Identification Pitfalls and Assessment Problems*

Total Page:16

File Type:pdf, Size:1020Kb

Identification Pitfalls and Assessment Problems* Identification pitfalls and assessment problems* 8 Purple Heron Ardeapurpurea The Purple Heron is seldom seen away from large reed-beds and marshland vegetation where it spends much of the day concealed. It is, therefore, most frequently seen in flight, and then usually soon after dawn and shortly before dusk. As most species can appear dark-plumaged at these times, it is important that, without great emphasis on colour, a flying Purple Heron be clearly distinguished from possible confusion species: Grey Heron Ardea cinerea and Bittern Botaurus stellaris. 38. Juvenile Grey Heron Ardea cinerea, Kent, July 1981 (R.J. Chandler) This paper, like those earlier in the series (Brit. Birds 76: 26-28, 78-80, 129-130, 203-206, 304-305, 342-346; 77: 412-415), is a publication of the Rarities Committee, which is sponsored by Zeiss West Germany. continued.. [Brit. Birds 78: 97-102, February 1985] 97 98 Identification of Purple Heron Compared with a Grey Heron, it is smaller, obviously shorter- and slimmer-winged, narrower-bodied, smaller-headed and both longer- and thinner-necked. As with Grey Heron, the neck is coiled in flight, but, unlike that species, its more prominent bulge protrudes well below the line of the breast and belly, and the base of the neck meets the breast at a sharp angle. Accentuating the snaky appearance of the head and neck, the bill is very slender, proportionately longer than that of Grey Heron, and tapers evenly to a sharp tip. Although Purple Heron is shorter-legged than Grey Heron, it is also shorter-tailed and possesses much larger feet due to its extremely long toes. In flight these features of Purple Heron combine to produce a greater projection of the legs beyond the tail than on the other species. Compared with Bittern, Purple Heron is larger, longer- and slimmer- winged, narrower-bodied, proportionately smaller-headed and both longer- and thinner-necked. In flight, Bittern, like Grey Heron, lacks the angled, downwards-protruding, retracted neck of Purple Heron. A Bittern's bill is considerably shorter and proportionately thicker than that of Purple Heron, and its legs, tail and toes are shorter than those of the other species, combining to give Bittern less projection of the legs beyond the tail in flight. The ageing terminology used here for Purple and Grey Heron follows BWP I: the nestling's down is followed by juvenile plumage, immature plumage being gradually acquired during the first autumn and winter and sub-adult plumage being acquired during the second autumn. A Purple Heron can reach adult plumage during its third autumn, whilst a Grey Heron can attain adult plumage during its fourth autumn, though individuals of both species retain traces of sub-adult plumage for longer. The plumages of all three species are well described and illustrated in several books, including BWP I and The Popular Handbook of British Birds. In all three species, the sexes are alike, and there is little seasonal variation. The plumage and bare-part coloration differences between juveniles and adults are minimal in Bittern and fairly subtle in Grey Heron, but marked 39. Adult Purple Heron Ardea purpurea, Kent, April 1981 (David M. Cottridge) Identification of Purple Heron 99 40. First-winter Purple Heron Ardeapurpurea, Netherlands, December 1973 (P. Mumterman) in Purple Heron. Sub-adult and adult Purple Herons are basically dark grey and black, thus most confusable with a Grey Heron; and juvenile and immature Purple Herons are basically brown, thus most confusable with a Bittern. Given good views, however, all three species are readily identifiable on colour alone. The following adult Purple Heron plumage characters separate that species from adult Grey Heron, whose equivalent characters follow in brackets: crown dark (white); neck chestnut, striped with black (greyish- white streaked with black); wing-coverts dark slate-grey, showing com• paratively little contrast with the primaries and secondaries (pale powder grey, contrasting with black); area at base of primaries rich buff (white); underwing very dark (blue-grey); centre of breast and belly dark vinaceous (white); and undertail-coverts black (white). All these features, except the crown and, to a lesser extent, the wing-coverts, can also be used to separate adult Purple Heron from juvenile and immature Grey Heron. The crown, wing-coverts, primary-base and underwing points can be used to separate 100 Identification of Purple Heron 41. Adult Purple Heron Ardea purpurea, France, July 1975 (Pierre Petit) 42. First-winter Grey Heron Ardea cinerea, Kent, January 1983 {R.J. Chandler) sub-adult Purple Heron from adult Grey Heron, and the latter two features can be used to separate sub-adult Purple Heron from juvenile and immature Grey Heron. The following juvenile and immature Purple Heron plumage characters separate that species from Bittern, whose equivalent characters follow in brackets: bill yellow (yellow-green); mantle and scapulars brown, edged with tawny, but appearing fairly uniform (black boldly edged with buff); back, rump and uppertail-coverts dark grey (buff with dark spotting); Identification of Purple Heron 101 43. First-winter Grey Heron Ardea cinerea, Kent, January 1983 (R.J. Chandler) 44. Adult Purple Heron Ardea purpurea, Mallorca, April 1979 (Brian Thomas) 45. First-winter Purple Heron Ardea purpurea, Romania, September 1979 (Jan Sevcik) 102 Identification of Purple Heron 46. Bittern Botaurus stellaris, Cornwall, September 1981 (S. C. Hutchings) primaries and secondaries uniform blackish (blackish barred across with buff); and legs and feet yellow (yellow-green). The position is unfortunately complicated by the occasional occurrence of apparently melanistic Grey Herons which superficially resemble juvenile Purple Herons. Three instances have been published (Brit. Birds 70: 76, 345-346; 71: 416) and unpublished records include one photographed by R. F. Porter and another observed by D.J. Britton (in lift.). There is also a published account thought to refer to a hybrid Purple X Grey Heron (Bull. Brit. Orn. 67.88: 1-4). Structurally, melanistic Grey Herons are invariably of normal size for the species, and thus larger than Purple Herons, though this may not be helpful if no other herons are available for comparison. In flight, they lack the large feet and bulging neck of Purple Herons. Some, however, exhibit minor structural differences from normal Grey Herons, perhaps due to poor feather condition associated with the apparent melanism. For example, the neck may be thinner and the flight heavier, on more bowed wings. Their plumage is variable, but characteristically is a dirty or oily brown, more uniform than on any age of Purple Heron, and lacking darker streaks on the head and neck. Bare-part colour is not exceptional for the species, but some individuals curiously combine the bright yellow bill of an adult, though with black upper edge and tip, with the complete, neatly demarcated dark cap of a juvenile. Such individuals may strongly recall Purple Heron, especially if the neck is sleek. Melanistic Grey Herons are undoubtedly rarer in Britain than are Purple Herons, except perhaps in winter. Thus, the problem needs to be kept in perspective, but a poorly described brown heron with little supporting structural evidence, though most likely to be a Purple Heron, is perhaps best regarded as unproven. A total of 423 Purple Herons has been accepted as having occurred in Britain and Ireland (up to the end of 1982), and the species is currently occurring at the rate of about 20 a year. Almost all have appeared during April to October, with a peak from late April to late May, and the great majority have been seen in England and Wales, mostly in the coastal counties from the Isles of Scilly to Norfolk. I am grateful to D. J. Britton for supplying the paragraphs concerning melanistic Grey Herons. PETER LANSDOWN 197 Springwood, Llanedeym, Cardiff CF26UG .
Recommended publications
  • Ardea Cinerea (Grey Heron) Family: Ardeidae (Herons and Egrets) Order: Ciconiiformes (Storks, Herons and Ibises) Class: Aves (Birds)
    UWU The Online Guide to the Animals of Trinidad and Tobago Behaviour Ardea cinerea (Grey Heron) Family: Ardeidae (Herons and Egrets) Order: Ciconiiformes (Storks, Herons and Ibises) Class: Aves (Birds) Fig. 1. Grey heron, Ardea cinerea. [http://www.google.tt/imgres?imgurl=http://www.bbc.co.uk/lancashire/content/images/2006/06/15/grey_heron, downloaded 14 November 2012] TRAITS. Grey herons are large birds that can be 90-100cm tall and an adult could weigh in at approximately 1.5 kg. They are identified by their long necks and very powerful dagger like bills (Briffett 1992). They have grey plumage with long black head plumes and their neck is white with black stripes on the front. In adults the forehead sides of the head and the centre of the crown are white. In flight the neck is folded back with the wings bowed and the flight feathers are black. Each gender looks alike except for the fact that females have shorter heads (Seng and Gardner 1997). The juvenile is greyer without black markings on the head and breast. They usually live long with a life span of 15-24 years. ECOLOGY. The grey heron is found in Europe, Asia and Africa, and has been recorded as an accidental visitor in Trinidad. Grey herons occur in many different habitat types including savannas, ponds, rivers, streams, lakes and temporary pools, coastal brackish water, wetlands, marsh and swamps. Their distribution may depend on the availability of shallow water (brackish, saline, fresh, flowing and standing) (Briffett 1992). They prefer areas with tall trees for nesting UWU The Online Guide to the Animals of Trinidad and Tobago Behaviour (arboreal rooster and nester) but if trees are unavailable, grey herons may roost in dense brush or undergrowth.
    [Show full text]
  • IUCN-SSC Stork, Ibis and Spoonbill Specialist Group Special Publication 2
    IUCN-SSC Stork, Ibis and Spoonbill Specialist Group Special Publication 2 Proceedings of the IX Workshop of the AEWA Eurasian Spoonbill International Expert Group Djerba Island, Tunisia, 14th - 18th November 2018 Editors: Jocelyn Champagnon, Jelena Kralj, Luis Santiago Cano Alonso and K. S. Gopi Sundar Editors-in-Chief, Special Publications, IUCN-SSC Stork, Ibis and Spoonbill Specialist Group K.S. Gopi Sundar, Co-chair IUCN Stork, Ibis and Spoonbill Specialist Group Luis Santiago Cano Alonso, Co-chair IUCN Stork, Ibis and Spoonbill Specialist Group Invited Editors for this issue Jocelyn Champagnon, Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France Jelena Kralj, Institute of Ornithology, Zagreb, Croatia Expert Review Board Hichem Azafzaf, Association “les Amis des Oiseaux » (AAO/BirdLife Tunisia), Tunisia Petra de Goeij, Royal NIOZ, the Netherlands Csaba Pigniczki, Kiskunság National Park Directorate, Hungary Suggested citation of this publication: Champagnon J., Kralj J., Cano Alonso, L. S. & Sundar, K. S. G. (ed.) 2019. Proceedings of the IX Workshop of the AEWA Eurasian Spoonbill International Expert Group. IUCN-SSC Stork, Ibis and Spoonbill Specialist Group Special Publication 2. Arles, France. ISBN 978-2-491451-00-4. Recommended Citation of a chapter: Marion L. 2019. Recent trends of the breeding population of Spoonbill in France 2012- 2018. Pp 19- 23. In: Champagnon J., Kralj J., Cano Alonso, L. S. & Sundar, K. S. G. (ed.) Proceedings of the IX Workshop of the AEWA Eurasian Spoonbill International Expert Group. IUCN-SSC Stork, Ibis and Spoonbill Specialist Group Special Publication 2. Arles, France. INFORMATION AND WRITING DISCLAIMER The information and opinions expressed in this publication belong to the authors.
    [Show full text]
  • The Grey Heron
    Bird Life The Grey Heron t is quite likely that if someone points out a grey heron to you, I you will remember it the next time you see it. The grey heron is a tall bird, usually about 80cm to 1m in height and is common to inland waterways and coasts. Though the grey heron has a loud “fraank” call, it can most often be seen standing silently in shallow water with its long neck outstretched, watching the water for any sign of movement. The grey heron is usually found on its own, although some may feed close together. Their main food is fish, but they will take small mammals, insects, frogs and even young birds. Because of their habit of occasionally taking young birds, herons are not always popular and are often driven away from a feeding area by intensive mobbing. Mobbing is when smaller birds fly aggressively at their predator, in this case the heron, in order to defend their nests or their lives. Like all herons, grey herons breed in a colony called a heronry. They mostly nest in tall trees and bushes, but sometimes they nest on the ground or on ledge of rock by the sea. Nesting starts in February,when the birds perform elaborate displays and make noisy callings. They lay between 3-5 greenish-blue eggs, often stained white by the birds’ droppings. Once hatched, the young © Illustration: Audrey Murphy make continuous squawking noises as they wait to be fed by their parents. And though it doesn’t sound too pleasant, the parent Latin Name: Ardea cinerea swallows the food and brings it up again at the nest, where the Irish Name: Corr réisc young put their bills right inside their parents mouth in order to Colour: Grey back, white head and retrieve it! neck, with a black crest on head.
    [Show full text]
  • Flamingo ABOUT the GROUP
    Flamingo ABOUT THE GROUP Bulletin of the IUCN-SSC/Wetlands International The Flamingo Specialist Group (FSG) was established in 1978 at Tour du Valat in France, under the leadership of Dr. Alan Johnson, who coordinated the group until 2004 (see profile at www.wetlands.org/networks/Profiles/January.htm). Currently, the group is FLAMINGO SPECIALIST GROUP coordinated from the Wildfowl & Wetlands Trust at Slimbridge, UK, as part of the IUCN- SSC/Wetlands International Waterbird Network. The FSG is a global network of flamingo specialists (both scientists and non- scientists) concerned with the study, monitoring, management and conservation of the world’s six flamingo species populations. Its role is to actively promote flamingo research and conservation worldwide by encouraging information exchange and cooperation amongst these specialists, and with other relevant organisations, particularly IUCN - SSC, Ramsar, WWF International and BirdLife International. FSG members include experts in both in-situ (wild) and ex-situ (captive) flamingo conservation, as well as in fields ranging from field surveys to breeding biology, diseases, tracking movements and data management. There are currently 165 members around the world, from India to Chile, and from France to South Africa. Further information about the FSG, its membership, the membership list serve, or this bulletin can be obtained from Brooks Childress at the address below. Chair Assistant Chair Dr. Brooks Childress Mr. Nigel Jarrett Wildfowl & Wetlands Trust Wildfowl & Wetlands Trust Slimbridge Slimbridge Glos. GL2 7BT, UK Glos. GL2 7BT, UK Tel: +44 (0)1453 860437 Tel: +44 (0)1453 891177 Fax: +44 (0)1453 860437 Fax: +44 (0)1453 890827 [email protected] [email protected] Eastern Hemisphere Chair Western Hemisphere Chair Dr.
    [Show full text]
  • Wetland Birds in the Recent Fossil Record of Britain and Northwest Europe John R
    Wetland birds in the recent fossil record of Britain and northwest Europe John R. Stewart 18. Dalmatian Pelican Pelecanus crispus, Deep Bay, Mai Po, Hong Kong, February 1995. Geological evidence suggests that Dalmatian Pelicans bred in Britain, and in other western European countries (including The Netherlands and Denmark), prior to and during the Iron Age. Ray Tipper. ABSTRACT Wetland habitats in Britain and other parts of western Europe have been severely depleted during the latter part of the Holocene owing principally to drainage and land reclamation. Changes in the distribution of a number of wetland bird species can be gauged from archaeological and geological site records of larger birds, whose remains are generally better preserved. Key species are discussed here, including a heron Nycticorax fenensis and a crane Grus primigenia, two extinct species named on possibly uncertain fossil evidence. We can let our minds wander back to the misty realms of fifteen hundred years ago, to a wonderful Britain which was alive with bird song from coast to coast, which sheltered wolves, bears and boars in its dark woodlands, cranes in its marshes, bustards on its heaths and beavers by its streams, and we can visualize the great pink pelican sweeping on its huge pinions over the reedy waterways which then penetrated by secret paths into the very heart of what is now Somerset. (Whitlock, 1953) © British Birds 97 • January 2004 • 33-43 33 Wetland birds in the recent fossil record f all the major habitats in northwest species, including Mute Swan Cygnus olor and Europe, wetlands may have been the Common Crane, may have become physically Omost severely depleted during the smaller owing to habitat impoverishment.
    [Show full text]
  • Birds of Coimbatore Urban Area, India
    REGIONAL OFFICE FOR ASIA AND THE PACIFIC (RAP), BANGKOK FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS October-December 2005 Regional Quarterly Bulletin on Wildlife and National Parks Management Vol. XXXII : No. 4 Featuring Vol. XIX : No. 4 Contents Birds of Coimbatore Urban Area, India.........…………... 1 Study on Medicinal and Aromatic Plants Biodiversity of Himachal Pradesh Himalayas......................…....… 6 Participatory Wildlife Conservation Initiatives in Nepal.… 11 Diversity of Spiders in Parambikulam Wildlife Sanctuary.. 18 Ecology of Purple Moorhen in Azhinhillam Wetlan…....… 23 Breeding of an Indian Giant Squirrel Pup at Arignar Anna Zoological Park......................................................…. 27 Food, Feeding, Behavior and Habitat Preferences of REGIONAL OFFICE Spiny-Tailed Lizard in the Thar Desert...................…... 30 FOR ASIA AND THE PACIFIC TIGERPAPER is a quarterly news bulletin dedicated to the exchange of information Second Announcement - Asia-Pacific Forestry Commission relating to wildlife and national parks management for the to meet in Dehradun, India....................................……… 1 Asia-Pacific Region. New Forest Assessment Indicates Overall Expansion of Asian Forests But Continued Decline of Natural Forests...................................................................….... 4 ISSN 1014 - 2789 Interested in Making Forest Management Work for the Poor?............................................................................ 6 Address Award-Winning Forestry at Tonle Sap --
    [Show full text]
  • Resource-Dependent Weather Effect in the Reproduction of the White Stork Ciconia Ciconia
    Resource-dependent weather effect in the reproduction of the White Stork Ciconia ciconia Damijan Denac1 Denac D. 2006. Resource-dependent weather effect in the reproduction of the White Stork Ciconia ciconia. Ardea 94(2): 233–240. Weather affects the breeding success of White Stork Ciconia ciconia, but the effect has not been studied in the context of different food resources or habitat quality. The aim of this study was to determine whether the impact of weather conditions on breeding success was dependent on habitat quality. The effect of weather on reproduction was analysed in two populations that differed significantly in the availability of suitable feeding habitats. Multiple regression analyses revealed that of the weather variables analysed (average temperature and rainfall in April, May and June), rainfall in May and temperature in June explained a sig- nificant part of the variation in numbers of fledged chicks per pair, but only in the population with poorer food resources. The lack of weather influence in the population with richer food resources was tentatively explained by the larger brood sizes. More effective heat conservation in larger broods, and thus lower chick mortality during cold weather, could be the underlying mechanism for the different response to weather in the two populations. Key words: breeding success, Ciconia ciconia, habitat quality, resource dependent weather-effect, White Stork 1National Institute of Biology, Vecv na pot 111, SI–1000 Ljubljana, Slovenia ([email protected]) INTRODUCTION optimal feeding habitats, whereas fields, especially cornfields, are suboptimal (Sackl 1987, Pinowski et The influences of food as a resource and weather al.
    [Show full text]
  • A Year Following Egrets
    ❚ 10 The Ardeid ❚■ Insights from birds with GPS tags A Year Following Egrets by David Lumpkin o a Great Egret (Ardea alba), Tomales Bay the deployment of our tags, all three Tis full of food, but that food is not always egrets remained near Toms Point in available. Every two weeks, around the full northern Tomales Bay, where we and new moons, the lowest tides and greatest could regularly download data foraging opportunity coincide with the early with the handheld receiver Figure 1. Egret 9 flying over Cypress morning, making breakfast on the bay an easy then eagerly rush back Grove the day after it was captured in affair. During low tides, hundreds of acres of to the office to upload September 2018. intertidal eelgrass are exposed, allowing egrets the data to a computer to stab at herring during spawning events or and see what the birds had been doing. About a to hunt pipefish, which try to wrap themselves month after tagging, suddenly two of the three a freshwater pond at Toms Point. I watched around the egret’s bill to avoid being swal- egrets could no longer be found on Tomales him forage there several times. Though this lowed. As the tide cycle shifts and morning tides Bay. Worried something might have happened pond was well covered by aquatic plants, he was become higher, the eelgrass is exposed for fewer to them, and perplexed that they might leave an consistently able to find small fish, picking them hours per day, reducing foraging opportunities area where they likely had active nests, I drove out from tiny gaps in foliage.
    [Show full text]
  • Roseate Spoonbill Breeding in Camden County: a First State Nesting Record for Georgia
    vol. 76 • 3 – 4 THE ORIOLE 65 ROSEATE SPOONBILL BREEDING IN CAMDEN COUNTY: A FIRST STATE NESTING RECORD FOR GEORGIA Timothy Keyes One Conservation Way Brunswick, GA 31520 [email protected] Chris Depkin One Conservation Way Brunswick, GA 31520 [email protected] Jessica Aldridge 6222 Charlie Smith Sr. Hwy St. Marys, GA 31558 [email protected] Introduction We report the northernmost breeding record of Roseate Spoonbill (Platalea ajaja) on the Atlantic Coast of the U.S. Nesting activity has been suspected in Georgia for at least 5 years, but was first confirmed in June 2011 at a large wading bird colony in St. Marys, Camden County, Georgia. Prior to this record, the furthest northern breeding record for Roseate Spoonbill was in St. Augustine, St. John’s County, Florida, approximately 100 km to the south. This record for Georgia continues a trend of northward expansion of Roseate Spoonbill post-breeding dispersal and breeding ranges. Prior to the plume-hunting era of the mid to late 1800s, the eastern population of Roseate Spoonbill was more abundant and widespread than it is today (Dumas 2000), breeding across much of south Florida. Direct persecution and collateral disturbance by egret plume hunters led to a significant range contraction between 1850 and the 1890s (Allen 1942), limiting the eastern population of Roseate Spoonbills to a few sites in Florida Bay by the 1940s. A low of 15 nesting pairs were documented in 1936 (Powell et al. 1989). By the late 1960s, Roseate Spoonbills began to expand out of Florida Bay, slowly reclaiming some of the territory they had lost.
    [Show full text]
  • Wwtworldwide
    In each list below, only one bird has talons to catch its prey. Amazing Adaptations - Answers CIRCLE the bird with talons. Quiz for children aged 5-7 years 9 MALLARD DUCK MUTE SWAN OSPREY 10 MARSH HARRIER REED WARBLER CANADA GOOSE Round 1: Picture round The following birds were all featured in this week’s Amazing Adaptation Cards. Q Can you name them? Round 3: Which is the longest? In this week’s session you looked at birds that have long legs to keep their body above the water. In each list below, CIRCLE the bird that has the longest legs. If you get stuck, use your Amazing Adaptations Cards to help you. 11 REED WARBLER GREY HERON KINGFISHER © Tony Sutton© Tony @ flickr 12 LITTLE EGRET DIPPER MALLARD DUCK 1 (Mute) swan 2 (Grey) heron 3 Avocet 13 DIPPER AVOCET REED WARBLER In this week’s session you looked at birds that had long necks to reach food below the water. In each list below, CIRCLE the bird that has the longest neck. 14 MUTE SWAN OSPREY MALLARD DUCK © ianpreston @ flickr 4 (Mallard) duck 5 Dipper 15 MARSH HARRIER GREY HERON KINGFISHER Round 2: Odd one out round In this week’s session you looked at different types of feet suited to wetlands. In each list below, only one bird has webbed feet. Circle the bird with webbed feet. If you get stuck, use your Amazing Adaptations Cards to help you. Q Can you CIRCLE the odd one out in each list below? 6 REED WARBLER MUTE SWAN OSPREY The otter is a mammal and the other two are amphibians.
    [Show full text]
  • Ixobrychus Exilis (Gmelin) Leastleast Bitternbittern, Page 1
    Ixobrychus exilis (Gmelin) Leastleast Bitternbittern, Page 1 State Distribution Best Survey Period Copyright The Otter Side Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Status: State threatened state.” Wood (1951) identified the species as a summer resident and common in southern tiers of counties and Global and state rank: G5/S2 Cheboygan County, but rare and local in the Upper Peninsula. Least bittern was later described by Payne Family: Ardeidae – Herons, Egrets, and Bitterns (1983) as an uncommon transient and summer resident, with nesting confirmed in 27 counties. Michigan Total range: Five subspecies of least bittern are found Breeding Bird Atlas (Atlas) surveys conducted in the throughout much of North, Central, and South America 1980s confirmed breeding in 20 survey blocks in 17 (Gibbs et al. 1992). In North America, this species is counties (Adams 1991). All of these observations primarily restricted to the eastern U.S., ranging from occurred in the Lower Peninsula, with the number of the Great Plains states eastward to the Atlantic Coast blocks and counties with confirmed breeding nearly split and north to the Great Lakes region and the New between the northern (9 blocks in 8 counties) and England states (Evers 1994). Western populations are southern (11 blocks in 9 counties) Lower Peninsula concentrated in low-lying areas of the Central Valley (Adams 1991). Researchers confirmed nesting at and Modoc Plateau of California, the Klamath and several sites on Saginaw Bay and observed possible Malheur basins of Oregon, and along the Colorado breeding in Munuscong Bay wetlands (Chippewa River in southwest Arizona and southeast California County) during avian studies conducted in the mid- (Gibbs et al.
    [Show full text]
  • Sparrow Swap: Testing Management Strategies for House Sparrows and Exploring the Use of Their Eggshells for Monitoring Heavy Metal Pollution
    ABSTRACT HARTLEY, SUZANNE MARIE. Sparrow Swap: Testing Management Strategies for House Sparrows and Exploring the Use of their Eggshells for Monitoring Heavy Metal Pollution. (Under the direction of Dr. Caren Cooper). Human movement across the globe, particularly through colonialism throughout the last 500 years, has led to the introduction of species into novel environments where they threaten the biodiversity and ecosystem functioning of those novel environments. In the Anthropocene where other threats such as climate change, pollution, and habitat destruction already occur, invasive species are just one more threat facing ecosystems. But what if we can find a way to use an invasive species to help monitor those other threats while at the same time managing them? In the following thesis I explore the strategies by which volunteers manage House Sparrows to minimize their negative impact as an invasive species, but also the potential to use their eggs as indicators of heavy metals in the environment. House Sparrows compete with native birds for nesting spaces. They are also commensal with humans, utilizing buildings as nesting spaces and split grains and forgotten French fries as food sources. In order to 1) find effective management strategies for House Sparrows and 2) evaluate their use as indicators of environmental contaminants, a citizen science project Sparrow Swap was created. Sparrow Swaps takes advantage of the ubiquity of House Sparrows and the expertise of volunteer nestbox monitors to gather data about House Sparrow nesting behaviors and eggs across the United States. In Chapter 1, I address the first research goal of Sparrow Swap by comparing the outcomes of two different strategies by which volunteers manage House Sparrows.
    [Show full text]