Enhanced Interior Gateway Routing Protocol for Omnet++

Total Page:16

File Type:pdf, Size:1020Kb

Enhanced Interior Gateway Routing Protocol for Omnet++ Enhanced Interior Gateway Routing Protocol for OMNeT++ Vladimír Veselý, Jan Bloudíček and Ondřej Ryšavý Faculty of Information Technology, Brno University of Technology, Božetěchova 2, Brno, Czech Republic Keywords: Enhanced Interior Gateway Routing Protocol, EIGRP, OMNeT++, Dynamic Routing Protocol, Routing, Simulation, ANSA. Abstract: Cisco’s EIGRP is a hybrid routing protocol between distance vector and link-state routing protocols. EIGRP offers routing based on composite metric, which takes into account multiple factors and allows more granular and precise routing decisions based on the current state of the network. Cisco released basic specification of EIGRP as IETF’s RFC draft in the beginning of 2013. This paper introduces one of the first freely available EIGRP design and a simulation model implementation that can be run and tested within OMNeT++ discrete event simulator. 1 INTRODUCTION vector protocol specialized (but not exclusively) for wireless networks that have Network layer serves the purpose of end-to-end data different metric criteria than wired networks. delivery. Routers employ routing tables to make Metric may represent cost, number of host or correct routing decisions by forwarding hop-by-hop any other implementation dependent route the packet closer to receiver. Dynamic routing atribute. Nevertheless, routes with infinity protocols maintain up-to-date content of routing metric 0xFFFF are considered unreachable. tables by exchanging updates about known Babel currently supports both IPv4 and IPv6; networks. Intermediate System to Intermediate System Routing protocols for traditional wired networks (IS-IS) (Oran, 1990) – The first link-state could be divided into three categores: a) distance- protocol ever, which is also capable of working vector where routing is based on information with different metrics simultaneosly. IS-IS was provided by neighbors and each route has one originally intended to be used with Connection- attribute representing distance of network from a less Mode Network Service Protocol given router; b) path-vector which is the same as (concurrent of IP) for ISO/OSI networks, distance vector but routes have more than one however, later was developed implementation attribute; and c) link-state where every router for both IPv4 and IPv6 protocols. IS-IS is by maintains independent view on topology and design agnostic to used address-family and computes the shortest path tree towards all other single instance can carry routing updates for nodes. Additional typology of routing protocol is various network protocols. Formerely used IS- according to type of deployment: a) interior IS metrics were delay and link errorness, gateway protocols (IGP) for routing within one current revision employs only speed of the administrative domain; b) exterior gateway link; protocols (EGP) for routing between autonomous . Open Shortest Path First (OSPFv2 for IPv4 systems (AS). Among typical representants belong: (Moy, 1998), OSPFv3 for IPv4/6 (Coltun, et al., 2008)) – OSPF started as IP alternative to . Routing Information Protocol (RIPv2 for IPv4 IS-IS and later become industrial standard link- (Malkin, 1998), RIPng for IPv6 (Malkin & state routing protocol that has wide-spread Minnear, 1997)) – Distance-vector routing deployment. OSPF uses cost as the metric, protocol that works with hop-count as the where cost is derived from the interface metric. Routes with metric 16 or more are bandwidth. OSPF supports only IP routing considered unreachable; updates; . Babel (Chroboczek, 2011) – Babel is distance- Veselý V., Bloudícekˇ J. and Ryšavý O.. 50 Enhanced Interior Gateway Routing Protocol for OMNeT++. DOI: 10.5220/0005038400500058 In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2014), pages 50-58 ISBN: 978-989-758-038-3 Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.) EnhancedInteriorGatewayRoutingProtocolforOMNeT++ . Border Gateway Protocol (BGPv4) (Rekhter & configurations. This paper outlines a new simulation Hares, 2006) – Extends distance-vector idea by module, which is a part of the ANSA project and having multiple attributes acompanying the which extends functionality of the INET framework single prefix update. BGPv4 is currently the (OMNeTpp/INET, 2014) in OMNeT++ (OMNeTpp, only one EGP that is being used and it is often 2014). refered as policy-control routing protocol. This paper has the following structure. The next Enhanced Interior Gateway Protocol (EIGRP) is section covers a quick overview of existing EIGRP the backward compatible successor of previous implementations (either real or simulation ones). Cisco proprietary Interior Gateway Protocol (IGRP). Section 3 deals with our contribution, mainly It is categorized as a hybrid routing protocol which necessary theory, proposed design and subsequent means that it is a crossover between distance-vector implementation. Section 4 presents validation (topology is known based on announcement from scenarios proving corectness of the implementation. neighbors) and link-state protocols (instead of The paper is summarized in Section 5 together with periodic updates, topology changes are propagated unveiling our future plans. immediately). Down below follows the list of main beneficial features of EIGRP: . EIGRP employs Diffusing Update Algorithm 2 STATE OF THE ART (DUAL) (Garcia-Lunes-Aceves, 1993) that effectively propagates any topology change Currently none of vendors other than Cisco supports and minimizes path recomputational time; EIGRP in its active network devices. Despite . Currently EIGRP is the only routing protocol positive campaign targeting wider EIGRP that guarantees loop-free topology even during acceptance, many manufacturers and customers the time when topology is actively converging remain skeptical and rely on a long-time proven towards a new routing state; open solutions like OSPF or IS-IS. The one of the . EIGRP leverages its own reliable transport first publicly available open-source EIGRP routing protocol (even for multicast data transfer); demon is being developed at the University of Žilina . In the contrary to other distance-vector (GitHub/janovic, 2013) within the scope of Quagga protocols, EIGRP is capable of sending event- project (nonGNU, 2013). driven partial bounded updates; A freely available demonstration tool called . It has neighbor discovery and recovery Easy-EIGRP (SourceForge, 2013) exists rather for mechanism to determine route reachibility via educational purposes. particular adjacent node; OPNET simulator has contained EIGRP . EIGRP contains protocol-dependent modules simulation modules even before its public IETF that allow operation over different network release. However, its functionality is limited and it protocols (including IPv4 and IPv6); lacks IPv6 support for EIGRP. Nevertheless, The EIGRP was introduced in 1993 as a cojoint OPNET and its simulation models were used to effort of Cisco and SRI International (Albrightson, conduct several measurement studies comparing et al., May 1994). Initial and later measurements different routing protocols including EIGRP (Wu, revealed that it outperforms other routing protocols 2011). (i.e., speed of convergece, network bandwidth Previously described state of EIGRP deployment utilization, queing delay) (Xu & Trajkovic, 2011). affirmed our decision to offer academic and Despite its beneficial aspects (or maybe because of enterprise community with a full-fledged EIGRP them) it had been protected as one of the major implementation with all usually employed features. Cisco intellectual properties by a bunch of patents The current status of unicast routing support in for nearly twenty years. In the beginning of 2013, OMNeT 4.4.1 and INET 2.2 framework is according basic EIGRP design and functionality were to our best knowledge as follows. The IPv4 (named submitted as a publicly available IETF informational networkLayer) and IPv6 (pragmatically called draft (Savage, et al., 2013). networkLayer6) layers are already parts of INET The project ANSA (Automated Network framework. The framework contains OSPFv2 as the Simulation and Analysis) running at the Faculty of only available dynamic routing protocol. Information Technology is dedicated to develop the During ANSA project development we have variety of software tools that can create simulation extended original simple router module to be dual- models based on real networks and subsequently to stack and enhanced it with a variety of dynamic allow formal analysis and verification of network routing protocols (RIP, RIPng, IS-IS, OSPFv3, 51 SIMULTECH2014-4thInternationalConferenceonSimulationandModelingMethodologies,Technologiesand Applications PIM), thus creating ANSARouter as the compound 3.1 Theory of Operation simulation module based on the standard behavior of Cisco routers. An EIGRP process computes a successor for every The basic goal behind our effort is to support destination. A successor represents the next-hop EIGRP dynamic routing protocol. Hence, we have router where the route to the destination via decided to add missing functionality in form of successor is loop-less and with the shortest distance. simulation module directly connected to Feasible successor (FS) or so called backup next- networkLayer and networkLayer6 as hop is the router that provides loop-less route but depicted on Figure 1. with higher distance. To determine whether particular router is a feasible successor, the router is working with
Recommended publications
  • A Comprehensive Study of Routing Protocols Performance with Topological Changes in the Networks Mohsin Masood Mohamed Abuhelala Prof
    A comprehensive study of Routing Protocols Performance with Topological Changes in the Networks Mohsin Masood Mohamed Abuhelala Prof. Ivan Glesk Electronics & Electrical Electronics & Electrical Electronics & Electrical Engineering Department Engineering Department Engineering Department University of Strathclyde University of Strathclyde University of Strathclyde Glasgow, Scotland, UK Glasgow, Scotland, UK Glasgow, Scotland, UK mohsin.masood mohamed.abuhelala ivan.glesk @strath.ac.uk @strath.ac.uk @strath.ac.uk ABSTRACT different topologies and compare routing protocols, but no In the modern communication networks, where increasing work has been considered about the changing user demands and advance applications become a functionality of these routing protocols with the topology challenging task for handling user traffic. Routing with real-time network limitations. such as topological protocols have got a significant role not only to route user change, network congestions, and so on. Hence without data across the network but also to reduce congestion with considering the topology with different network scenarios less complexity. Dynamic routing protocols such as one cannot fully understand and make right comparison OSPF, RIP and EIGRP were introduced to handle among any routing protocols. different networks with various traffic environments. Each This paper will give a comprehensive literature review of of these protocols has its own routing process which each routing protocol. Such as how each protocol (OSPF, makes it different and versatile from the other. The paper RIP or EIGRP) does convergence activity with any change will focus on presenting the routing process of each in the network. Two experiments are conducted that are protocol and will compare its performance with the other.
    [Show full text]
  • Configuring Static Routing
    Configuring Static Routing This chapter contains the following sections: • Finding Feature Information, on page 1 • Information About Static Routing, on page 1 • Licensing Requirements for Static Routing, on page 4 • Prerequisites for Static Routing, on page 4 • Guidelines and Limitations for Static Routing, on page 4 • Default Settings for Static Routing Parameters, on page 4 • Configuring Static Routing, on page 4 • Verifying the Static Routing Configuration, on page 10 • Related Documents for Static Routing, on page 10 • Feature History for Static Routing, on page 10 Finding Feature Information Your software release might not support all the features documented in this module. For the latest caveats and feature information, see the Bug Search Tool at https://tools.cisco.com/bugsearch/ and the release notes for your software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the "New and Changed Information"chapter or the Feature History table in this chapter. Information About Static Routing Routers forward packets using either route information from route table entries that you manually configure or the route information that is calculated using dynamic routing algorithms. Static routes, which define explicit paths between two routers, cannot be automatically updated; you must manually reconfigure static routes when network changes occur. Static routes use less bandwidth than dynamic routes. No CPU cycles are used to calculate and analyze routing updates. You can supplement dynamic routes with static routes where appropriate. You can redistribute static routes into dynamic routing algorithms but you cannot redistribute routing information calculated by dynamic routing algorithms into the static routing table.
    [Show full text]
  • Chapter 6: Chapter 6: Implementing a Border Gateway Protocol Solution Y
    Chapter 6: Implementing a Border Gateway Protocol Solution for ISP Connectivity CCNP ROUTE: Implementing IP Routing ROUTE v6 Chapter 6 © 2007 – 2010, Cisco Systems, Inc. All rights reserved. Cisco Public 1 Chapter 6 Objectives . Describe basic BGP terminology and operation, including EBGP and IBGP. ( 3) . Configure basic BGP. (87) . Typical Issues with IBGP and EBGP (104) . Verify and troubleshoot basic BGP. (131) . Describe and configure various methods for manipulating path selection. (145) . Describe and configure various methods of filtering BGP routing updates. (191) Chapter 6 © 2007 – 2010, Cisco Systems, Inc. All rights reserved. Cisco Public 2 BGP Terminology, Concepts, and Operation Chapter 6 © 2007 – 2010, Cisco Systems, Inc. All rights reserved. Cisco Public 3 IGP versus EGP . Interior gateway protocol (IGP) • A routing protocol operating within an Autonomous System (AS). • RIP, OSPF, and EIGRP are IGPs. Exterior gateway protocol (EGP) • A routing protocol operating between different AS. • BGP is an interdomain routing protocol (IDRP) and is an EGP. Chapter 6 © 2007 – 2010, Cisco Systems, Inc. All rights reserved. Cisco Public 4 Autonomous Systems (AS) . An AS is a group of routers that share similar routing policies and operate within a single administrative domain. An AS typically belongs to one organization. • A singgpgyp()yle or multiple interior gateway protocols (IGP) may be used within the AS. • In either case, the outside world views the entire AS as a single entity. If an AS connects to the public Internet using an exterior gateway protocol such as BGP, then it must be assigned a unique AS number which is managed by the Internet Assigned Numbers Authority (IANA).
    [Show full text]
  • Dynamic Routing: Routing Information Protocol
    CS 356: Computer Network Architectures Lecture 12: Dynamic Routing: Routing Information Protocol Chap. 3.3.1, 3.3.2 Xiaowei Yang [email protected] Today • ICMP applications • Dynamic Routing – Routing Information Protocol ICMP applications • Ping – ping www.duke.edu • Traceroute – traceroute nytimes.com • MTU discovery Ping: Echo Request and Reply ICMP ECHO REQUEST Host Host or or Router router ICMP ECHO REPLY Type Code Checksum (= 8 or 0) (=0) identifier sequence number 32-bit sender timestamp Optional data • Pings are handled directly by the kernel • Each Ping is translated into an ICMP Echo Request • The Pinged host responds with an ICMP Echo Reply 4 Traceroute • xwy@linux20$ traceroute -n 18.26.0.1 – traceroute to 18.26.0.1 (18.26.0.1), 30 hops max, 60 byte packets – 1 152.3.141.250 4.968 ms 4.990 ms 5.058 ms – 2 152.3.234.195 1.479 ms 1.549 ms 1.615 ms – 3 152.3.234.196 1.157 ms 1.171 ms 1.238 ms – 4 128.109.70.13 1.905 ms 1.885 ms 1.943 ms – 5 128.109.70.138 4.011 ms 3.993 ms 4.045 ms – 6 128.109.70.102 10.551 ms 10.118 ms 10.079 ms – 7 18.3.3.1 28.715 ms 28.691 ms 28.619 ms – 8 18.168.0.23 27.945 ms 28.028 ms 28.080 ms – 9 18.4.7.65 28.037 ms 27.969 ms 27.966 ms – 10 128.30.0.246 27.941 ms * * Traceroute algorithm • Sends out three UDP packets with TTL=1,2,…,n, destined to a high port • Routers on the path send ICMP Time exceeded message with their IP addresses until n reaches the destination distance • Destination replies with port unreachable ICMP messages Path MTU discovery algorithm • Send packets with DF bit set • If receive an ICMP error message, reduce the packet size Today • ICMP applications • Dynamic Routing – Routing Information Protocol Dynamic Routing • There are two parts related to IP packet handling: 1.
    [Show full text]
  • Understanding Linux Internetworking
    White Paper by David Davis, ActualTech Media Understanding Linux Internetworking In this Paper Introduction Layer 2 vs. Layer 3 Internetworking................ 2 The Internet: the largest internetwork ever created. In fact, the Layer 2 Internetworking on term Internet (with a capital I) is just a shortened version of the Linux Systems ............................................... 3 term internetwork, which means multiple networks connected Bridging ......................................................... 3 together. Most companies create some form of internetwork when they connect their local-area network (LAN) to a wide area Spanning Tree ............................................... 4 network (WAN). For IP packets to be delivered from one Layer 3 Internetworking View on network to another network, IP routing is used — typically in Linux Systems ............................................... 5 conjunction with dynamic routing protocols such as OSPF or BGP. You c an e as i l y use Linux as an internetworking device and Neighbor Table .............................................. 5 connect hosts together on local networks and connect local IP Routing ..................................................... 6 networks together and to the Internet. Virtual LANs (VLANs) ..................................... 7 Here’s what you’ll learn in this paper: Overlay Networks with VXLAN ....................... 9 • The differences between layer 2 and layer 3 internetworking In Summary ................................................. 10 • How to configure IP routing and bridging in Linux Appendix A: The Basics of TCP/IP Addresses ....................................... 11 • How to configure advanced Linux internetworking, such as VLANs, VXLAN, and network packet filtering Appendix B: The OSI Model......................... 12 To create an internetwork, you need to understand layer 2 and layer 3 internetworking, MAC addresses, bridging, routing, ACLs, VLANs, and VXLAN. We’ve got a lot to cover, so let’s get started! Understanding Linux Internetworking 1 Layer 2 vs.
    [Show full text]
  • Configurable Routing in Ad-Hoc Networks
    Configurable Routing in Ad-Hoc Networks Nadine Shillingford and Christian Poellabauer Department of Computer Science and Engineering University of Notre Dame Notre Dame, IN 46556 fnshillin, [email protected] Abstract— The actual use of a wireless ad-hoc network or run across the network, will be unknown a-priori. Further, ad- its operational parameters may be unknown before deployment hoc networks may be accessed by varying numbers of clients or they may change during the life time of a network. This (users), with different applications and differing expectations requires that an ad-hoc network be configurable to the unique needs of a client and that multiple clients can configure the on QoS. Therefore, it will be essential to make configurability network simultaneously. The QoS metric(s) used in the selection and customizability of future ad-hoc networks a key design of routes in an ad-hoc routing protocol can strongly affect the feature. network’s performance. Unfortunately, the majority of existing Toward this end, this work introduces the CMR (Con- routing protocols support only one or two fixed metrics in route figurable Mesh Routing) toolkit which provides an easy-to- selection. We conducted a survey of over 40 routing protocols published from 1994-2007 which indicated that 90% of the use API for ad-hoc networks, allowing applications or users protocols use one or two metrics and only 10% use three to to implement their own routing protocols and QoS metrics. four metrics in route selection. Toward this end, we propose a While our prototype implementation supports four of the most modular routing toolkit for ad-hoc networks, where users and popular QoS metrics, it is easily extensible and we expect that applications can initiate route discoveries that best suit their QoS future versions will cover a large variety of QoS metrics.
    [Show full text]
  • Overview of Routing Security Landscape for the Quilt Member Meeting, Winter 2019 Mark Beadles, CISO, Oarnet [email protected] BGP IDLE
    Overview of Routing Security Landscape for the Quilt Member Meeting, Winter 2019 Mark Beadles, CISO, OARnet [email protected] BGP IDLE CONNECT ACTIVE OPEN OPEN SENT CONFIRM ESTAB- LISHED 2/13/2019 Routing Security Landscape - The Quilt 2 Overview of Routing Security Landscape • Background • Threat environment • Current best practices • Gaps 2/13/2019 Routing Security Landscape - The Quilt 3 Background - Definitions • BGP • Border Gateway Protocol, an exterior path-vector gateway routing protocol • Autonomous System & Autonomous System Numbers • Collection of IP routing prefixes under control of a network operator on behalf of a single administrative domain that presents a defined routing policy to the Internet • Assigned number for each AS e.g. AS600 2/13/2019 Routing Security Landscape - The Quilt 4 Background - The BGP Security Problem By design, routers running BGP accept advertised routes from other BGP routers by default. (BGP was written under the assumption that no one would lie about the routes, so there’s no process for verifying the published announcements.) This allows for automatic and decentralized routing of traffic across the Internet, but it also leaves the Internet potentially vulnerable to accidental or malicious disruption, known as BGP hijacking. Due to the extent to which BGP is embedded in the core systems of the Internet, and the number of different networks operated by many different organizations which collectively make up the Internet, correcting this vulnerabilityis a technically and economically challenging problem. 2/13/2019 Routing Security Landscape - The Quilt 5 Background – BGP Terminology • Bogons • Objects (addresses/prefixes/ASNs) that don't belong on the internet • Spoofing • Lying about your address.
    [Show full text]
  • Openswitch OPX Configuration Guide Release 3.0.0 2018 - 9
    OpenSwitch OPX Configuration Guide Release 3.0.0 2018 - 9 Rev. A02 Contents 1 Network configuration....................................................................................................................................4 2 Interfaces...................................................................................................................................................... 5 Physical ports..................................................................................................................................................................... 5 Fan-out interfaces..............................................................................................................................................................6 Port-channel and bond interfaces....................................................................................................................................7 VLAN interfaces................................................................................................................................................................. 7 Port profiles.........................................................................................................................................................................8 3 Layer 2 bridging............................................................................................................................................10 VLAN bridging...................................................................................................................................................................10
    [Show full text]
  • Chapter 12, “Configuring Layer 3 Interfaces”
    CHAPTER 12 Configuring Layer 3 Interfaces This chapter contains information about how to configure Layer 3 interfaces on the Catalyst 6500 series switches, which supplements the information and procedures in the Release 12.1 publications at this URL: http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121cgcr/index.htm This chapter consists of these sections: • Configuring IP Routing and Addresses, page 12-2 • Configuring IPX Routing and Network Numbers, page 12-6 • Configuring AppleTalk Routing, Cable Ranges, and Zones, page 12-7 • Configuring Other Protocols on Layer 3 Interfaces, page 12-8 Catalyst 6500 Series Switch Cisco IOS Software Configuration Guide—Release 12.1 E 78-14099-04 12-1 Chapter 12 Configuring Layer 3 Interfaces Configuring IP Routing and Addresses Note • For complete syntax and usage information for the commands used in this chapter, refer to the Catalyst 6500 Series Switch Cisco IOS Command Reference publication and the Release 12.1 publications at this URL: http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121cgcr/index.htm • Release 12.1(13)E and later releases support configuration of 4,096 Layer 3 VLAN interfaces. – We recommend that you configure a combined total of no more than 2,000 Layer 3 VLAN interfaces and Layer 3 ports on an MSFC2 with either Supervisor Engine 1 or Supervisor Engine 2. – We recommend that you configure a combined total of no more than 1,000 Layer 3 VLAN interfaces and Layer 3 ports on an MSFC. • With releases earlier than Release 12.1(13)E, an MSFC2 with either Supervisor Engine 1 or Supervisor Engine 2 supports a combined maximum of 1,000 Layer 3 VLAN interfaces and Layer 3 ports.
    [Show full text]
  • Chapter 4 Dynamic Routing
    CHAPTER 4 DYNAMIC ROUTING In this chapter we cover the basic principles of dynamic routing algorithms that form the basis of the experiments in Lab 4. The chapter has six sections. Each section covers material that you need to run the lab exercises. The first section gives an overview of dynamic routing protocols and discusses the differences between the two major classes of routing algorithms: intra domain and inter domain. Sections 2, 3, 4, and 5 give an overview of the most common routing algorithms such , RIP, OSPF, BGP and IGRP. Section 6 presents the commands used to configure the hosts and the routers for dynamic routing. TABLE OF CONTENT 1 ROUTING PROTOCOLS ........................................................................................................................ 3 1.1 AUTONOMOUS SYSTEMS (AS)............................................................................................................ 3 1.2 INTRADOMAIN ROUTING VERSUS INTERDOMAIN ROUTING ............................................................... 4 1.3 DYNAMIC ROUTING ............................................................................................................................ 4 1.3.1 Distance Vector Algorithm ........................................................................................................... 4 2 RIP ............................................................................................................................................................... 5 3 OSPF...........................................................................................................................................................
    [Show full text]
  • Reinforcement Learning for Routing in Communication Networks
    Reinforcement Learning for Routing in Communication Networks Walter H. Andrag Thesis presented in partial fulfilment of the requirements for the degree of Master of Science at the University of Stellenbosch Supervisor: Prof Christian W. Omlin April 2003 Stellenbosch University http://scholar.sun.ac.za Declaration I, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree. Signature: Date: .~ Stellenbosch University http://scholar.sun.ac.za Abstract Routing policies for packet-switched communication networks must be able to adapt to changing traffic patterns and topologies. We study the feasibility of implementing an adaptive routing policy using the Q-Learning algorithm which learns sequences of actions from delayed rewards. The Q-Routing algorithm adapts a network's routing policy based on local information alone and converges toward an optimal solution. We demonstrate that Q-Routing is a viable alternative to other adaptive routing methods such as Bellman-Ford. We also study variations of Q-Routing designed to better explore possible routes and to take into consideration limited buffer size and optimize multiple objectives. 11 Stellenbosch University http://scholar.sun.ac.za Opsomming Die roetering in kommunikasienetwerke moet kan aanpas by veranderings in netwerk- topologie en verkeersverspreidings. Ons bestudeer die bruikbaarheid van 'n aanpasbare roeteringsalgoritme gebaseer op die "Q-Learning"-algoritme wat dit moontlik maak om 'n reeks besluite te kan neem gebaseer op vertraagde vergoedings. Die roeteringsalgo- ritme gebruik slegs nabygelee inligting om roeteringsbesluite te maak en konvergeer na 'n optimale oplossing.
    [Show full text]
  • RIP: Routing Information Protocol a Routing Protocol Based on the Distance-Vector Algorithm
    Laboratory 6 RIP: Routing Information Protocol A Routing Protocol Based on the Distance-Vector Algorithm Objective The objective of this lab is to configure and analyze the performance of the Routing Information Protocol (RIP) model. Overview A router in the network needs to be able to look at a packet’s destination address and then determine which of the output ports is the best choice to get the packet to that address. The router makes this decision by consulting a forwarding table. The fundamental problem of routing is: How do routers acquire the information in their forwarding tables? Routing algorithms are required to build the routing tables and hence forwarding tables. The basic problem of routing is to find the lowest-cost path between any two nodes, where the cost of a path equals the sum of the costs of all the edges that make up the path. Routing is achieved in most practical networks by running routing protocols among the nodes. The protocols provide a distributed, dynamic way to solve the problem of finding the lowest-cost path in the presence of link and node failures and changing edge costs. One of the main classes of routing algorithms is the distance-vector algorithm. Each node constructs a vector containing the distances (costs) to all other nodes and distributes that vector to its immediate neighbors. RIP is the canonical example of a routing protocol built on the distance-vector algorithm. Routers running RIP send their advertisements regularly (e.g., every 30 seconds). A router also sends an update message whenever a triggered update from another router causes it to change its routing table.
    [Show full text]