Study of Cosmic Rays by Auger and LHAASO : R&D and Data Analysis of Augerprime and Simulations for LHAASO Zizhao Zong
Total Page:16
File Type:pdf, Size:1020Kb
Study of cosmic rays by Auger and LHAASO : R&D and Data Analysis of AugerPrime and simulations for LHAASO Zizhao Zong To cite this version: Zizhao Zong. Study of cosmic rays by Auger and LHAASO : R&D and Data Analysis of AugerPrime and simulations for LHAASO. Instrumentation and Methods for Astrophysic [astro-ph.IM]. Université Paris-Saclay, 2017. English. NNT : 2017SACLS366. tel-01929103 HAL Id: tel-01929103 https://tel.archives-ouvertes.fr/tel-01929103 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLS366 THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SACLAY PRÉPARÉE À L’UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE N°576 Particules, Hadrons, Énergie, Noyau, Instrumentation, Imagerie, Cosmos et Simulation (PHENIICS) Spécialité de doctorat : Astroparticules et cosmologie Par M. Zizhao Zong Study of cosmic rays by Auger and LHAASO: R&D and Data Analysis of AugerPrime and simulations for LHAASO Thèse présentée et soutenue à Orsay , le 20/10/2017 Composition du Jury : M. Reza Ansari Professeur, LAL Président du jury M. François Montanet Professeur, LPSC Rapporteur M. Zhen Cao Professeur, IHEP, China Rapporteur (absent) M. Olivier Martineau-Huynh Maître de conférences, LPNHE Examinateur Mme Giulia Hull Ingénieur de recherche, IPNO Examinatrice Mme Tiina Suomijärvi Professeur, IPNO Directrice de thèse ii Abstract Cosmic rays are charged particles, as well as coproducts like photons and neutrinos, originated in cosmic-ray sources inside or outside the Galaxy. They arrive at the top of the Earth’s atmosphere with primary energies of up to a few 10 EeV. When the cosmic rays enter the atmosphere, they interact with the molecules in the air and produce a large number of secondary particles, creating an extensive air shower (EAS). The ground-based observation of the EAS can be used to deduce the energy, the arrival direction, and the mass composition of cosmic rays. The Pierre Auger Observatory and the Large High Altitude Air Shower Observatory (LHAASO) are both EAS observatories aiming at solving open questions of cosmic-ray studies but focusing on different energy ranges, the highest-energy and the so-called knee (around few PeV) regions. Based on the experience gained during the operation of the Pierre Auger Observatory for more than 10 years, the Auger collaboration has proposed an upgrade project, called “AugerPrime”, with the aim of increasing the sensitivity of the surface detector array to the primary mass of cosmic rays. Both observatories employ the so-called ”hybrid detector arrays” composed of optical telescopes overlooking the longitudinal development and ground detector arrays sampling the signal densities in the lateral direction of the EAS. The ground detector arrays of both observatories are being constructed or upgraded to have various types of particle detectors (scintillator and water-Cherenkov detectors), which allow us to decompose the electromagnetic and muonic components of the EAS. In this thesis, a series of studies contributing to the AugerPrime and LHAASO projects are presented. Concerning the AugerPrime project, the present study includes R&D work of the scintillator detector and data analysis of the engineering array. For the LHAASO project, simulations of the wide field of view Cherenkov telescope array and a multivariate analysis of LHAASO-hybrid observations for the primary mass identification are presented. iii iv Résumé Les rayons cosmiques sont des particules chargées, ainsi que des coproduits comme les photons et les neutrinos, issus de sources de rayons cosmiques galactiques ou extragalactiques. Ils arrivent au sommet de l’atmosphère terrestre avec des énergies primaires allant jusqu’à quelques 10 EeV. Lorsque les rayons cosmiques entrent dans l’atmosphère, ils interagissent avec les molécules de l’air et produisent un grand nombre de particules secondaires, créant une gerbe atmosphérique (extensive air shower, EAS). Accompagné des particules secondaires, une émission de la lumière Cherenkov et de la lumière fluorescence est induite par le passage des particules dans l’atmosphère. L’Observatoire Pierre Auger et Large High Altitude Air Shower Observatory (LHAASO) sont des observatoires dédiés à la détection des gerbes atmosphériques dans le but de répondre aux questions ouvertes concernant les rayons cosmiques, mais se concentrant sur différentes gammes d’énergie, les plus hautes énergies et les énergies autour de quelques PeV. Après plus de 10 ans d’exploitation de l’Observatoire Pierre Auger, la collaboration Auger a proposé une amélioration des détecteurs de son réseau de surface, appelée «AugerPrime». Le but est d’augmenter la sensibilité à la masse des particules primaires en ajoutant un détecteur scintillateur sur le détecteur Cherenkov à eau. Les deux observatoires sont dits «hybrides» car composés de télescopes optiques observant le développement longitudinal des gerbes et des réseaux de détecteurs de surface échantillonnant leurs profils latéreaux. Dans cette thèse, une série d’études contribuant aux projets AugerPrime et LHAASO sont présentées. En ce qui concerne le projet AugerPrime, la présente étude comprend le travail de recherche & dévelopment des scintillateurs et l’analyse de données du réseau de tester. Pour le projet LHAASO, des simulations de télescopes Cherenkov et une analyse multivariée des observations hybrides pour l’identification des masses primaires sont présentées. v vi Acknowlegement First and foremost, I would like to express my sincere gratitude to my supervisor, Prof. Tiina Suomijärvi. I’m grateful for her supervision of the thesis work, her patience, her encouragement, her help in daily life, and her advice for my future plan. All these will be a valuable wealth for my whole life. Then I would like to thank the other jury members, Mr Ansari, Mr Montanet, Mr Martineau- Huynh, Ms Hull, and Mr Cao for their insightful questions, comments, and corrections on the thesis. I also would like to express my gratitude to Ms Giulia Hull and our colleagues in the RDD group of IPN for their supervision and collaboration on the SSD R&D work. Many thanks go to the colleagues in the astro-particle group of IPN for their advice and help on thesis work. I’m grateful to my institute, Institut de Physique Nucléaire d’Orsay (IPNO) where I have spent three years and have learned a lot of knowledge related to my thesis subject. Many thanks go to all the colleagues in IPNO for their help in both work and daily life. Many thanks go to the Auger and LHAASO collaborators for the illuminating discussions and the effective teamwork. As a Ph.D. student in the CSC-UPSud program (No.201406170006), I’m grateful to my funding association: China scholarship council and Université Paris-Sud. Many thanks go to my beloved family for their support and encouragement. Finally, Many thanks go to my friends in Orsay area for their concerns and help during the last three years. vii viii Contents Abstract iii Résumé v Acknowlegement vii 1 Introduction1 2 Cosmic-ray studies5 2.1 A brief history of cosmic-ray studies.....................6 2.2 Characteristics of cosmic rays........................7 2.3 Extensive air showers............................. 11 2.4 Ground-based cosmic-ray experiments.................... 18 3 Pierre Auger Observatory & AugerPrime 23 3.1 The Pierre Auger Observatory........................ 24 3.2 Scientific goals of the AugerPrime project.................. 30 3.3 AugerPrime implementations......................... 32 4 R&D for AugerPrime scintillator detectors 39 4.1 General components of plastic scintillator detectors............. 40 4.2 Test of candidate SSD components...................... 43 4.3 Assembly of optical coupling module for SSD................ 58 4.4 Summary................................... 61 5 Analysis of first data from AugerPrime engineering array 65 5.1 Deployment of the AugerPrime engineering array.............. 66 5.2 Calibration and dynamic range of the EA stations.............. 69 5.3 Performance of the EA............................ 72 ix 5.4 Shower signals from EA stations....................... 78 5.5 Study of the doublet signals.......................... 83 5.6 Summary................................... 84 6 The LHAASO project 87 6.1 Scientific case of LHAASO.......................... 88 6.2 LHAASO implementations.......................... 90 7 Simulations and analysis preparation of LHAASO 97 7.1 Detection of atmospheric Cherenkov light in astro-particle experiments.. 98 7.2 Components of the WFCTA telescopes.................... 100 7.3 Simulation code of the WFCTA....................... 101 7.4 Image parameterization and event reconstruction.............. 108 7.5 Hybrid detection of cosmic rays with LHAASO............... 111 7.6 Particle identification with the MVA method................. 114 7.7 Summary................................... 126 8 Conclusions 129 Appendix 131 A Fabrication procedures of the polished coupling module 131 x 1 Introduction After the cosmic rays were discovered in 1912, a great number of studies have been performed