Cherenkov Light Imaging in Astroparticle Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cherenkov Radiation
TheThe CherenkovCherenkov effecteffect A charged particle traveling in a dielectric medium with n>1 radiates Cherenkov radiation B Wave front if its velocity is larger than the C phase velocity of light v>c/n or > 1/n (threshold) A β Charged particle The emission is due to an asymmetric polarization of the medium in front and at the rear of the particle, giving rise to a varying electric dipole momentum. dN Some of the particle energy is convertedγ = 491into light. A coherent wave front is dx generated moving at velocity v at an angle Θc If the media is transparent the Cherenkov light can be detected. If the particle is ultra-relativistic β~1 Θc = const and has max value c t AB n 1 cosθc = = = In water Θc = 43˚, in ice 41AC˚ βct βn 37 TheThe CherenkovCherenkov effecteffect The intensity of the Cherenkov radiation (number of photons per unit length of particle path and per unit of wave length) 2 2 2 2 2 Number of photons/L and radiation d N 4π z e 1 2πz 2 = 2 1 − 2 2 = 2 α sin ΘC Wavelength depends on charge dxdλ hcλ n β λ and velocity of particle 2πe2 α = Since the intensity is proportional to hc 1/λ2 short wavelengths dominate dN Using light detectors (photomultipliers)γ = sensitive491 in 400-700 nm for an ideally 100% efficient detector in the visibledx € 2 dNγ λ2 d Nγ 2 2 λ2 dλ 2 2 11 1 22 2 d 2 z sin 2 z sin 490393 zz sinsinΘc photons / cm = ∫ λ = π α ΘC ∫ 2 = π α ΘC 2 −− 2 = α ΘC λ1 λ1 dx dxdλ λ λλ1 λ2 d 2 N d 2 N dλ λ2 d 2 N = = dxdE dxdλ dE 2πhc dxdλ Energy loss is about 104 less hc 2πhc than 2 MeV/cm in water from € -
Cherenkov Radiation Induced by Megavolt X-Ray Beams in the Second Near-Infrared Window
Cherenkov Radiation Induced by Megavolt X-Ray Beams in the Second Near-Infrared Window XIANGXI MENG,1,2 YI DU,3 ZIYUAN LI,1 SIHAO ZHU, 1 HAO WU,3,7 CHANGHUI LI, 1,8 WEIQIANG CHEN, 4 SHUMING NIE, 5 QIUSHI REN 1 AND YANYE LU 6,9 1Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China 2The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA 3Key laboratory of Carcinogenesis and Translational ResearchÂă(Ministry of Education/Beijing),ÂăDepartmentÂăof Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China 4Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China 5Department of Biomedical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 6Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany [email protected] [email protected] [email protected] Abstract: Although the Cherenkov light contains mostly short-wavelength components, it is beneficial in the aspect of imaging to visualize it in the second near-infrared (NIR-II) window. In this study, Cherenkov imaging was performed within the NIR-II range on megavolt X-ray beams delivered by a medical linear accelerator. A shielding system was used to reduce the noises of the NIR-II image, enabling high quality signal acquisition. It was demonstrated that the NIR-II Cherenkov imaging is potentially a tool for radiotherapy dosimetry, and correlates well with different parameters. -
Polarized Light from Black Hole Can Be a Symbol of Cherenkov Radiation Generated by Faster Than Light Movement in Vacuum Under Gravity
Polarized light from black hole can be a symbol of Cherenkov radiation generated by Faster Than Light movement in vacuum under gravity Sterling-Jilin Liu, An independent researcher, Email: [email protected], Cell phone: +86 18621356287, Profile: https://www.linkedin.com/in/sterling-liu-9016096b/ Abstract Light speed is assumed as a constant in Einstein’s general relativity theory. In this paper, the polarized light from blacK hole Cygnus X-1 is found fit well with CherenKov radiation generated by Faster Than Light movement in vacuum under gravity. Thus, proved the gravitational lens is a real existence, the refractive index of space did increase with the gravity field, and light speed is changeable with gravitational potential energy. Possible experiments to double verify the theory on the earth is discussed. A new way to find more advanced alien civilizations in lower gravitational potential energy area is proposed. Introduction In Einstein’s general relativity theory, Mercury precession, gravitational lens and gravitational red shift, etc. can be considered as geodetic effect while assuming light speed is a constant, hence get time goes slower in gravitational field. However, in another view, all these phenomena can be also explained as space curved in gravitational field, refractive index of vacuum is larger, and light speed become smaller, but time keep no change. These two views are both acceptable based on previous experimental verification of general relativity theory, whether light or time speed changed is indistinguishable. In this paper, the author found polarized light from black hole Cygnus X-1 can be well explained by CherenKov radiation generated by Faster Than Light movement in vacuum under gravity. -
Update on the Combined Analysis of Muon Measurements from Nine Air Shower Experiments
ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE ONLINE ICRC 2021Berlin | Germany THE ASTROPARTICLE PHYSICS CONFERENCE th Berlin37 International| Germany Cosmic Ray Conference 12–23 July 2021 Update on the Combined Analysis of Muon Measurements from Nine Air Shower Experiments Dennis Soldin0,∗ for the EAS-MSU, IceCube, KASCADE-Grande, NEVOD-DECOR, Pierre Auger, SUGAR, Telescope Array, and Yakutsk EAS Array Collaborations (a complete list of authors can be found at the end of the proceedings) 0Bartol Research Institute, Dept. of Physics and Astronomy University of Delaware, Newark, DE 19716, USA E-mail: [email protected] Over the last two decades, various experiments have measured muon densities in extensive air showers over several orders of magnitude in primary energy. While some experiments observed differences in the muon densities between simulated and experimentally measured air showers, others reported no discrepancies. We will present an update of the meta-analysis of muon measurements from nine air shower experiments, covering shower energies between a few PeV and tens of EeV and muon threshold energies from a few 100 MeV to about 10 GeV. In order to compare measurements from different experiments, their energy scale was cross-calibrated and the experimental data has been compared using a universal reference scale based on air shower simulations. Above 10 PeV, we find a muon excess with respect to simulations for all hadronic interaction models, which is increasing with shower energy. For EPOS-LHC and QGSJet-II.04 the significance of the slope of the increase is analyzed in detail under different assumptions of the individual experimental uncertainties. arXiv:2108.08341v2 [astro-ph.HE] 20 Aug 2021 37th International Cosmic Ray Conference (ICRC 2021) July 12th – 23rd, 2021 Online – Berlin, Germany ∗Presenter © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). -
Chapter 2 – General Background Information Chapter 2 General Background Information
16 European Atlas of Natural Radiation | Chapter 2 – General background information Chapter 2 General background information This chapter provides the background information geology of Europe, one can already form a general necessary to understand how ionising radiation works, and large-scale idea of the level of natural radioactiv- why it is present in our environment, and how it can be ity that can be expected. For instance, young and mo- represented on a map. bile unconsolidated sediments (like clay or sand) that are found in many regions in northern and northwest- The ionising radiation discussed in this chapter consists ern Europe contain generally fewer radionuclides than of alpha, beta and neutron particles as well as gamma certain magmatic or metamorphic rocks found in for rays. Each interacts with matter in a specific way, caus- example Scandinavia (Fennoscandian Shield), Central ing biological effects that can be hazardous. Health risk Europe (Bohemian Massif), France (Bretagne and Cen- from radiation is described by the absorbed dose, tral Massif) and in Spain (Iberian Massif). The more equivalent dose and effective dose, calculated using recent alpine mountain belts are composed of many specific weighting factors. The effects of ionising radia- different types of rocks, leading to strong spatial vari- tion on humans can be deterministic and stochastic. All ations in radiological signature and radiological back- this information leads to the general principles of radi- ground. Some types of volcanic rocks have a higher ation protection. Natural ionising radiation is emitted by radionuclide content and can lead to increased indoor a variety of sources, both cosmogenic and terrigenous, gamma dose rates and radon or thoron concentra- and can be primordial (existing since the origin of the tions. -
Radiation Safety Manual University of Massachusetts Amherst
Radiation Safety Manual University of Massachusetts Amherst Environmental Health and Safety 117 Draper Hall 413-545-2682 January, 2007 This manual must be returned to Radiation Safety Services when the Approved Principal Investigator no longer uses radioisotopes or radiation generating machines and all permits issued by the Radiation Use Committee have been deactivated. Table of Contents The Program & Basic User Requirements How The Program Works Radiation Safety Organization As Low as Reasonably Achievable (ALARA) The Definition of Compliance The Regulatory Agencies Audit of the Radiation Safety Office Audit of the Authorized Principal Investigator (API) & the Authorized Laboratory Radiation Safety Standard Operating Procedures (SOP’s) Radiation Safety Records Responsibilities of Radiation Safety Program Personnel and Users License Conditions and Regulations Radiation Use Committee Radiation Safety Officer Authorized Principal Investigator Authorized Users Visitors Obtaining Approval to Use RM Qualifications for Authorized Users Training Requesting an API Permit from the RUC Approval for Radioisotope Work in Experimental Animals Laboratory Requirements & Access Control To Radioisotopes & Radiation Administrative Controls in the Laboratory Controlled Areas Restricted Areas Surface Contamination Limits Physical Controls in Laboratory Radiation Warnings & Posting Requirements for RM Use Laboratories or Areas Labeling Requirements for Containers Decommissioning Requirements Individual Laboratories Records of Decommissioning -
Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy a Thesis Submitted to the Faculty in Partial Fulfill
Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy A Thesis Submitted to the Faculty in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Adam Kenneth Glaser Thayer School of Engineering Dartmouth College Hanover, New Hampshire May 2015 Examining Committee: Chairman_______________________ Brian Pogue, Ph.D. Member________________________ Alexander Hartov, Ph.D. Member________________________ Eric Fossum, Ph.D. Member________________________ David Gladstone, Sc.D. Member________________________ Lei Xing, Ph.D. ___________________ F. Jon Kull Dean of Graduate Studies THIS PAGE IS INTENTIONALLY LEFT BLANK, UNCOUNTED AND UNNUMBERED ADDITIONAL ORIGINAL SIGNED COPIES OF THE PREVIOUS SIGNATURE PAGE ARE RECOMMENDED, JUST IN CASE. Abstract Since its discovery during the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle’s trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. -
Inter/Intramolecular Cherenkov Radiation Energy Transfer (CRET) from a Fluorophore with a Built-In Radionuclide Yann Bernhard, Bertrand Collin, Richard Decréau
Inter/intramolecular Cherenkov radiation energy transfer (CRET) from a fluorophore with a built-in radionuclide Yann Bernhard, Bertrand Collin, Richard Decréau To cite this version: Yann Bernhard, Bertrand Collin, Richard Decréau. Inter/intramolecular Cherenkov radiation energy transfer (CRET) from a fluorophore with a built-in radionuclide. Chemical Communications, Royal Society of Chemistry, 2014, 50, pp.6711 - 6713. 10.1039/c4cc01690d. hal-03262965 HAL Id: hal-03262965 https://hal.univ-lorraine.fr/hal-03262965 Submitted on 16 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Showcasing research from Richard A Decréau, Institut de Chimie Moléculaire de l’Université de Bourgogne, France As featured in: Inter/intramolecular Cherenkov radiation energy transfer (CRET) from a fl uorophore with a built-in radionuclide Some radionuclides emit optical light, the Cerenkov Radiation (CR, i.e. the blue glow in nuclear reactors), which can activate fl uorophores. Key parameters were addressed to optimize such processes (energy of the emitted particle, concentrations, Φ λmax, F × ε, η). See Richard A Decréau et al., Chem. Commun., 2014, 50, 6711. www.rsc.org/chemcomm Registered charity number: 207890 ChemComm View Article Online COMMUNICATION View Journal | View Issue Inter/intramolecular Cherenkov radiation energy transfer (CRET) from a fluorophore with a built-in Cite this: Chem. -
History of High-Energy Neutrino Astronomy
History of high-energy neutrino astronomy C. Spiering DESY, Platanenallee 6, D-15738 Zeuthen, Germany This talk sketches the main milestones of the path towards cubic kilometer neutrino telescopes. It starts with the first conceptual ideas in the late 1950s and describes the emergence of concepts for detectors with a realistic discovery potential in the 1970s and 1980s. After the pioneering project DUMAND close to Hawaii was terminated in 1995, the further development was carried by NT200 in Lake Baikal, AMANDA at the South Pole and ANTARES in the Mediterranean Sea. In 2013, more than half a century after the first concepts, IceCube has discovered extraterrestrial high-energy neutrinos and opened a new observational window to the cosmos { marking a milestone along a journey which is far from being finished. 1 From first concepts to the detection of atmospheric neutrinos The initial idea of neutrino astronomy beyond the solar system rested on two arguments: The first was the expectation that a supernova stellar collapse in our galaxy would be accompanied by an enormous burst of neutrinos in the 5-10 MeV range. The second was the expectation that fast rotating pulsars must accelerate charged particles in their Tera-Gauss magnetic fields. Either in the source or on their way to Earth they must hit matter, generate pions and neutrinos as decay products of the pions. The first ideas to detect cosmic high energy neutrinos underground or underwater date back to the late fifties (see 1 for a detailed history of cosmic neutrino detectors). In the 1960 Annual Review of Nuclear Science, K. -
From Cosmic Ray to Gamma-Ray Astronomy
The Tunka experiment: from cosmic ray to gamma-ray astronomy. N.Budnev, Irkutsk State University For Tunka&TAIGA - collaboration High energy charged particles and gamma – ray detections - Charged particles - Cherenkov light P, N, For electrons with - Fluorescence light γ -Radio emission Ee >25 MeV Ve > C/ n Atmosphere as a huge calorimeter EAS Energy EAS Cherenkov light g wide-angle detection E = A · [Nph (200m)] Density of Cherenkov light at distance 200 m from technique θ, φ core g = 0.94±0.01 (for 10 16 – 10 18 eV) Xmax Average CR Xmax = C –D· lg τ (400) mass A (τ(400) - width of a Cherenkov pulse LnA ~ Xmax at distance 400 m EAS core from) Xmax = F( P) X0 P -Steepness of a Lateral Distribution Function (LDF ) Tunka-133 array: 175 optical detectors distributed on 3 km2 area 1 км 50 km from Lake Baikal Tunka Collaboration S.F.Beregnev, S.N.Epimakhov, N.N. Kalmykov, N.I.KarpovE.E. Korosteleva, V.A. Kozhin, L.A. Kuzmichev , M.I. Panasyuk, E.G.Popova, V.V. Prosin, A.A. Silaev, A.A. Silaev(ju), A.V. Skurikhin, L.G.Sveshnikova I.V. Yashin, Skobeltsyn Institute of Nucl. Phys. of Moscow State University, Moscow, Russia ; N.M. Budnev, O.A. Chvalaev, O.A. Gress, A.V.Dyachok, E.N.Konstantinov, A.V.Korobchebko, R.R. Mirgazov, L.V. Pan’kov, A.L.Pahorukov, Yu.A. Semeney, A.V. Zagorodnikov Institute of Applied Phys. of Irkutsk State University, Irkutsk, Russia ; B.K. Lubsandorzhiev, B.A. Shaibonov(ju) , N.B. Lubsandorzhiev Institute for Nucl. -
Report of Contributions
10th International Workshop on Ring Imaging Cherenkov Detectors Report of Contributions https://mosphys.ru/indico/e/rich2018 10th Internation … / Report of Contributions Status and Prospects for the IceCu … Contribution ID : 1 Type : oral presentation [20+5 min] Status and Prospects for the IceCube Neutrino Observatory Monday, 30 July 2018 15:05 (25) e IceCube Neutrino Observatory is located at the geographic South Pole and consists of over 5000 optical sensors embedded in the Antarctic ice along with 81 cosmic ray detector and veto stations on the surface. IceCube was designed to detect high energy neutrinos from extreme as- trophysical environments which are potential cosmic ray acceleration sites, such as active galac- tic nuclei, gamma ray bursts and supernova remnants. e discovery of astrophysical neutrinos by IceCube in 2013 heralded the beginning of neutrino astronomy, and we continue to collect data and explore the properties and potential sources of these neutrinos. An expanded succes- sor called IceCube-Gen2 is in development, with updated optical sensors and calibration devices, and an expanded surface veto. e IceCube-Gen2 detector will search for the sources of cosmic neutrinos and will also include an infill component which will investigate fundamental neutrino physics using atmospheric neutrinos. I will discuss the latest results from IceCube, and the status of IceCube-Gen2. Primary author(s) : WILLIAMS, Dawn (University of Alabama) Presenter(s) : WILLIAMS, Dawn (University of Alabama) Session Classification : Cherenkov detectors in astroparticle physics Track Classification : Cherenkov detectors in astroparticle physics October 1, 2021 Page 1 10th Internation … / Report of Contributions NA62 RICH performance: measur … Contribution ID : 3 Type : oral presentation [20+5 min] NA62 RICH performance: measurement and optimization Wednesday, 1 August 2018 09:00 (25) e main goal of the NA62 experiment is to measure the branching ratio of the K+ → π+ ν ν̄ decay with ∼10% precision. -
Radio Measurements of the Energy and the Depth of the Shower Maximum of Cosmic-Ray Air Showers by Tunka-Rex
Home Search Collections Journals About Contact us My IOPscience Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by Tunka-Rex This content has been downloaded from IOPscience. Please scroll down to see the full text. JCAP01(2016)052 (http://iopscience.iop.org/1475-7516/2016/01/052) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 131.169.95.182 This content was downloaded on 09/01/2017 at 10:16 Please note that terms and conditions apply. You may also be interested in: The wavefront of the radio signal emitted by cosmic ray air showers W.D. Apel, J.C. Arteaga-Velázquez, L. Bähren et al. Tunka-Rex: a Radio Extension of the Tunka Experiment F G Schröder, D Besson, N M Budnev et al. Radio Measurements of Air Showers with LOPES F G Schröder, W D Apel, J C Arteaga-Velazquez et al. High-energy cosmic rays and the Greisen–Zatsepin–Kuz'min effect A A Watson Reconstruction of inclined air showers detected with thePierre Auger Observatory The Pierre Auger collaboration Polarized radio emission from extensive air showers measured with LOFAR P. Schellart, S. Buitink, A. Corstanje et al. Search for the end of the energy spectrum of primary cosmic rays M Nagano Cosmic-Ray Energy Spectrum1017-1018.3 eV T. Abu-Zayyad, K. Belov, D. J. Bird et al. ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by JCAP01(2016)052 Tunka-Rex The Tunka-Rex collaboration P.A.