogenesis genes have been generally conserved in evolution, and compliments other studies showing that genes involved in photoreceptor differentiation clearly follow the diversification of invertebrate (rabdomeric) and vertebrate (ciliated) photoreceptors.
    [Show full text]
  • Distinct Transcriptomes Define Rostral and Caudal 5Ht Neurons
    DISTINCT TRANSCRIPTOMES DEFINE ROSTRAL AND CAUDAL 5HT NEURONS by CHRISTI JANE WYLIE Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Advisor: Dr. Evan S. Deneris Department of Neurosciences CASE WESTERN RESERVE UNIVERSITY May, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ______________________________________________________ candidate for the ________________________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS TABLE OF CONTENTS ....................................................................................... iii LIST OF TABLES AND FIGURES ........................................................................ v ABSTRACT ..........................................................................................................vii CHAPTER 1 INTRODUCTION ............................................................................................... 1 I. Serotonin (5-hydroxytryptamine, 5HT) ....................................................... 1 A. Discovery..............................................................................................
    [Show full text]
  • Table S1: Gene Symbol Full Gene Name Entrez Gene ID Refseq A2M
    Table S1: Gene Symbol Full Gene Name Entrez Gene ID RefSeq A2M alpha-2-macroglobulin 2 NM_000014 ABHD15 abhydrolase domain containing 15 116236 NM_198147 ACADVL acyl-Coenzyme A dehydrogenase, very long chain 37 NM_000018 ACSS1 acyl-CoA synthetase short-chain family member 1 84532 NM_032501 ACY3 aspartoacylase (aminocyclase) 3 91703 NM_080658 ADAM33 ADAM metallopeptidase domain 33 80332 NM_153202 AFF2 AF4/FMR2 family, member 2 2334 NM_002025 ALX1 ALX homeobox 1 8092 NM_006982 ANGPTL4 angiopoietin-like 4 51129 NM_001039667 ANKRD20A3 ankyrin repeat domain 20 family, member A3 441425 NM_001012419 ANKRD45 ankyrin repeat domain 45 339416 NM_198493 ANXA1 annexin A1 301 NM_000700 ANXA5 annexin A5 308 NM_001154 APBB1IP amyloid beta (A4) precursor protein-binding, family B, member 1 interacting protein 54518 NM_019043 ARAP3 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 3 64411 NM_022481 ARF3 ADP-ribosylation factor 3 377 NM_001659 ARF5 ADP-ribosylation factor 5 381 NM_001662 ARHGAP1 Rho GTPase activating protein 1 392 NM_004308 ARHGAP6 Rho GTPase activating protein 6 395 NM_006125 ARHGDIA Rho GDP dissociation inhibitor (GDI) alpha 396 NM_004309 ARMC8 armadillo repeat containing 8 25852 NM_014154 ATP2A2 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 488 NM_170665 ATP6AP2 ATPase, H+ transporting, lysosomal accessory protein 2 10159 NM_005765 ATP6V1B2 ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B2 526 NM_001693 B3GNT8 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 8 374907 NM_198540 B4GALNT1 beta-1,4-N-acetyl-galactosaminyl
    [Show full text]
  • Lung Tissue Gene-Expression Signature for the Ageing Lung in COPD
    Chronic obstructive pulmonary disease Thorax: first published as 10.1136/thoraxjnl-2017-210074 on 6 December 2017. Downloaded from ORIGINAL ARTICLE Lung tissue gene-expression signature for the ageing lung in COPD Maaike de Vries,1,2,3 Alen Faiz,1,3,4 Roy R Woldhuis,1,3 Dirkje S Postma,3,4 Tristan V de Jong,3,5 Don D Sin,6,7 Yohan Bossé,8,9 David C Nickle,10 Victor Guryev,3,5 Wim Timens,1,3 Maarten van den Berge,3,4 Corry-Anke Brandsma1,3 ► Additional material is ABSTRact published online only. To view Introduction COPD is a chronic, progressive, Key messages please visit the journal online (http:// dx. doi. org/ 10. 1136/ inflammatory disease of the lungs and the third leading thoraxjnl- 2017- 210074). cause of death worldwide. The current knowledge of the What is the key question? pathophysiology of COPD is limited and novel insights ► Can we identify a lung tissue gene-expression For numbered affiliations see in underlying disease mechanisms are urgently needed. signature that reflects lung ageing and end of article. Since there are clear parallels between ageing and abnormal lung ageing in COPD? COPD, we investigated genes underlying lung ageing in Correspondence to What is the bottom line? general and abnormal lung ageing in COPD. Dr Maaike de Vries, Department ► We identified a strong gene-expression Methods Whole genome mRNA profiling was of Epidemiology, University signature for lung ageing with EDA2R as a Medical Center Groningen, performed on lung tissue samples (n=1197) and strong candidate gene for lung ageing and Hanzeplein, 9713 GZ, The differential gene expression with increasing age was found that genes differentially expressed Netherlands; analysed using an adjusted linear regression model.
    [Show full text]