Effective Population Size and Patterns of Molecular Evolution and Variation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effective Population Size and Genetic Conservation Criteria for Bull Trout
North American Journal of Fisheries Management 21:756±764, 2001 q Copyright by the American Fisheries Society 2001 Effective Population Size and Genetic Conservation Criteria for Bull Trout B. E. RIEMAN* U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, 316 East Myrtle, Boise, Idaho 83702, USA F. W. A LLENDORF Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA Abstract.ÐEffective population size (Ne) is an important concept in the management of threatened species like bull trout Salvelinus con¯uentus. General guidelines suggest that effective population sizes of 50 or 500 are essential to minimize inbreeding effects or maintain adaptive genetic variation, respectively. Although Ne strongly depends on census population size, it also depends on demographic and life history characteristics that complicate any estimates. This is an especially dif®cult problem for species like bull trout, which have overlapping generations; biologists may monitor annual population number but lack more detailed information on demographic population structure or life history. We used a generalized, age-structured simulation model to relate Ne to adult numbers under a range of life histories and other conditions characteristic of bull trout populations. Effective population size varied strongly with the effects of the demographic and environmental variation included in our simulations. Our most realistic estimates of Ne were between about 0.5 and 1.0 times the mean number of adults spawning annually. We conclude that cautious long-term management goals for bull trout populations should include an average of at least 1,000 adults spawning each year. Where local populations are too small, managers should seek to conserve a collection of interconnected populations that is at least large enough in total to meet this minimum. -
Routledge Handbook of Ecological and Environmental Restoration the Principles of Restoration Ecology at Population Scales
This article was downloaded by: 10.3.98.104 On: 26 Sep 2021 Access details: subscription number Publisher: Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London SW1P 1WG, UK Routledge Handbook of Ecological and Environmental Restoration Stuart K. Allison, Stephen D. Murphy The Principles of Restoration Ecology at Population Scales Publication details https://www.routledgehandbooks.com/doi/10.4324/9781315685977.ch3 Stephen D. Murphy, Michael J. McTavish, Heather A. Cray Published online on: 23 May 2017 How to cite :- Stephen D. Murphy, Michael J. McTavish, Heather A. Cray. 23 May 2017, The Principles of Restoration Ecology at Population Scales from: Routledge Handbook of Ecological and Environmental Restoration Routledge Accessed on: 26 Sep 2021 https://www.routledgehandbooks.com/doi/10.4324/9781315685977.ch3 PLEASE SCROLL DOWN FOR DOCUMENT Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. 3 THE PRINCIPLES OF RESTORATION ECOLOGY AT POPULATION SCALES Stephen D. -
Population Size and the Rate of Evolution
Review Population size and the rate of evolution 1,2 1 3 Robert Lanfear , Hanna Kokko , and Adam Eyre-Walker 1 Ecology Evolution and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia 2 National Evolutionary Synthesis Center, Durham, NC, USA 3 School of Life Sciences, University of Sussex, Brighton, UK Does evolution proceed faster in larger or smaller popu- mutations occur and the chance that each mutation lations? The relationship between effective population spreads to fixation. size (Ne) and the rate of evolution has consequences for The purpose of this review is to synthesize theoretical our ability to understand and interpret genomic varia- and empirical knowledge of the relationship between tion, and is central to many aspects of evolution and effective population size (Ne, Box 1) and the substitution ecology. Many factors affect the relationship between Ne rate, which we term the Ne–rate relationship (NeRR). A and the rate of evolution, and recent theoretical and positive NeRR implies faster evolution in larger popula- empirical studies have shown some surprising and tions relative to smaller ones, and a negative NeRR implies sometimes counterintuitive results. Some mechanisms the opposite (Figure 1A,B). Although Ne has long been tend to make the relationship positive, others negative, known to be one of the most important factors determining and they can act simultaneously. The relationship also the substitution rate [5–8], several novel predictions and depends on whether one is interested in the rate of observations have emerged in recent years, causing some neutral, adaptive, or deleterious evolution. Here, we reassessment of earlier theory and highlighting some gaps synthesize theoretical and empirical approaches to un- in our understanding. -
Determining the Factors Driving Selective Effects of New Nonsynonymous Mutations
Determining the factors driving selective effects of new nonsynonymous mutations Christian D. Hubera,1, Bernard Y. Kima, Clare D. Marsdena, and Kirk E. Lohmuellera,b,c,1 aDepartment of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095; bInterdepartmental Program in Bioinformatics, University of California, Los Angeles, CA 90095; and cDepartment of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 Edited by Andrew G. Clark, Cornell University, Ithaca, NY, and approved March 16, 2017 (received for review November 26, 2016) The distribution of fitness effects (DFE) of new mutations plays a the protein stability model, the back-mutation model, the mu- fundamental role in evolutionary genetics. However, the extent tational robustness model, and Fisher’s geometrical model to which the DFE differs across species has yet to be systematically (FGM). For example, the mutational robustness model predicts investigated. Furthermore, the biological mechanisms determining that more complex species will have more robust regulatory the DFE in natural populations remain unclear. Here, we show that networks that will better buffer the effects of deleterious muta- theoretical models emphasizing different biological factors at tions, leading to less deleterious selection coefficients (10). Here, determining the DFE, such as protein stability, back-mutations, we leverage these predictions of how the DFE is expected to species complexity, and mutational robustness make distinct pre- differ across species to test which theoretical model best explains dictions about how the DFE will differ between species. Analyzing the evolution of the DFE by comparing the DFE in natural amino acid-changing variants from natural populations in a com- populations of humans, Drosophila, yeast, and mice. -
Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation
Copyright 2000 by the Genetics Society of America Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation Yuseob Kim and Wolfgang Stephan Department of Biology, University of Rochester, Rochester, New York 14627 Manuscript received December 7, 1999 Accepted for publication March 20, 2000 ABSTRACT Due to relatively high rates of strongly selected deleterious mutations, directional selection on favorable alleles (causing hitchhiking effects on linked neutral polymorphisms) is expected to occur while a deleteri- ous mutation-selection balance is present in a population. We analyze this interaction of directional selection and background selection and study their combined effects on neutral variation, using a three- locus model in which each locus is subjected to either deleterious, favorable, or neutral mutations. Average heterozygosity is measured by simulations (1) at the stationary state under the assumption of recurrent hitchhiking events and (2) as a transient level after a single hitchhiking event. The simulation results are compared to theoretical predictions. It is shown that known analytical solutions describing the hitchhiking effect without background selection can be modi®ed such that they accurately predict the joint effects of hitchhiking and background on linked, neutral variation. Generalization of these results to a more appro- priate multilocus model (such that background selection can occur at multiple sites) suggests that, in regions of very low recombination rates, stationary levels of nucleotide diversity are primarily determined by hitchhiking, whereas in regions of high recombination, background selection is the dominant force. The implications of these results on the identi®cation and estimation of the relevant parameters of the model are discussed. -
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B. -
Evolutionary Restoration Ecology
ch06 2/9/06 12:45 PM Page 113 189686 / Island Press / Falk Chapter 6 Evolutionary Restoration Ecology Craig A. Stockwell, Michael T. Kinnison, and Andrew P. Hendry Restoration Ecology and Evolutionary Process Restoration activities have increased dramatically in recent years, creating evolutionary chal- lenges and opportunities. Though restoration has favored a strong focus on the role of habi- tat, concerns surrounding the evolutionary ecology of populations are increasing. In this con- text, previous researchers have considered the importance of preserving extant diversity and maintaining future evolutionary potential (Montalvo et al. 1997; Lesica and Allendorf 1999), but they have usually ignored the prospect of ongoing evolution in real time. However, such contemporary evolution (changes occurring over one to a few hundred generations) appears to be relatively common in nature (Stockwell and Weeks 1999; Bone and Farres 2001; Kin- nison and Hendry 2001; Reznick and Ghalambor 2001; Ashley et al. 2003; Stockwell et al. 2003). Moreover, it is often associated with situations that may prevail in restoration projects, namely the presence of introduced populations and other anthropogenic disturbances (Stockwell and Weeks 1999; Bone and Farres 2001; Reznick and Ghalambor 2001) (Table 6.1). Any restoration program may thus entail consideration of evolution in the past, present, and future. Restoration efforts often involve dramatic and rapid shifts in habitat that may even lead to different ecological states (such as altered fire regimes) (Suding et al. 2003). Genetic variants that evolved within historically different evolutionary contexts (the past) may thus be pitted against novel and mismatched current conditions (the present). The degree of this mismatch should then determine the pattern and strength of selection acting on trait variation in such populations (Box 6.1; Figure 6.1). -
Comparative Evolution: Latent Potentials for Anagenetic Advance (Adaptive Shifts/Constraints/Anagenesis) G
Proc. Natl. Acad. Sci. USA Vol. 85, pp. 5141-5145, July 1988 Evolution Comparative evolution: Latent potentials for anagenetic advance (adaptive shifts/constraints/anagenesis) G. LEDYARD STEBBINS* AND DANIEL L. HARTLtt *Department of Genetics, University of California, Davis, CA 95616; and tDepartment of Genetics, Washington University School of Medicine, Box 8031, 660 South Euclid Avenue, Saint Louis, MO 63110 Contributed by G. Ledyard Stebbins, April 4, 1988 ABSTRACT One of the principles that has emerged from genetic variation available for evolutionary changes (2), a experimental evolutionary studies of microorganisms is that major concern of modem evolutionists is explaining how the polymorphic alleles or new mutations can sometimes possess a vast amount of genetic variation that actually exists can be latent potential to respond to selection in different environ- maintained. Given the fact that in complex higher organisms ments, although the alleles may be functionally equivalent or most new mutations with visible effects on phenotype are disfavored under typical conditions. We suggest that such deleterious, many biologists, particularly Kimura (3), have responses to selection in microorganisms serve as experimental sought to solve the problem by proposing that much genetic models of evolutionary advances that occur over much longer variation is selectively neutral or nearly so, at least at the periods of time in higher organisms. We propose as a general molecular level. Amidst a background of what may be largely evolutionary principle that anagenic advances often come from neutral or nearly neutral genetic variation, adaptive evolution capitalizing on preexisting latent selection potentials in the nevertheless occurs. While much of natural selection at the presence of novel ecological opportunity. -
IN EVOLUTION JACK LESTER KING UNIVERSITY of CALIFORNIA, SANTA BARBARA This Paper Is Dedicated to Retiring University of California Professors Curt Stern and Everett R
THE ROLE OF MUTATION IN EVOLUTION JACK LESTER KING UNIVERSITY OF CALIFORNIA, SANTA BARBARA This paper is dedicated to retiring University of California Professors Curt Stern and Everett R. Dempster. 1. Introduction Eleven decades of thought and work by Darwinian and neo-Darwinian scientists have produced a sophisticated and detailed structure of evolutionary ,theory and observations. In recent years, new techniques in molecular biology have led to new observations that appear to challenge some of the basic theorems of classical evolutionary theory, precipitating the current crisis in evolutionary thought. Building on morphological and paleontological observations, genetic experimentation, logical arguments, and upon mathematical models requiring simplifying assumptions, neo-Darwinian theorists have been able to make some remarkable predictions, some of which, unfortunately, have proven to be inaccurate. Well-known examples are the prediction that most genes in natural populations must be monomorphic [34], and the calculation that a species could evolve at a maximum rate of the order of one allele substitution per 300 genera- tions [13]. It is now known that a large proportion of gene loci are polymorphic in most species [28], and that evolutionary genetic substitutions occur in the human line, for instance, at a rate of about 50 nucleotide changes per generation [20], [24], [25], [26]. The puzzling observation [21], [40], [46], that homologous proteins in different species evolve at nearly constant rates is very difficult to account for with classical evolutionary theory, and at the very least gives a solid indication that there are qualitative differences between the ways molecules evolve and the ways morphological structures evolve. -
Microevolution and the Genetics of Populations Microevolution Refers to Varieties Within a Given Type
Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift. -
I Xio- and Made the Rather Curious Assumption That the Mutant Is
NOTES AND COMMENTS NATURAL SELECTION AND THE EVOLUTION OF DOMINANCE P. M. SHEPPARD Deportment of Genetics, University of Liverpool and E.B. FORD Genetic Laboratories, Department of Zoology, Oxford 1. INTRODUCTION CROSBY(i 963) criticises the hypothesis that dominance (or recessiveness) has evolved and is not an attribute of the allelomorph when it arose for the first time by mutation. None of his criticisms is new and all have been discussed many times. However, because of a number of apparent mis- understandings both in previous discussions and in Crosby's paper, and the fact that he does not refer to some important arguments opposed to his own view, it seems necessary to reiterate some of the previous discussion. Crosby's criticisms fall into two parts. Firstly, he maintains, as did Wright (1929a, b) and Haldane (1930), that the selective advantage of genes modifying dominance, being of the same order of magnitude as the mutation rate, is too small to have any evolutionary effect. Secondly, he criticises, as did Wright (5934), the basic assumption that a new mutation when it first arises produces a phenotype somewhat intermediate between those of the two homozygotes. 2.THE SELECTION COEFFICIENT INVOLVED IN THE EVOLUTION OF DOMINANCE Thereis no doubt that the selective advantage of modifiers of dominance is of the order of magnitude of the mutation rate of the gene being modified. Crosby (p. 38) considered a hypothetical example with a mutation rate of i xio-and made the rather curious assumption that the mutant is dominant in the absence of modifiers of dominance. -
It's About Time: the Temporal Dynamics of Phenotypic Selection in the Wild
Ecology Letters, (2009) 12: 1261–1276 doi: 10.1111/j.1461-0248.2009.01381.x REVIEW AND SYNTHESIS ItÕs about time: the temporal dynamics of phenotypic selection in the wild Abstract Adam M. Siepielski,1* Joseph Selection is a central process in nature. Although our understanding of the strength and D. DiBattista2 and Stephanie form of selection has increased, a general understanding of the temporal dynamics of M. Carlson3 selection in nature is lacking. Here, we assembled a database of temporal replicates of 1 Department of Biological selection from studies of wild populations to synthesize what we do (and do not) know Sciences, Dartmouth College, about the temporal dynamics of selection. Our database contains 5519 estimates of Hanover, NH 03755, USA selection from 89 studies, including estimates of both direct and indirect selection as well 2Redpath Museum and as linear and nonlinear selection. Morphological traits and studies focused on vertebrates Department of Biology, McGill were well-represented, with other traits and taxonomic groups less well-represented. University, Montre´ al, QC H3A 2K6, Canada Overall, three major features characterize the temporal dynamics of selection. First, the 3University of California, strength of selection often varies considerably from year to year, although random Department of Environmental sampling error of selection coefficients may impose bias in estimates of the magnitude of Science, Policy, and such variation. Second, changes in the direction of selection are frequent. Third, changes Management, 137 Mulford Hall in the form of selection are likely common, but harder to quantify. Although few studies 3114, Berkeley, CA 94720, USA have identified causal mechanisms underlying temporal variation in the strength, *Correspondence: E-mail: direction and form of selection, variation in environmental conditions driven by climatic Adam.M.Siepielski@Dartmouth.