A Research Paper on the Fundamentals of Plastic Welding

Total Page:16

File Type:pdf, Size:1020Kb

A Research Paper on the Fundamentals of Plastic Welding ISSN (Online) 2394-2320 International Journal of Engineering Research in Computer Science and Engineering (IJERCSE) Vol 4, Issue 8, August 2017 A Research Paper on the Fundamentals of Plastic Welding [1] S Kennedy [1] Department of Mechanical Engineering, Galgotias University, Yamuna Expressway Greater Noida, Uttar Pradesh Email id- [email protected] Abstract: Plastic is a material including a wide scope of semi-engineered or manufactured organics that are malleable and can be formed into strong objects of various shapes. Today, joining of thermoplastic composite structures is getting increasingly huge since thermoplastic composite materials are being utilized to supplant metallic or thermoset composite material to all the more likely withstand different loads in car, aviation, rural apparatuses and marine businesses. Plastic welding is accounted for in ISO 472 as a procedure of joining mollified surfaces of materials, with the assistance of warmth. Welding of thermoplastics is practiced in three progressive stages, as follows surface planning, utilization of warmth or potentially weight, and cooling. Various welding techniques have been developed for the joining of plastic materials. This paper presents advancement one of the tourist plastic welding where the sight- seeing is utilized to circuit or soften a filler thermoplastic pole and at the same time heat the surfaces to be joined. If there should arise an occurrence of hot-gas welding the parameters of welding, for example, welding temperature, stream rate, feed rate, welding power, gas, edge, filler bar, Pressure of tourist/gas, Gap separation and shoe impact the quality of the welded joint. The presentation of the above created machine was completed by getting ready seven examples of fluctuating welding, feed rate keeping different parameters steady all through the analyses. The quality of welded Polypropylene material joint was tried by utilizing ASTM D 638 standard ductile test computerized Universal Testing Machine. Keywords: Extrusion welding, Hot gas welding, Plastic welding, Polymers, Polypropylene, Ultrasonic test. INTRODUCTION Plastics are unmistakable kind of polymer which include structure of long chain. Plastic is a material including a wide scope of semi-manufactured or Word polymer is gotten from the old style Greek words poly signifying "many" and meres signifying "parts" Simply expressed, a polymer is a long-chain atom that is made out of countless rehashing units of engineered organics that are pliable and can be indistinguishable structure [1]. Polymers are shaped into strong objects of distinctive shapes [2]. exceptionally spellbinding material as a result of Plastics is a decision material in the creation and exertion less procedure capable characteristics and bundling, in this day and age there is request of both their thickness is similarly low when contrasted with high thickness just as low thickness plastics. Plastics other materials. The integrative part of material have beaten regular stuffs, for example, wood, stone, science has arranged designing materials into four glass, metal, cowhide and ceramic. Refinement is major assemblies’ metals, ceramic, polymers, and one of the predominant credit of plastic, as composites. Polymers has different stars over lightweight materials take less energy to move and ordinary materials, the most critical is by and large appoint. Plastics have transmute the work[3] in the high solidarity to weight extent. field of room investigation, nanotechnology, medicinal and building, it follow to be a sensational All Rights Reserved © 2017 IJERCSE 269 ISSN (Online) 2394-2320 International Journal of Engineering Research in Computer Science and Engineering (IJERCSE) Vol 4, Issue 8, August 2017 materials. Plastic welding is the way toward holding surface territory items, as it is a straightforward the materials (plastic) by warming them to an activity to add more producers to the heating bank. adequate temperature, at some point a joining The recently grew, high force short wave infrared arrangement is likewise utilized. There are diverse producer is additionally demonstrating more classification of plastics available which are proficient and viable than infrared producers distributed what's more, spread a wide scope of recently considered for welding applications. Mr. properties like firmness, resistive, delicate, M.Devrient, M.Kern et al. Al the examination on malleable, weak and so on. Because of wide scope laser transmission welding, the parts to be joined are of assortment, joining of plastic segments plays a brought into contact before welding, and heating and basic ventures during assembling and other joining stages occur at the same time. The laser light movement related with the procedure. Joints are emission the Nd: YAG laser straightforward the part vital as part coordination is incomprehensible on being joined and is changed over into heat by the account of unpredictability and utilization of various retaining part. The straightforward part is likewise materials in same segments. Joining is commonly a heated and plasticized by methods for heat vital advance in any creation cycle. The adequacy of conduction in this manner guaranteeing the parts are joining activities have enormous effect on use of welded together [6]. materials that is the reason assortment of joining Mr. Giuseppe, et al. Hot gas welding is for the most methods are utilized for plastics. Joining procedure part utilized for joining slender (< 6mm) sheets of ought to be effective with the assembling PP, PVC, PE and PVDF to themselves and methodology for improved creation work. Joining of furthermore to pipes. The welding gear is a hand- plastics are arranged into various techniques held welding weapon comprising of a fundamental according to the constituent of plastics they are blower, a heating component with indoor regulator utilized, interrelation of procedure with heat, and a lot of exchangeable spouts for coordinating hot pressure, time plays a significant job. gas at the work piece. A filler pole is utilized and this is produced using a similar polymer as the parts to LITERATURE REVIEW be welded have seen that. Plastic welding is likewise called as heat fixing, Mr. Giuseppe, Casalino, et al. the welding gear is a which is the process for welding or joining plastic hand-held welding firearm comprising of an work pieces [4]. Thermoplastics like Polyethylene, essential blower, a heating component with indoor Polyvinyl Chloride, Polypropylene, Polyurethane regulator and a lot of tradable spouts for and “Acrylonitrile Butadiene Styrene (ABS)” are coordinating hot gas at the work piece. C.Ageorges, every now and again utilized in plastic welding. et al. The gear depends on an electric drill with a Plastics that can be welded are designated smaller than normal expulsion barrel appended to "thermoplastics" and when they are heated to an the front. The expulsion barrel is heated along its adequately high temperature they will relax length, either via cartridge radiators or tourist. A furthermore, welded [5]. Mr. Robert A Grimm, et al. thermoplastic pole or granule feedstock is have researched the standard heater plate is encouraged into the back of the expulsion barrel and supplanted with two banks of short wave infrared the material is heated as it is drawn through the producers clipped and spring-stacked on either side barrel by the pivoting extruder screw. Liquid of a mobile platen. Forces can be particularly more thermoplastic is consistently launched out through a noteworthy contrasted and traditional hot plate PTFE shoe connected to the front of the expulsion welding however weld times are essentially shorter. barrel. The PTFE shoe is moulded to coordinate the This procedure is too fit for taking care of huge profile being welded, and characterizes the shape and size of the last weld. All Rights Reserved © 2017 IJERCSE 270 ISSN (Online) 2394-2320 International Journal of Engineering Research in Computer Science and Engineering (IJERCSE) Vol 4, Issue 8, August 2017 A.S. Wood, et al. The butt combination welding example, DeGennes and Wool, have shown that method (otherwise called hot plate welding, butt polymer sub-atomic movement can be approximated welding, reflect welding or platen welding) is by reptilian movement. In these models, there are a fundamentally utilized for joining PE pipes for the few major presumptions, to such an extent that the water and gas businesses, and PP what's more, interfaces are in full in time at contact and at a PVDF pipes for the concoction business. It very well moderately steady temperature. may be conveyed out on a wide scope of funnel In many applications, these presumptions are not sizes, regularly among 63 and 1600mm outside legitimate. For instance, even with generally smooth width (OD).The welding grouping starts when the surfaces, harsh temper tops forestall full personal hot plate, at a pre-set temperature, is situated contact. Remote contact must be accomplished after between the two funnel closes. The channels are press stream of the sharpness tops. Also, just all pushed towards one another until the channel closes around controlled trials have consistent temperature come into contact with the hot plate and the weight conditions. During welding, these harsh temper tops is expanded to give great heat contact. The funnel are mollified and they stream in order to occupy the closes soften and the interface pressure powers the interstitial spaces. So as to better under-stand this
Recommended publications
  • Welding of Plastics: Fundamentals and New Developments
    REVIEW ARTICLE D. Grewell*, A. Benatar Agricultural and Biosystems Eingineering, Iowa State University, Ames, IA, USA Welding of Plastics: Fundamentals and New Developments serves as the material that joins the parts and transmits the load This paper provides a general introduction to welding funda- through the joint. In welding or fusion bonding, heat is used to mentals (section 2) followed by sections on a few selected melt or soften the polymer at the interface to enable polymer welding processes that have had significant developments or intermolecular diffusion across the interface and chain entan- improvements over the last few years. The processes that are glements to give the joint strength. Each of these categories is discussed are friction welding (section 3), hot plate welding comprised of a variety of joining methods that can be used in (section 4), ultrasonic welding (section 5), laser/IR welding a wide range of applications. This paper is devoted to welding (section 6), RF welding (section 7) and hot gas/extrusion weld- processes only. Accordingly, only thermoplastics are consid- ing (section 8). ered, because thermosets cannot be welded without the addi- tion of tie-layers such as thermoplastics layers. Greater details on welding processes can be found in several monographs [1 to 4]. 1 Introduction to Joining Welding processes are often categorized and identified by the heating method that is used. All processes can be divided Despite designers’ goals of molding single component pro- into two general categories: internal heating and external heat- ducts, there are many products too complex to mold as a single ing, see Fig.
    [Show full text]
  • PVC Linings Provide Better Corrosion Protection with Improved Welding Technique
    Material Matters PVC linings provide better corrosion protection with improved welding technique In the process industry, such as metal finishing, PVC linings are com- monly used as corrosion barriers to protect the interiors of steel tanks or concrete pits, which typically contain chemicals that are extremely corrosive, says NACE International member Cur- tis Goad, president and owner of GOAD COMPANY, a provider of custom-designed tank lining systems for the surface finishing and chemical pro- cessing industries. Open rectangular tanks and pits, as well as secondary containment areas, are typically used in surface processing such as electroplat- ing, he says, and often are lined with high-performance plasticized (flexible) PVC sheets that are bonded with adhe- sive to side walls and bottoms and sealed at the seams and corners by thermoplastic welding. The thermoplastic welding process melts the plastic welding material (rod or strip) to its molten state as well as preheats the PVC lining sheets, and applies pressure to both the welding material and the sheets to allow the molecules to fuse into a solid when cooled. Welding techniques for plastics include hot gas/hot air welding, where a hand-held welding device uses heated nitrogen gas or air to soften both the An operator uses a thermoplastic hot welding technique de- plastic welding rod or strip and the gas/hot air extrusion welding machine veloped by GOAD sheets to be joined while an operator to join PVC lining sheets. Photo COMPANY (Ellisville, moves the device along the seam. courtesy of Curtis Goad. Missouri) improves the In one method of hot gas/hot air welding, known as hand welding, an thermoplastic welding operator uses a welding gun to lay a Aprocess for polyvinyl chloride bead of material along the seam where (PVC) linings and helps prevent the base materials touch.
    [Show full text]
  • Joining of Fibre-Reinforced Polymer Composites
    JOINING OF FIBRE-REINFORCED POLYMER COMPOSITES A Good Practice Guide ACKNOWLEDGEMENTS The authors and editor would like to thank: Dr Annabel Fitzgerald, National Composites Centre, for reviewing the guide Robin Bilney, Testia Ltd, for reviewing Section 8 Non-destructive testing (NDT) Dr Lawrence Cook, bigHead Bonding Fasteners Ltd, for text and images on bigHeads Chris Minton, Minton, Treharne & Davies, for use of the text and figures on vibrational analysis Prof James Broughton, Oxford Brookes University, for support in adapting Table 8: Comparison and Rating of Disbonding Techniques. Adapted from Lu, Broughton, et al 63 Providers of other images as attributed This guide was funded by the National Composites Centre. Authors Chris Worrall, TWI Ltd Ewen Kellar, TWI Ltd Charlotte Vacogne, TWI Ltd Edited by Stella Job, Grazebrook Innovation © Composites UK Ltd, January 2020 2 CONTENTS 1. Introduction 6 1.1 Scope 6 1.2 Joining in design and specification 7 2. Goals and challenges 8 2.1 Do we need joining at all? 8 2.2 Reasons for joining composites 8 2.2.1 Functionality 9 2.2.2 Manufacturability 9 2.2.3 Cost 9 2.2.4 Aesthetics 9 2.3 Challenges 10 3. Joining possibilities 11 3.1 Types of joints 11 3.2 Joining techniques 11 4. Mechanical fastening 12 4.1 Introduction 12 4.2 Mechanical attachment 13 4.3 Mechanical fasteners 13 4.3.1 Special fasteners for composite structures 14 4.3.2 Types of fastener material 15 4.4 Machining of fastener holes 15 4.4.1 Mechanical machining 15 4.4.2 Non-mechanical machining 17 4.5 Failure modes 18 4.6 Parameters in mechanical fastening 19 4.6.1 Joining method (bolts or rivets) 20 4.6.2 Joint configuration 21 4.6.3 Geometric parameters 21 4.6.4 Lay-up (stacking sequence) 21 4.6.5 Fastener clearance 22 4.6.6 Preload or initial clamping force 23 4.7 Environmental effects on mechanical joints 23 4.8 Advantages and disadvantages of mechanical fastening 23 5.
    [Show full text]
  • Products Evolved During Hot Gas Welding of Fluoropolymers
    Health and Safety Executive Products evolved during hot gas welding of fluoropolymers Prepared by the Health and Safety Laboratory for the Health and Safety Executive 2007 RR539 Research Report Health and Safety Executive Products evolved during hot gas welding of fluoropolymers Chris Keen BSc CertOH Mike Troughton BSc PhD CPhys MInstP Derrick Wake BSc, Ian Pengelly BSc, Emma Scobbie BSc Health and Safety Laboratory Broad Lane Sheffield S3 7HQ This report details the findings of a research project which was performed as a collaboration between the Health and Safety Executive (HSE) and The Welding Institute (TWI). The project aim was to identify and measure the amounts of products evolved during the hot gas welding of common fluoropolymers, to attempt to identify the causative agents of polymer fume fever. Carbonyl fluoride and/or hydrogen fluoride were detected from certain fluoropolymers when these materials were heated to their maximum welding temperatures. Significant amounts of ultrafine particles were detected from all of the fluoropolymers investigated when they were hot gas welded. The report concludes that fluoropolymers should be hot gas welded at the lowest possible temperature to reduce the potential for causing polymer fume fever in operators. If temperature control is not sufficient to prevent episodes of polymer fume fever, a good standard of local exhaust ventilation (LEV) should also be employed. This report and the work it describes were funded by the Health and Safety Executive (HSE). Its contents, including any opinions and/or conclusions expressed, are those of the authors alone and do not necessarily reflect HSE policy. HSE Books © Crown copyright 2007 First published 2007 All rights reserved.
    [Show full text]
  • Joining of Nylon's Based Plastic Components
    BASF Corporation JOINING OF NYLON BASED PLASTIC COMPONENTS -- VIBRATION AND HOT PLATE WELDING TECHNOLOGIES Abstract mechanical properties. Molded nylon parts are more resistant to creep, fatigue, repeated impact, Previously we reported to SPE’96 the and so on compared to the parts made of many optimized mechanical performance of linear less rigid thermoplastics. vibration welded nylon 6 and 66 butt joints. Under the optimized vibration welding There are more than a dozen classes of conditions (amplitude, pressure, meltdown, nylon resins, including nylon 6, nylon 66, nylon thickness of interface), the tensile strength at the 46, nylon 12, etc.). Welded nylons are used in nylon butt joints was equal to or 14% higher than many industrial products, the largest being the the tensile strength of the base polymer (matrix). automotive. In recent years, demands to use non-filled, fiber-glass reinforced and filled nylon H. Potente and A. Brubel presented to products to replace metals and thermosets in SPE’94 and SPE’98 an analysis of the welding power tools, lawn / garden equipment (leaf performance in a family of amorphous and semi- blowers, chain-saws, gas-tanks), and the crystalline thermoplastics including nylon 6 automotive (air induction, power train systems, using hot-plate welding technologies. For hot- fluids reservoirs, and other uses), have increased plate welded nylon 6 with a range of glass-fiber (1, 2). reinforcement from 0 to 40% (by weight), the tensile strength at the weld was 40–60% less On average a car uses 18 kg of nylon compared to the tensile strength of the base based plastics.
    [Show full text]
  • Welding of Infrared Transmissive Thermoplastic Polymers Using Diode Laser Systems
    Welding of Infrared Transmissive Thermoplastic Polymers using Diode Laser Systems Scott Hartley and Nicole Woosman Gentex Corporation, 324 Main Street Carbondale, PA 18407 USA Abstract Clearweld™ technology is a tool, which is readily employed for transmission laser welding of thermoplastic polymers using near infrared diode lasers. This process is accomplished through the use of specialized material systems uniquely chosen and targeted to absorb the laser light at the intended laser weld joint in order to rapidly effectuate a weld. Data will be presented showing actual weld strengths, critical process parameters, and quantification of residual stresses in a variety of thermoplastic materials. Keywords: polymer joining, plastics welding, laser transmission welding, laser materials processing, laser materials processing, Clearweld 1 Introduction The principal disadvantage of laser welding has been the need to use carbon black as an absorbent, posing a Transmission laser welding involves the use of high- limitation in applications where appearance and color density electromagnetic energy produced by a laser are important. source to create thermal energy at the joint interface necessary for weld formation. Plastics in their natural 2 The Clearweld™ Process state do not absorb near-infrared (NIR) light; therefore energy from lasers operating in the NIR efficiently A significant process advancement has been developed transmits through plastics. To successfully use lasers that offers all the advantages of conventional laser for joining polymer, this laser energy must be properly welding without the use of opaque materials or the harnessed to create the heating and intermolecular addition of unwanted color. The process can be used to diffusion critical for weld formation.
    [Show full text]
  • Chapter 6 Arc Welding
    Revised Edition: 2016 ISBN 978-1-283-49257-7 © All rights reserved. Published by: Research World 48 West 48 Street, Suite 1116, New York, NY 10036, United States Email: [email protected] Table of Contents Chapter 1 - Welding Chapter 2 - Fabrication (Metal) Chapter 3 - Electron Beam Welding and Friction Welding Chapter 4 - Oxy-Fuel Welding and Cutting Chapter 5 - Electric Resistance Welding Chapter 6 - Arc Welding Chapter 7 - Plastic Welding Chapter 8 - Nondestructive Testing Chapter 9 - Ultrasonic Welding Chapter 10 - Welding Defect Chapter 11 - Hyperbaric Welding and Orbital Welding Chapter 12 - Friction Stud Welding Chapter 13 WT- Welding Joints ________________________WORLD TECHNOLOGIES________________________ Chapter 1 Welding WT Gas metal arc welding ________________________WORLD TECHNOLOGIES________________________ Welding is a fabrication or sculptural process that joins materials, usually metals or thermoplastics, by causing coalescence. This is often done by melting the workpieces and adding a filler material to form a pool of molten material (the weld pool) that cools to become a strong joint, with pressure sometimes used in conjunction with heat, or by itself, to produce the weld. This is in contrast with soldering and brazing, which involve melting a lower-melting-point material between the workpieces to form a bond between them, without melting the workpieces. Many different energy sources can be used for welding, including a gas flame, an electric arc, a laser, an electron beam, friction, and ultrasound. While often an industrial process, welding can be done in many different environments, including open air, under water and in outer space. Regardless of location, welding remains dangerous, and precautions are taken to avoid burns, electric shock, eye damage, poisonous fumes, and overexposure to ultraviolet light.
    [Show full text]
  • Process Analysis of the Hot Plate Welding of Drive Belts
    Krzysztof Wałęsa, Ireneusz Malujda, Dominik Wilczyński DOI 10.2478/ama-2020-0012 Process Analysis of the Hot Plate Welding of Drive Belts PROCESS ANALYSIS OF THE HOT PLATE WELDING OF DRIVE BELTS Krzysztof WAŁĘSA,* Ireneusz MALUJDA,* Krzysztof TALAŚKA,* Dominik WILCZYŃSKI* *Institute of Machine Design, Poznań University of Technology, ul. Piotrowo 3, 61-138 Poznań, Poland [email protected], [email protected], [email protected], [email protected] received 11 February 2020, revised 25 May 2020, accepted 28 May 2020 Abstract: Most industrial machines use belt transmission for power transfer. These mechanisms often use the round belts of several milli- metres in diameter that are made of thermoplastic elastomers, especially polyurethane. Their production process calls for bonding the ma- terial, which is often performed by hot plate butt welding. In order to achieve proper design of an automatic welding machine, the authors analysed the hot plate welding process of round belts. This process consists of five phases. It is necessary to recognize all the physical phenomena that occur during welding, especially those connected with thermomechanical properties of material. This knowledge is neces- sary to determine the temperature distribution during each step of the process. The paper presents a standard welding cycle together with an explanation of the physical phenomena in each phase. An analysis of these fundamentals will be used to derivate the function of tem- perature distribution during all process phases. In addition, some assumptions for calculation of temperature distribution and some funda- mental physic correlations were presented. Keywords: Hot plate welding, round drive belts, heating, thermal conducting, plasticizing 1.
    [Show full text]
  • GUIDELINES for WELDING THERMOPLASTIC MATERIALS (Hot Gas Hand and Hot Gas Extrusion Welding)
    16W301 S Frontage Rd Burr Ridge, IL 60527 630-789-0990, FAX 630-789-1380 www.wegenerwelding.com GUIDELINES FOR WELDING THERMOPLASTIC MATERIALS (Hot Gas Hand and Hot Gas Extrusion Welding) TABLE OF CONTENTS I COMMON THERMOPLASTICS AND WELDING TECHNIQUES II HOT GAS (AIR) WELDING 1 The Process in General 2 The Hot Gas (Air) Generating Equipment 3 Material Preparation 4 Tack Welding 5 High Speed Welding 6 Free Hand or Fan Welding 7 Weld Design 8 Heat Stress Problems III HOT GAS (AIR) EXTRUSION WELDING 1 General 2 Equipment and Procedure 3 Visual Check of the Final Weld IV TESTING V TEMPERATURE RECOMMENDATIONS VI BEAD SIZE RECOMMENDATIONS The information contained within are mere guidelines for welding thermoplastic materials. More detailed information is available through DVS standards established by the GERMAN WELDING SOCIETY. Please contact our company for further information. 16W301 S Frontage Rd Burr Ridge, IL 60527 630-789-0990, FAX 630-789-1380 www.wegenerwelding.com I. COMMON THERMOPLASTICS AND WELDING TECHNIQUES There are a number of methods to weld thermoplastics, which include hot gas (air) hand welding, hot gas (air) extrusion welding, butt fusion (heated element welding), friction welding, laser welding and high frequency welding. In the following, hot gas (air) hand welding and hot gas (air) extrusion welding are being addressed since they play a major role in the field of custom thermoplastic fabrication. A further application for these techniques is the modification or repair of rotationally molded, blow molded, vacuum formed or injection molded parts. The most commonly welded thermoplastic materials are Polypropylene - PP Polyethylene - PE Polyvinylchloride - PVC Chlorinated Polyvinylchloride - CPVC Polyvinyldenefluoride - PVDF Other materials such as ABS, PS, PC and PMMA are welded on a more limited basis and are not covered here in any detail.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrougb, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. • Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Bell & Howell Information Company 300 North Z e e b Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 ANALYSIS OF MORPHOLOGY, CRYSTALLIZATION KINETICS, AND PROPERTIES OF HEAT AFFECTED ZONE IN HOT PLATE WELDING OF POLYPROPYLENE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Philosophy in the Graduate School of The Ohio State University By Jenn-Yeu Nieh, B.S., M.S.
    [Show full text]
  • Thermal Welding by the Third Phase Between Polymers: a Review for Ultrasonic Weld Technology Developments
    polymers Review Thermal Welding by the Third Phase Between Polymers: A Review for Ultrasonic Weld Technology Developments Jianhui Qiu 1,*, Guohong Zhang 1 , Eiichi Sakai 1, Wendi Liu 2 and Limin Zang 3 1 Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan; [email protected] (G.Z.); [email protected] (E.S.) 2 College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; [email protected] 3 MOE Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; [email protected] * Correspondence: [email protected] Received: 30 December 2019; Accepted: 8 March 2020; Published: 31 March 2020 Abstract: Ultrasonic welding (USW) is a promising method for the welds between dissimilar materials. Ultrasonic thermal welding by the third phase (TWTP) method was proposed in combination with the formation of a third phase, which was confirmed as an effective technology for polymer welding between the two dissimilar materials compared with the traditional USW. This review focused on the advances of applying the ultrasonic TWTP for thermoplastic materials. The research development on the ultrasonic TWTP of polycarbonate (PC) and polymethyl methacrylate (PMMA), polylactic acid (PLA) and polyformaldehyde (POM), and PLA and PMMA are summarized according to the preparation of the third phase, welded strength, morphologies of rupture surfaces, thermal stability, and others. The review aimed at providing guidance for using ultrasonic TWTP in polymers and a basic understanding of the welding mechanism, i.e., interdiffusion and molecular motion mechanisms between the phases.
    [Show full text]
  • Plastics and Composites Welding Handbook
    CARL HANSER VERLAG David Grewell, Avraham Benatar, Joon B. Park Plastics and Composites Welding Handbook 3-446-19534-3 www.hanser.de 1.4 Goals of the Handbook 7 External heating methods rely on convection and/or conduction to heat the weld surface. These processes include: hot tool, hot gas, extrusion, implant induction, and implant resist- ance welding. Plastic and Composite Welding Processes External Internal Heating Heating Heated Tool Chapter 3 Mechanical Electromagnetic Hot Gas Ultrasonic Radio Frequency Chapter 4 Chapter 8 Chapter 11 Extrusion Vibration Infrared and Laser Chapter 5 Chapter 9 Chapter 12 Implant Induction Spin Microwave Chapter 6 Chapter 10 Chapter 13 Implant Resistance Chapter 7 Figure 1.6 Classification of plastic and composites welding processes Internal mechanical heating methods rely on the conversion of mechanical energy into heat through surface friction and intermolecular friction. These processes include: ultrasonic, vibration, and spin welding. Internal electromagnetic heating methods rely on the absorption and conversion of electro- magnetic radiation into heat. These processes include: infrared, laser, radio frequency, and microwave welding. 1.4 Goals of the Handbook This handbook was developed to provide the user with a resource for information about all welding methods. Each chapter was developed by experts in the field with a wide breadth of information dealing with all the welding aspects including materials, process phenome- nology, equipment, and joint design. The authors also included many application examples 2.4 Pressing 19 Figure 2.9 Schematic of two surfaces in contact To consider the deformation of one asperity, it is possible to expand the faying surface as shown in Fig.
    [Show full text]