Ecosystems of the East Marine Region

Total Page:16

File Type:pdf, Size:1020Kb

Ecosystems of the East Marine Region Ecosystems of the East Marine Region CSIRO: David Brewer, Tim Skewes and Jock Young Hydrobiology: Adrian Flynn, Jonathan Alawo, James Shelley, Ben Pearson, Jamie Corfield Other contributors: Cathy Bulman, Lesley Clementson, Scott Condie, Rudi Kloser, Peter Last, Vincent Lyne, Ken Ridgeway, Alan Williams Prepared for: Department of Environment and Water Resources OCTOBER 2007 ECOSYSTEMS OF THE EAST MARINE REGION Published by CSIRO Marine Research This publication should be cited as: Brewer, D.T., Flynn, A., Skewes, T.D., Corfield, J., Pearson, B., Alowa, J., and Young, J. W. (2007). Ecosystems of the East Marine Planning Region. Report to Department of Environment and Water Resources. CSIRO, Cleveland. 150 pg. DISCLAIMER The authors do no warrant that the information in this book is free from errors or omissions. The authors do no accept any form of liability, be it contractual, tortuous or otherwise, for the contents of this book or for any consequences arising from its use or any reliance placed upon it. The information, options and advice contained in this book may not relate to, or be relevant to, a reader’s particular circumstances. Opinions expressed by the authors are the individual options of those persons and are not necessarily those of the publisher or research provider. Page i ECOSYSTEMS OF THE EAST MARINE REGION Enquiries should be addressed to: David Brewer PO Box 120 Cleveland QLD 4163 Ph: 07 3826 7246 [email protected] Report delivered to: Rob McKelleher Assistant Director East Marine Planning Section Marine and Biodiversity Division The Department of Environment and Water Resources 4th Floor, 1 King Edward Terrace Parks, ACT 2600 Important Notice © Copyright The Department of Environment and Water Resources (‘DEW”), Commonwealth Scientific and Industrial Research Organisation (‘CSIRO’) Australia, Hydrobiology Pty Ltd (‘Hydrobiology’), 2007 All rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO. The results and analyses contained in this Report are based on a number of technical, circumstantial or otherwise specified assumptions and parameters. The user must make its own assessment of the suitability for its use of the information or material contained in or generated from the Report. To the extent permitted by law, CSIRO excludes all liability to any party for expenses, losses, damages and costs arising directly or indirectly from using this Report. Use of this Report The use of this Report is subject to the terms on which it was prepared by CSIRO and Hydrobiology. In particular, the Report may only be used for the following purposes. this Report may be copied for distribution within the Client’s organisation; the information in this Report may be used by the entity for which it was prepared (“the Client”), or by the Client’s contractors and agents, for the Client’s internal business operations (but not licensing to third parties); extracts of the Report distributed for these purposes must clearly note that the extract is part of a larger Report prepared by CSIRO for the Client. The Report must not be used as a means of endorsement without the prior written consent of CSIRO and Hydrobiology. Page ii ECOSYSTEMS OF THE EAST MARINE REGION Table of Contents 1. Executive summary................................................................................................................... 1 2. Glossary of Terms..................................................................................................................... 5 3. Introduction............................................................................................................................... 7 4. Objectives .................................................................................................................................. 7 5. Approach to describing eco-physical systems ........................................................................ 9 5.1 Method, justification and context................................................................................................ 9 5.2 Conceptual eco-physical system models................................................................................... 10 6. Description of the region and it’s major ecological sub-systems ........................................ 15 6.1 General description of East Marine Region ............................................................................. 15 6.1.1 Oceanographic currents ..................................................................................................... 15 6.1.2 Influence on primary productivity ..................................................................................... 23 6.1.3 Winds................................................................................................................................. 27 6.1.4 Geomorphology ................................................................................................................. 28 6.2 Major eco-physical sub-regions ............................................................................................... 29 6.3 Comparison with IMCRA provincial regionalisation............................................................... 33 7. Description of Sub-Regions.................................................................................................... 35 7.1 Cape Province Sub-region (1a) ................................................................................................ 35 7.1.1 Description......................................................................................................................... 35 7.1.2 Important Drivers and Ecological Features ....................................................................... 37 7.1.3 Productivity flows..............................................................................................................39 7.1.4 Connectivity with other Sub-regions ................................................................................. 39 7.1.5 Interactions with important species and habitats ............................................................... 40 7.1.6 Vulnerability to impacts and change.................................................................................. 40 7.1.7 Information gaps................................................................................................................40 7.2 Coral Sea Abyssal Basin Sub-region (1b) ................................................................................ 41 7.2.1 Description......................................................................................................................... 41 7.2.2 Important Drivers and Ecological Features ....................................................................... 42 7.2.3 Productivity flows..............................................................................................................44 7.2.4 Connectivity with other Sub-systems ................................................................................ 45 7.2.5 Interactions with important species and habitats ............................................................... 46 7.2.6 Vulnerability to impacts and change.................................................................................. 46 7.2.7 Information gaps................................................................................................................46 7.3 Queensland Plateau Sub-region (1c)........................................................................................ 47 7.3.1 Description......................................................................................................................... 47 7.3.2 Important Drivers and Ecological Features ....................................................................... 49 7.3.3 Productivity flows..............................................................................................................52 7.3.4 Connectivity with other Sub-regions ................................................................................. 52 7.3.5 Interactions with important species and habitats ............................................................... 53 7.3.6 Vulnerability to impacts and change.................................................................................. 54 7.3.7 Information gaps................................................................................................................54 7.4 Marion Plateau Sub-region (1d)............................................................................................... 55 7.4.1 Description......................................................................................................................... 55 7.4.2 Important Drivers and Ecological Features ....................................................................... 57 7.4.3 Productivity flows..............................................................................................................58 7.4.4 Connectivity with other Sub-regions ................................................................................. 59 Page iii ECOSYSTEMS OF THE EAST MARINE REGION 7.4.5 Interactions with important species and habitats................................................................ 60 7.4.6 Vulnerability to impacts and change.................................................................................. 60 7.4.7 Information gaps ................................................................................................................60
Recommended publications
  • USGS Analysis of the Australian UNCLOS Submission
    USGS Analysis of the Australian UNCLOS Submission By Deborah R. Hutchinson and Robert W. Rowland Open-File Report 2006-1073 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia For Additional Information: See the United Nations web page on the United Nations Convention on the Law of the Sea at http://www.un.org/Depts/los/index.htm, and the Executive Summary of the Australian UNCLOS submission at http://www.un.org/Depts/los/clcs_new?submission_files/submission_aus.htm. Contact Deborah R. Hutchinson U.S. Geological Survey 384 Woods Hole Road Woods Hole, MA, 02543 [email protected] 508-457-2263 Robert W. Rowland U.S. Geological Survey, Retired 55825 River Shore Lane Elkhart, IN 46516 [email protected] For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation Hutchinson, D.R., and Rowland, R.W., 2006, USGS Analysis of the Australian UNCLOS Submission: U.S. Geological Survey Open-File Report 2006-1073, 19 p., http://pubs.usgs.gov/of/2006/1073. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government, nor does the interpretation presented here reflect official U.S.
    [Show full text]
  • Fish Species Inhabiting Lower Napa River and San Pablo Bay
    APPENDIX E-5 Technical Memo: Fish Species Inhabiting Lower Napa River and San Pablo Bay Technical Memorandum Fish Species Inhabiting the lower Napa River and San Pablo Bay Prepared by: J. A. Johnson, T. Linder, D. George, and R. Isquith, Applied Marine Sciences, Inc. June 25, 2014 Pelagic (Open Water) Fish Community Seventeen species of pelagic fish have been documented inhabiting the deep and shallow water areas of San Pablo Bay and the Carquinez Strait adjacent to the Napa River mouth into San Pablo Bay (Table 1,). Six of these species account for over 96 percent of the total abundance, with the dominant species, Northern anchovy (Engraulis mordax), comprising 76.5 percent of the fish inhabiting the pelagic community. Pacific herring (Clupea pallasii) is the second most common fish species inhabiting the Napa River mouth, accounting for 14.4 percent of the total abundance. The remaining dominant fish species include American shad (Alosa sapidissima), Longfin smelt (Spirinchus thaleichthys), Striped bass (Morone saxatilis) and Bay goby (Lepidogobius lepidus) which together account for 5.3 percent of the total abundance inhabiting the water column. Additional pelagic species that are present in low abundance include Chinook salmon (Oncorhynchus tshawytscha), Plainfin midshipman (Porichthys notatus), Jacksmelt (Atherinopsis californiensis), Splittail (Pogonichthys macrolepidotus), Threadfin shad (Dorosoma petenense), Delta smelt (Hypomesus transpacificus), Threespine stickleback (Gasterosteus aculeatus), Pacific staghorn sculpin (Leptocottus armatus), English sole (Parophrys vetulus) and Starry flounder (Platichthys stellatus). Important managed, protected, or special status pelagic zone species that are found in the study area, either seasonally or year-round, include Northern anchovy, Pacific herring, longfin smelt, delta smelt, steelhead, and Chinook salmon (AMS 2014, IEP 2010-2012, USFWS 2013, CDFW 2014).
    [Show full text]
  • 4 National Approaches Used to Describe and Delineate Marine Ecosystems and Subregions in the North Pacific
    Section 4 National Approaches 4 National Approaches Used to Describe and Delineate Marine Ecosystems and Subregions in the North Pacific Chris Harvey, Glen Jamieson, Patricia Livingston, Chang-Ik Zhang, Elena Dulepova, David Fluharty, Xianshi Jin, Tatsu Kishida, Jae Bong Lee, Mitsutaku Makino, R. Ian Perry, Vladimir Radchenko, Qisheng Tang, Inja Yeon and Elizabeth Fulton 4.1 Introduction With marine ecosystems facing increasing and often many of the large marine ecosystems (LMEs) in the unsustainable human demands, the need for PICES region (e.g., Sherman and Tang, 1999). Such comprehensive, integrated cross-sectoral resource spatio-temporal dynamics will likely be altered by management becomes ever clearer (Duda and global climate change, though in different ways in Sherman, 2002). Many hold that the most responsible different areas of the North Pacific. Second, marine strategy is ecosystem-based management (EBM), ecosystems typically extend hundreds of kilometers wherein factors such as ecological interactions, offshore and often beyond the exclusive economic socio-economic forces and human impacts are zone (EEZ) of a country. In many cases, the EEZs of explicit components of monitoring, assessment and multiple nations occupy the same ecosystem, often policy. While EBM has been variously defined by adjoining along extensive international borders. This many authors, some concepts are pervasive across all fact can limit the ability of a country to monitor the definitions: it is spatially discrete; it is adaptive; it full spatial extent of the ecosystem beyond its own incorporates dynamics, interactions and uncertainty territory, which in turn limits understanding of overall associated with physical, chemical and biological ecosystem function, structure and change.
    [Show full text]
  • Biology, Stock Status and Management Summaries for Selected Fish Species in South-Western Australia
    Fisheries Research Report No. 242, 2013 Biology, stock status and management summaries for selected fish species in south-western Australia Claire B. Smallwood, S. Alex Hesp and Lynnath E. Beckley Fisheries Research Division Western Australian Fisheries and Marine Research Laboratories PO Box 20 NORTH BEACH, Western Australia 6920 Correct citation: Smallwood, C. B.; Hesp, S. A.; and Beckley, L. E. 2013. Biology, stock status and management summaries for selected fish species in south-western Australia. Fisheries Research Report No. 242. Department of Fisheries, Western Australia. 180pp. Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Department of Fisheries Western Australia. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Department of Fisheries Western Australia does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. Fish illustrations Illustrations © R. Swainston / www.anima.net.au We dedicate this guide to the memory of our friend and colleague, Ben Chuwen Department of Fisheries 3rd floor SGIO Atrium 168 – 170 St Georges Terrace PERTH WA 6000 Telephone: (08) 9482 7333 Facsimile: (08) 9482 7389 Website: www.fish.wa.gov.au ABN: 55 689 794 771 Published by Department of Fisheries, Perth, Western Australia. Fisheries Research Report No. 242, March 2013. ISSN: 1035 - 4549 ISBN: 978-1-921845-56-7 ii Fisheries Research Report No.242, 2013 Contents ACKNOWLEDGEMENTS ...............................................................................................
    [Show full text]
  • Annotated Checklist of the Fishes of Lord Howe Island
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Allen, Gerald R., Douglass F. Hoese, John R. Paxton, J. E. Randall, C. Russell, W. A. Starck, F. H. Talbot, and G. P. Whitley, 1977. Annotated checklist of the fishes of Lord Howe Island. Records of the Australian Museum 30(15): 365–454. [21 December 1976]. doi:10.3853/j.0067-1975.30.1977.287 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia ANNOTATED CHECKLIST OF THE FISHES OF LORD HOWE ISLAND G. R. ALLEN, 1,2 D. F. HOESE,1 J. R. PAXTON,1 J. E. RANDALL, 3 B. C. RUSSELL},4 W. A. STARCK 11,1 F. H. TALBOT,1,4 AND G. P. WHITlEy5 SUMMARY lord Howe Island, some 630 kilometres off the northern coast of New South Wales, Australia at 31.5° South latitude, is the world's southern most locality with a well developed coral reef community and associated lagoon. An extensive collection of fishes from lord Howelsland was made during a month's expedition in February 1973. A total of 208 species are newly recorded from lord Howe Island and 23 species newly recorded from the Australian mainland. The fish fauna of lord Howe is increased to 447 species in 107 families. Of the 390 species of inshore fishes, the majority (60%) are wide-ranging tropical forms; some 10% are found only at lord Howe Island, southern Australia and/or New Zealand.
    [Show full text]
  • Elaborating a Common Language
    Elaborating a Common Language WP1 – Milestone 2, a glossary Contents Introduction ....................................................................................................................... 2 1. Why a Glossary? ................................................................................................................... 2 2. Methodology ........................................................................................................................ 2 3. Glossary structure ................................................................................................................ 3 GLOSSARY .......................................................................................................................... 4 Baseline ........................................................................................................................................... 4 Biodiversity ...................................................................................................................................... 4 Coastal zone .................................................................................................................................... 4 Connectivity .................................................................................................................................... 4 Continental Shelf ............................................................................................................................. 4 Ecosystem ......................................................................................................................................
    [Show full text]
  • Seasonal Composition and Abundance of Juvenile And
    SEASONAL COMPOSITION AND ABUNDANCE OF JUVENILE AND ADULT MARINE FINFISH AND CRAB SPECIES IN THE NEARSHORE ZONE OF KODIAK ISLAND’S EASTSIDE DURING APRIL 1978 THROUGH MARCH 1979 by James E. Blackburn and Peter B. Jackson Alaska Department of Fish and Game Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 552 April 1982 377” TABLE OF CONTENTS E%?!2 List of Figures. 381 List of Tables . 385 List of Appendix Tables. 387 Summary of Objectives and Results with Respect to OCS Oil and Gas Development . 391 Introduction . 392 General Nature and Scope of Study . 392 Specific Objectives . 392 Relevance to Problems of Petroleum Development. 392 Acknowledgements. 392 Current State of Knowledge . 393 King Crab . 394 Tanner Crab . 394 Dungeness Crab. 397 Shrimp. 397 Scallops. 399 Salmon. 399 Herring . 411 Halibut . 412 Bottomfish. 413 Study Area . 413 Sources, Methods and Rationale of Data Collection. 419 Beach Seine . 420 Gill Net. 421 Trammel Net . 421 Tow Net . 421 Try Net . 421 Otter Trawl . 422 Sample Handling . 422 Stages of Maturity. 422 Sample Analysis . 423 Area Comparisons . 424 Diversity. 424 Species Association. 425 Data Limitations. 425 Results. 426 Relative Abundance. 430 Seasonality by Habitat. 437 Nearshore Habitat. 437 Pelagic Habitat. 443 Demersal Habitat . 443 Area Comparisons. 449 Species Associations . 463 Diversity . 465 Features of Distribution, Abundance, Migration, Growth and Reproduction of Prominent Taxa . 473 King Crab.. 473 Tanner Crab. 473 Pacific Herring. 473 Pink Salmon. 473 ChumSalnion. 482 CohoSalmon. 482 DollyVarden. 482 Capelin. 486 Pacific Cod. 486 PacificTomcod. ---- . 489 WalleyePollock. 489 Rockfish. 489 RockGreenling. 493 MaskedGreenling. 493 Whitespotted Greenling. 495 Seblefish.
    [Show full text]
  • Information Sheet on Ramsar Wetlands Categories Approved by Recommendation 4.7 of the Conference of the Contracting Parties
    Information Sheet on Ramsar Wetlands Categories approved by Recommendation 4.7 of the Conference of the Contracting Parties. 1. Date this sheet was completed/updated: FOR OFFICE USE ONLY. October 2002. DD MM YY 2. Country: Australia Designation date Site Reference Number 3. Name of wetland: Elizabeth and Middleton Reefs Marine National Nature Reserve 4. Geographical coordinates: Elizabeth Reef - Latitude: 29° 56' S ; Longitude: 159° 05' E Middleton Reef - Latitude: 29° 27' S ; Longitude: 159° 07' E 5. Altitude: Wetland areas within the site are situated at, and several metres below, mean sea level. Sand cays within the site have an elevation (variable) of only one or two metres. 6. Area: 188,000 ha The site boundary corresponds to the boundary of Elizabeth and Middleton Reefs Marine National Nature Reserve. The area of reef wetland within the Reserve is estimated to be 8,800 ha, of which approximately 5,100 ha is located at Elizabeth Reef and 3,700 ha is located at Middleton Reef. For both reefs, the estimated area of wetland includes some water more than 6.0 metres deep at low tide. 7. Overview: Elizabeth and Middleton Reefs are the southernmost coral atolls in the world. Their coral structures occur atop isolated, oceanic sea mounts and are influenced both by tropical and temperate ocean currents. The Reefs support a diverse marine fauna including uncommon and undescribed fishes, several endemic species of mollusc, and provide the only habitat for these species in a vast area of ocean. 8. Wetland Type: marine-coastal: A B C D E F G H I J K inland: L M N O P Q R Sp Ss Tp Ts U Va Vt W Xf Xp Y Zg Zk man-made: 1 2 3 4 5 6 7 8 9 Please now rank these wetland types by listing from the most to the least dominant: C, E.
    [Show full text]
  • Biology and Stock Status of Inshore Demersal Scalefish Indicator Species in the Gascoyne Coast Bioregion R
    Fisheries Research Report No. 228, 2012 Biology and stock status of inshore demersal scalefish indicator species in the Gascoyne Coast Bioregion R. Marriott, G. Jackson, R. Lenanton, C. Telfer, E. Lai, P. Stephenson, C. Bruce, D. Adams and J. Norriss Fisheries Research Division Western Australian Fisheries and Marine Research Laboratories PO Box 20 NORTH BEACH, Western Australia 6920 Correct citation: Marriott, R., Jackson, G., Lenanton, R., Telfer, C., Lai, E., Stephenson, P., Bruce, C., Adams, D. and Norriss, J. (2012) Biology and stock status of inshore demersal scalefish indicator species in the Gascoyne Coast Bioregion. Fisheries Research Report No. 228. Department of Fisheries, Western Australia. 216pp. Enquiries: WA Fisheries and Marine Research Laboratories, PO Box 20, North Beach, WA 6920 Tel: +61 8 9203 0111 Email: [email protected] Website: www.fish.wa.gov.au ABN: 55 689 794 771 A complete list of Fisheries Research Reports is available online at www.fish.wa.gov.au © Department of Fisheries, Western Australia. July 2012. ISSN: 1035 - 4549 ISBN: 978-1-921845-13-0 ii Fisheries Research Report [Western Australia] No. 228, 2012 Contents Executive Summary .............................................................................................................. 1 Summary ........................................................................................................................ 4 Acknowledgements ........................................................................................................ 4 1.0 Introduction
    [Show full text]
  • Acoustic Reconnaissance of Fish and Environmental Background in Demersal Zone in Southern Baltic
    ACOUSTIC RECONNAISSANCE OF FISH AND ENVIRONMENTAL BACKGROUND IN DEMERSAL ZONE IN SOUTHERN BALTIC (PART 2 - SEABED) ANDRZEJ ORLOWSKI, ANNA KUJAWA Sea Fisheries Institute Kollataja 1, Gdynia, Poland e-mail: [email protected] The paper describes results of studies based on measurements of the Sv distribution in 3m layer over the bottom in the southern Baltic area for the period 1995-2004. These are correlated with values of coincident bottom features, estimated on the basis of all available survey data. It is considered that values of Sv are proportional to demersal fish (herring, cod, flatfish) density. Seabed classification was based on analysis of duration of bottom echo recordings collected during the same series of surveys. Normalized (against the depth) bottom echo duration - Θ’/2 was applied as 1D parameter characterizing seabed properties. Geographical distribution of this parameter and its dependence on other determined factors were analyzed. Studies of irregularities in fish distribution and its correlation to Θ’/2 values were made. The paper gives a new method of acoustic classification of seabed and shows also some conclusions on coincidence of bottom features and environmental background. INTRODUCTION Developing the bases for responsible administration of marine ecosystem and its resources demands application of methods giving wider and more precise characteristics of the area, and cross-correlations of dynamic processes. Critical element of the marine ecosystem represents ‘bottom habitat’ – the area closely related to the bottom zone, strongly influenced by environmental and anthropogenic factors. The area, known also as demersal zone, plays an important role in the biological chain. Demersal fish resources can be treated in a consequence as important indicator of the quality of the marine ecosystem.
    [Show full text]
  • Below the Mesophotic C
    www.nature.com/scientificreports OPEN Below the Mesophotic C. C. Baldwin1, L. Tornabene2 & D. R. Robertson3 Mesophotic coral ecosystems, which occur at depths of ~40 to 150 m, have received recent scientifc attention as potential refugia for organisms inhabiting deteriorating shallow reefs. These ecosystems merit research in their own right, as they harbor both depth-generalist species and a distinctive reef-fsh Received: 31 August 2017 fauna. Reef ecosystems just below the mesophotic are globally underexplored, and the scant recent literature that mentions them often suggests that mesophotic ecosystems transition directly into Accepted: 12 February 2018 those of the deep sea. Through submersible-based surveys in the Caribbean Sea, we amassed the most Published: xx xx xxxx extensive database to date on reef-fsh diversity between ~40 and 309 m at any single tropical location. Our data reveal a unique reef-fsh assemblage living between ~130 and 309 m that, while taxonomically distinct from shallower faunas, shares strong evolutionary afnities with them. Lacking an existing name for this reef-faunal zone immediately below the mesophotic but above the deep aphotic, we propose “rariphotic.” Together with the “altiphotic,” proposed here for the shallowest reef-faunal zone, and the mesophotic, the rariphotic is part of a depth continuum of discrete faunal zones of tropical reef fshes, and perhaps of reef ecosystems in general, all of which warrant further study in light of global declines of shallow reefs. Studies of deep tropical-reef ecosystems have surged during the past decade1–10. This is due in part to the global decline of shallow coral reefs having sparked interest in the potential for deep reefs to act as refugia for shallow-water organisms stressed by warming surface waters or deteriorating reefs.
    [Show full text]
  • This Keyword List Contains Pacific Ocean (Excluding Great Barrier Reef)
    CoRIS Place Keyword Thesaurus by Ocean - 3/2/2016 Pacific Ocean (without the Great Barrier Reef) This keyword list contains Pacific Ocean (excluding Great Barrier Reef) place names of coral reefs, islands, bays and other geographic features in a hierarchical structure. The same names are available from “Place Keywords by Country/Territory - Pacific Ocean (without Great Barrier Reef)” but sorted by country and territory name. Each place name is followed by a unique identifier enclosed in parentheses. The identifier is made up of the latitude and longitude in whole degrees of the place location, followed by a four digit number. The number is used to uniquely identify multiple places that are located at the same latitude and longitude. This is a reformatted version of a list that was obtained from ReefBase. OCEAN BASIN > Pacific Ocean OCEAN BASIN > Pacific Ocean > Albay Gulf > Cauit Reefs (13N123E0016) OCEAN BASIN > Pacific Ocean > Albay Gulf > Legaspi (13N123E0013) OCEAN BASIN > Pacific Ocean > Albay Gulf > Manito Reef (13N123E0015) OCEAN BASIN > Pacific Ocean > Albay Gulf > Matalibong ( Bariis ) (13N123E0006) OCEAN BASIN > Pacific Ocean > Albay Gulf > Rapu Rapu Island (13N124E0001) OCEAN BASIN > Pacific Ocean > Albay Gulf > Sto. Domingo (13N123E0002) OCEAN BASIN > Pacific Ocean > Amalau Bay (14S170E0012) OCEAN BASIN > Pacific Ocean > Amami-Gunto > Amami-Gunto (28N129E0001) OCEAN BASIN > Pacific Ocean > American Samoa > American Samoa (14S170W0000) OCEAN BASIN > Pacific Ocean > American Samoa > Manu'a Islands (14S170W0038) OCEAN BASIN >
    [Show full text]