Acta Naturalia Islandica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glacial Rebound and Plate Spreading: Results from the First Countrywide GPS Observations in Iceland
Geophys. J. Int. (2009) 177, 691–716 doi: 10.1111/j.1365-246X.2008.04059.x Glacial rebound and plate spreading: results from the first countrywide GPS observations in Iceland ∗ T. Arnad´ ottir,´ 1 B. Lund,2 W. Jiang,1 H. Geirsson,3 H. Bjornsson,¨ 4 P. Einarsson4 and T. Sigurdsson5 1Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland. E-mail: [email protected] 2Department of Earth Sciences, Uppsala University, Villavagen¨ 16, 752 36 Uppsala, Sweden 3Physics Department, Icelandic Meteorological Office, Reykjav´ık, Iceland 4Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland 5National Land Survey of Iceland, Akranes, Iceland Downloaded from https://academic.oup.com/gji/article/177/2/691/2023257 by guest on 30 September 2021 Accepted 2008 December 10. Received 2008 December 5; in original form 2008 June 12 SUMMARY Iceland is one of the few places on Earth where a divergent plate boundary can be observed on land. Direct observations of crustal deformation for the whole country are available for the first time from nationwide Global Positioning System (GPS) campaigns in 1993 and 2004. The plate spreading across the island is imaged by the horizontal velocity field and high uplift rates (≥10 mm yr−1) are observed over a large part of central and southeastern Iceland. Several earthquakes, volcanic intrusions and eruptions occurred during the time spanned by the measurements, causing local disturbances of the deformation field. After correcting for the largest earthquakes during the observation period, we calculate the strain rate field and find that the main feature of the field is the extension across the rift zones, subparallel to the direction of plate motion. -
Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust. -
Subglacial and Submarine Volcanism in Iceland
Mars Polar Science 2000 4078.pdf SUBGLACIAL AND SUBMARINE VOLCANISM IN ICELAND. S. P. Jakobsson, Icelandic Inst. of Natural His- tory, P. O. Box 5320, 125 Reykjavik, Iceland Introduction: Iceland is the largest landmass ex- mounds, ridges and tuyas [5]. The thickness of basal posed along the Mid-Ocean Ridge System. It has been basaltic pillow lava piles often exceeds 60-80 meters constructed over the past 16 Ma by basaltic to silicic and a 300 m thick section has been reported. Pillow volcanic activity occurring at the Mid-Atlantic Ridge, lavas may also form lenses or pods at a higher level in and is topographically elevated because of the abundant the volcanoes. igneous material produced in association with the Ice- It has been suggested that at a water depth less than land hot spot, the center of which is thought to be lo- approximately 100-150 m, basaltic phreatic explosions cated beneath Vatnajokull glacier [1]. The axial rift produce hydroclastites. It appears feasible to subdivide zones which run through Iceland from southwest to the hyaloclastites of the Icelandic ridges and tuyas, ge- northeast are in direct continuation of the crestal zones netically into two main types. A substantial part of the of the Mid Atlantic Ridge and are among the most ac- base of the submarine Surtsey tuya is poorly bedded, tive volcanic zones on Earth. unsorted, hydroclastite, which probably was quenched Subglacial Volcanism: Volcanic accumulations of and rapidly accumulated below the seawater level with- hyaloclastites which are deposits formed by the intru- out penetrating the surface [6]. Only 1-2 % of the vol- sion of lava beneath water or ice and the consequent ume of extruded material in the 1996 Gjalp eruption fell shattering into small angular vitric particles, combined as air-fall tephra, the bulk piled up below the ice [4]. -
Paleoceanography
PUBLICATIONS Paleoceanography RESEARCH ARTICLE Sea surface temperature control on the distribution 10.1002/2014PA002625 of far-traveled Southern Ocean ice-rafted Key Points: detritus during the Pliocene • New Pliocene East Antarctic IRD record and iceberg trajectory-melting model C. P. Cook1,2,3, D. J. Hill4,5, Tina van de Flierdt3, T. Williams6, S. R. Hemming6,7, A. M. Dolan4, • Increase in remotely sourced IRD 8 9 10 11 9 between ~3.27 and ~2.65 Ma due E. L. Pierce , C. Escutia , D. Harwood , G. Cortese , and J. J. Gonzales to cooling SSTs 1 2 • Evidence for ice sheet retreat in the Grantham Institute for Climate Change, Imperial College London, London, UK, Now at Department of Geological Sciences, Aurora Basin during interglacials University of Florida, Gainesville, Florida, USA, 3Department of Earth Sciences and Engineering, Imperial College London, London, UK, 4School of Earth and Environment, University of Leeds, Leeds, UK, 5British Geological Survey, Nottingham, UK, 6Lamont-Doherty Earth Observatory, Palisades, New York, USA, 7Department of Earth and Environmental Sciences, Columbia Supporting Information: 8 • Readme University, Lamont-Doherty Earth Observatory, Palisades, New York, USA, Department of Geosciences, Wellesley College, • Text S1 and Tables S1–S3 Wellesley, Massachusetts, USA, 9Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, Armilla, Spain, 10Department of Geology, University of Nebraska–Lincoln, Lincoln, Nebraska, USA, 11Department of Paleontology, GNS Science, Lower Hutt, New Zealand Correspondence to: C. P. Cook, c.cook@ufl.edu Abstract The flux and provenance of ice-rafted detritus (IRD) deposited in the Southern Ocean can reveal information about the past instability of Antarctica’s ice sheets during different climatic conditions. -
Skrá Yfir Íslensk Skip Og Báta 2018
Skrá yfir íslensk skip og báta 2018 Skráð þilfarsskip og opnir bátar samkvæmt aðalskipaskrá þann 1. janúar 2018 Register of Icelandic Decked Ships and Open Boats on January 1st 2018 Jákvæðni Fagmennska Traust Virðing - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Samgöngustofa Ármúla 2 108 Reykjavík http://www.samgongustofa.is/ Vefútgáfa 2018. Heimilt er að prenta vefritið til eigin nota en óheimilt er að prenta það eða afrita með nokkrum öðrum hætti í því skyni að selja það án heimildar frá Samgöngustofu. Efnisyfirlit Contents Íslensk skip og bátar — yfirlit 1. janúar 2018 1 Summary of Icelandic Decked Ships and Open Boats on January 1st 2018 Nýskráningar og endurskráningar 2017 2 Registered Ships and Boats in 2017 Afskráningar 2017 3 Decommissioned Ships and Boats in 2017 Skýringar við skipaskrá 4 Key to the Register of Ships Skýringar við bátaskrá 7 Key to the Register of Boats Skráð þilfarsskip samkvæmt aðalskipaskrá 1. janúar 2018 8 Register of Icelandic Decked Ships on January 1st 2018 Skrá yfir opna báta 1. janúar 2018 115 Register of Icelandic Open Boats on January 1st 2018 Einkaréttur á skipsnöfnum 244 Prerogative of Icelandic Ship Names Íslensk skip og bátar — yfirlit 1. janúar 2018 Á aðalskipaskrá 1. janúar 2018 voru samtals 2.295 skip. Skipum á íslenskri aðalskipaskrá hefur fjölgað um 6 frá árinu 2017. Á árinu 2016 voru frumskráð og endurskráð skip 36, afskráð skip voru 36. Hér gefur að líta töflu yfir þróun skipastólsins 1. janúar ár hvert. Fjöldi og stærð 2011 2012 2013 2014 2015 2016 2017 2018 Þilfarsskip 1.051 1.050 1.060 1.056 1.051 1.041 1.031 1.032 Brúttótonn 203.319 206.248 212.155 198.871 194.278 198.079 200.246 208.375 Opnir bátar 1.199 1.216 1.238 1.244 1.245 1.243 1.258 1.263 Brúttótonn 7.112 7.233 7.460 7.538 7.591 7.621 8.935 7.327 Heildarfjöldi 2.250 2.266 2.298 2.300 2.296 2.284 2.289 2.295 Heildarbrúttótonn 210.431 213.481 219.615 206.409 201.869 205.701 209.181 215.702 Skip á aðalskipaskrá skiptast þannig eftir skráður notkunarflokkum: 1.jan.16 1.jan.17 1. -
Reykjavík Unesco City of Literature
Reykjavík unesco City of Literature Reykjavík unesco City of Literature Reykjavík unesco City of Literature Reykjavík City of Steering Committee Fridbjörg Ingimarsdóttir Submission writers: Literature submission Svanhildur Konrádsdóttir Director Audur Rán Thorgeirsdóttir, (Committee Chair) Hagthenkir – Kristín Vidarsdóttir Audur Rán Thorgeirsdóttir Director Association of Writers (point person) Reykjavík City of Non-Fiction and Literature Trail: Project Manager Department of Culture Educational Material Reykjavík City Library; Reykjavík City and Tourism Kristín Vidarsdóttir and Department of Culture Esther Ýr Thorvaldsdóttir Úlfhildur Dagsdóttir and Tourism Signý Pálsdóttir Executive Director Tel: (354) 590 1524 Head of Cultural Office Nýhil Publishing Project Coordinator: [email protected] Reykjavík City Svanhildur Konradsdóttir audur.ran.thorgeirsdottir Department of Culture Gudrún Dís Jónatansdóttir @reykjavík.is and Tourism Director Translator: Gerduberg Culture Centre Helga Soffía Einarsdóttir Kristín Vidarsdóttir Anna Torfadóttir (point person) City Librarian Gudrún Nordal Date of submission: Project Manager/Editor Reykjavík City Library Director January 2011 Reykjavík City The Árni Magnússon Institute Department of Culture and Audur Árný Stefánsdóttir for Icelandic Studies Photography: Tourism/Reykjavík City Library Head of Primary and Lower Cover and chapter dividers Tel: (354) 411 6123/ (354) 590 1524 Secondary Schools Halldór Gudmundsson Raphael Pinho [email protected] Reykjavík City Director [email protected] -
Subglacial to Emergent Volcanism at Shield Nunatak, Mt. Melbourne Volcanic Field, Antarctica
Polarforschung 57 1/2: 27-41, 1987 Subglacial to Emergent Volcanism at Shield Nunatak, Mt. Melbourne Volcanic Field, Antarctica By G. Wörner and L. Viereck* Summary: Sections through Shield Nunatak vo1cano, an alkali basaltic subglacial table-mountain from the Mt. Melbourne Volcanic Field, are descrlbed. Resting on a base of older lava flows and a fossile tillite iayer, the volcano is formed mainly by massive ash and lapilli (mass flow) deposits while pillow lavas are absent. The recurrent stage of emergence from subglacial to subaerial conditions is characterized by de velopment of tuff rings from explosive interaction between magma and melt water, complex ash- and lapilli deposits, including lava flows brecciated by water-interaction and a subaerial basaltie ash-flow deposit. The sequence is capped by subaerial tuff rings, lava flows, scoria cones and reworked tephra. Available data on subaquatlc explosive voJcanism indicate that early Shield Nunatak basaltic lavas erupted un der less than 300 m of ice cover: later Iavas erupted under shallow-water and subaerial conditions. Shield Nunatak probably formed during a glacial period (possibly the last) when the ice thtckness in the Mt. Melbourne area must have been at least 200 m greater than at present. The volcano has suffered only minor glacial erosion and still almost has its original shape. Zusammenfassung: Es werden Profile beschrieben durch einen alkalibasaltischen subglazialen Vulkan (Shield Nunatak) im Mt. Melbourne Vulkanfeld. Die Unterlage des Vulkans wird von einer Serie subaerischer Lavaströme intermediärer Zusammensetzung (Mugearit) gebildet. Über einer Lage von Paleo-Till bilden massive Aschenablagerungen die Basis der subglazialen Sequenz. Kissenlaven fehlen. -
Timeline Reconstruction of Holocene Jökulhlaups Along the Jökulsá Á
Copyright by Greta Hoe Wells 2016 The Thesis Committee for Greta Hoe Wells Certifies that this is the approved version of the following thesis: Timeline Reconstruction of Holocene Jökulhlaups along the Jökulsá á Fjöllum Channel, Iceland APPROVED BY SUPERVISING COMMITTEE: Supervisor: Sheryl Luzzadder-Beach Timothy P. Beach Daene C. McKinney Timeline Reconstruction of Holocene Jökulhlaups along the Jökulsá á Fjöllum Channel, Iceland by Greta Hoe Wells, B.A. Thesis Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Arts The University of Texas at Austin May 2016 Abstract Timeline Reconstruction of Holocene Jökulhlaups along the Jökulsá á Fjöllum Channel, Iceland Greta Hoe Wells, M.A. The University of Texas at Austin, 2016 Supervisor: Sheryl Luzzadder-Beach The Jökulsá á Fjöllum is Iceland’s second longest river, draining from the Vatnajökull ice cap and winding for over 200 km through the eastern highlands before emptying into the Arctic Ocean. Hydrothermal activity and subglacial eruptions beneath Vatnajökull generate enormous quantities of meltwater, which can drain catastrophically in outburst floods, known as jökulhlaups. Jökulhlaups have flowed through the Jökulsá á Fjöllum channel throughout the Holocene, but intense debate exists over their timing and magnitude. While previous studies report a peak flood discharge of 0.9 x 106 m3 s-1, Howard et al. (2012) found evidence of a peak discharge of 2.2 x 107 m3 s-1, which would make this the largest known flood on Earth. This project seeks to test Howard et al.’s (2012) hypothesis and, more broadly, to reconstruct a timeline of Holocene jökulhlaups iv along the Jökulsá á Fjöllum. -
The Mechanics of Subglacial Basaltic Lava Flow Emplacement: Inferring Paleo-Ice Conditions
THE MECHANICS OF SUBGLACIAL BASALTIC LAVA FLOW EMPLACEMENT: INFERRING PALEO-ICE CONDITIONS by Jefferson D. G. Hungerford B. S. in Geology, University of Washington, 2002 Submitted to the Graduate Faculty of The Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2013 UNIVERSITY OF PITTSBURGH FACULTY OF THE KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Jefferson D. G. Hungerford It was defended on November 8, 2013 and approved by Dr. William Harbert, Professor, Department of Geology and Planetary Science Dr. Thomas A. Anderson, Professor Emeritus, Department of Geology and Planetary Science Dr. Daniel J. Bain, Assistant Professor, Department of Geology and Planetary Science Dr. Tracy K. P. Gregg, Associate Professor, Department of Geology, University at Buffalo Dissertation Advisor: Dr. Michael S. Ramsey, Professor, Department of Geology and Planetary Science ii Copyright © by Jefferson D. G. Hungerford 2013 iii THE MECHANICS OF SUBGLACIAL BASALTIC LAVA FLOW EMPLACEMENT: INFERRING PALEO-ICE CONDITIONS Jefferson D. G. Hungerford, PhD University of Pittsburgh, 2013 Recent studies of terrestrial glaciovolcanic terrains have elucidated the utility of volcanic deposits as recorders of ice conditions at the time of eruption. Practically all of these investigations, however, have focused upon the associations of volcaniclastic and coherent lava lithofacies at or proximal to the source vent. Very few studies have documented the emplacement of effusion-dominated, basaltic glaciovolcanic eruptions and their distal deposits that more accurately reveal paleo-ice conditions. Both Mauna Kea volcano, Hawaii and the Tennena volcanic center (TVC), on Mount Edziza, British Columbia, Canada, preserve records of interaction between coherent lavas and an ice sheet inferred to be associated with the last glacial maximum (LGM). -
THE Orlefajokull ERUPTION of 1362
ACTA NATURALIA ISLANDICA VOL. II. - NO.2. THE ORlEFAJOKULL ERUPTION OF 1362 BY SIGURDUR THORARINSSON WITH 1 PLATE AND 31 FIGURES IN THE TEXT NATTURUGRIPASAFN ISLANDS MUSEUM RERUM NATURALIUM ISLANDIAE REYKJAVIK 1958 fsatoldarprenlsml6ja h.t. CONTENTS PAGE INTRODUCTORY 5 ORiEFAJOKULL. SHAPE AND SIZE.................................... 5 THE GEOLOGY OF ORiEFAJOKULL 8 THE GEOLOGICAL STRUCTURE AND STRATIGRAPHY OF THE ORiEFA- JOKULL MASSIF 10 THE SETTLEMENT AT TEE FOOT OF ORiEFAJOKULL 17 THE GREAT ERUPTION 25 THE JOKULHLAUPS OF 1362 29 THE EVIDENCE OF THE TEPHRA LAyERS........................... 37 Layers from Katla 43 The Eldgja Layers 47 Hekla 1845 47 Layers from Grimsvotn 48 The light Hekla Layers 48 Askja 1875 49 Layer G 50 Layer "a" 50 o 1362 57 Notes on Table 3 59 The Depth of 0 1362 7Q The Chemical Composition and other Properties of the 1362.tephra 71 THE TYPE OF ERUPTION AND THE ERUPTION CyCLE............... 72 THE THICKNESS AND EXTENSION OF 0 1362. THE ISOPACHYTE MAP 75 THE THICKNESS AND VOLUME OF THE TEPHRA LAYER WHEN FRESHLY FALLEN .................................... .. 79 THE PROBABLE WEATHER SITUATION DURING THE TEPHRA FALL 81 THE EFFEC'l' OF THE 1362-ERUPTION ON THE SHAPE OF ORiEFA- JOKULL 84 COMPARISON WITH THE ANNALS 84 ON THE FATE OF THE INHABITANTS OF HEmAD ;.... 86 FOR HOW LONG DID THE SETTLEMENT REMAIN ABANDONED? 88 1 SUMMARY 93 i~ REFERENCES 96 INTRODUCTORY The LandnamabOk tells us that when Ing61fur Arnarson, "the first settler" in Iceland, went to that country for the second time, in 874 A.D., with a view to making his abode there, he threw overboard his high seat pillars for luck, and vowed that wherever he might find them washed ashore, he would make his home. -
Icelandic Seafood and Fishing Industry Innovation - Seafood Software Solutions - Smart Solutions
April // 2013 CoolCool Icelandic Seafood and Fishing Industry Innovation - seafood software solutions - smart solutions seafood solutions FIND US AT BOOTH 6127-2 EUROPEAN SEAFOODHALL 4 EXPOSITION, BRUSSEL APRIL 23RD - 25TH Wise Fishing Wise Processing Wise Trade Wise Quality Wise Peripherals Wise Aquaculture Wise Analyzer Wise Cubes Wise Reports Wise Dynamics Wise Contracts Wise Government Wise Jobs Wise Subscription 2 Wise is an Independent Software Vendor (ISV) for Wise solutions combine the best of standard Microsoft Microsoft Dynamics NAV and a Microsoft Gold Partner. Dynamics NAV with specialty add-on solutions. Founded in 1995, Wise has become one of the largest Under the Wise Dynamics umbrella is a wide range of resellers of Dynamics NAV in Iceland, oering a wide solutions that oer seafood industry-focused packages, range of business solutions for the international markets. business intelligence solutions and analytical tools. TM Borgartún 26, 105 Reykjavík » Hafnarstræti 102, 600 Akureyri Gold Enterprise Resource Planning tel: +354 545 3200 » [email protected] » www.wise.is Silver Independent Software Vendor (ISV) Codland – 100% utilisation New ideas for extracting additional value products. Haustak’s origins go back to 1999 from seafood of are constantly popping up and it is owned by two of Iceland’s best in Iceland’s fisheries sector. Many known seafood companies, Vísir hf and enterprising young companies have in the Thorbjörn hf. last few years and decades been able to build on smart thinking with solid Arnar Jónsson and Haukur Már Gestsson, marketing to give them a market foothold. project managers at the Iceland Ocean Now another green shoots company, Cluster, have both worked extensively on Codland, born of ambitious innovation and improving additional value from seafood. -
ANDRILL: Has It Accomplished All It Set out to Achieve? Llara Macgilloway
PCAS 15 (2012/2013) Critical Literature Review (ANTA602) ANDRILL: Has it accomplished all it set out to achieve? Llara MacGilloway Student ID: 19690222 Word count: 3300(excluding abstract, reference list and appendix) Abstract ANDRILL (ANtarctic geological DRILLing) is a multinational drilling project that is drilling into sediments under the Ross Ice Shelf in Antarctica. ANDRILL are looking at sediment cores to find evidence supporting the theory of past paleoclimatic changes in the Ross Ice Shelf area (and globally). This review evaluates the ANDRILL project to see if it has met its own conditions and to see if it has added to the geological and climatic knowledge of the Antarctic Region. ANDRILL has currently completed drilling in two sites (McMurdo Ice Shelf (MIS) Project and Southern McMurdo Sounds (SMS) Project) and has recovered 1285m of core material from the MIS project with sediments dating back to ~13 Ma, and another 1138m drill core from the SMS project with sediments dating back to ~20 Ma. Through analysis of these cores, ANDRILL has been able to locate each ice sheet retreat and advance in the vicinity of the drill sites over the past 20 million years. So far, there has been a lot of analysis on the sediment cores themselves, however there is a lack of correlation between these sediments and the dates they were deposited and how this relates to past and future climatic changes. 1 | P a g e Contents Abstract 1 Introduction to ANDRILL 3 ANDRILL findings: For biota origins 4 For glacial and interglacial events 4 For the influences of the global system 5 For geological changes 6 Summary of findings: have ANDRILL met their objectives? 9 References 10 Appendix 1: Previously known geological and ice sheet history of the Ross Ice Shelf area 13 2 | P a g e Introduction to ANDRILL ANDRILL (ANtarctic Geological DRILLing) is a multinational project that includes over 200 scientists, students and educators from 7 different nations (ANDRILL, n.d.(a)).