Iron Dynamics in Terrestrial Ecosystems in the Amur River Basin
― GROUP 4 REPORT ― IRON DYNAMICS IN TERRESTRIAL ECOSYSTEMS IN THE AMUR RIVER BASIN 1 2 3 4 1 1 5 YOH M. , SHIBATA H. , ONISHI T. , KAWAHIGASHI M. , GUO Y. , OHJI B. , YAMAGATA K. , 6 6 6 6 7 SHAMOV V. V. , LEVSHINA S. I. , NOVOROTSKAYA A. , MATYUSHKINA L. , YAN B. , 7 7 7 8 8 8 8 9 10 WANG D. , PAN X. , ZHANG B. , CHEN X. , HUANG B. , CHI G . , SHI Y. , SHI F. , XU X. , 10 11 11 ZHANG K. , CAI T. AND SHENG H. 1Tokyo University of Agriculture and Technology, Japan, 2Hokkaido University, Japan, 3River Basin Research Center, Gifu University, Japan, 4Nihon University, Japan, 5Joetsu University of Education,Japan, 6Institute for Water and Ecological Problems, FEB RAS, Russia, 7Northeast Institute of Geography and Agroecology, CAS, China, 8Institute of Applied Ecology, CAS, China, 9Nankai University, China, 10Anhui Agricultural University, China, 11Northeast Forestry University, China ABSTRACT Our focus is to understand the spatial and temporal patterns and processes of biogeochemical iron transport from terrestrial ecosystem to river with special attention to the human impacts such as forest fire, land-use change and agricultural activities. Field monitoring of iron dynamics including stream water, soil water, and groundwater has been conducted from the upstream to downstream basin of Amur river in northeastern China and far-eastern Russia under tight collaboration with Chinese and Russian scientists and institutes. We found that the major source of dissolved iron from terrestrial system to river was mainly natural wetland which largely covered near the middle to lower region of Amur river basin. In upstream forested basin, dissolved iron in soil was mainly transported with dissolved organic carbon (DOC) rather than the forms of Fe(II) and Fe(III).
[Show full text]