2-1 2.0 STATIC TEST This Section Describes the Objectives

Total Page:16

File Type:pdf, Size:1020Kb

2-1 2.0 STATIC TEST This Section Describes the Objectives 2.0 STATIC TEST This section describes the objectives, procedures, and results of the Static Test completed at Fort Ord, California, as part of the ODDS. 2.1 INTRODUCTION AND PURPOSE The Static Test, the ODDS first phase, consisted of collecting digital geophysical survey data in free-air over selected inert OE items at incrementally greater depths. This was accomplished by constructing a nonmetallic test stand approximately 10 feet high with mechanisms to suspend OE items at different orientations and depths (within 1/32 inch) below the surface of the stand. Inert ordnance items typical of Fort Ord were used during the Static Test. Pictures of these items, the test stand and the Static Test operations are provided in Appendix A. The Static Test was conducted between June 2 and June 23, 2000 at Fort Ord using four geophysical detectors, 1) EM61, 2) EM61-HH, 3) G-858, and 4) GEM-3 as proposed in the ODDS Work Plan (USA Environmental Inc., May 2000). 2.1.1 Objectives The objectives of the Static Test were to determine, establish, and document: 1. The range of detector readings indexed by OE item depth, orientation and detector type. 2. Free-air detector readings and signal profiles over OE items at a variety of incremental depths. 3. The range of detectable depths and horizontal distances for typical OE items found at Fort Ord using different types of detectors. 4. Baseline capabilities for mature-, new- and emerging-technology detectors, without interference from variable ground surface and soil conditions, compared to detectors currently in use at Fort Ord. 2.1.2 Background The Static Test was conducted using the four detectors identified by the USAESCH OE Center of Expertise as having potential for OE detection at Fort Ord. A full description and rationale for selecting these detectors appears in Appendix E of the ODDS Final Work Plan (USA Environmental Inc., May, 2000). The selected systems represent a range of technologies that have consistently provided the highest probability of detection (PD) and lowest false alarm rate (FAR) on ordnance test grids and live sites. Each has proven effectiveness in detecting and locating buried OE items. Detector Manufacturer and Model Type 1. Geonics Model EM61 (TDEM) 2-1 ODDS REPORT 2. Geonics Model EM61-HH (TDEM) 3. Geometrics Model G-858 (Cesium Vapor) (Magnetometer) 4. Geophex Model GEM-3 (40 cm coil) (FDEM) All of these instruments are man-portable and provide spatial response data as the detector is moved over an object. Positional data can be collected by three different methods: (1) continuous mode, whereby the data are collected on selected time intervals and the operator marks the data based on positional fiducials and the data are fitted to a known distance; (2) wheel mode, whereby the digital data are collected and marked by the turning of a survey wheel attached to the instrument; and (3) GPS mode, whereby the detector and GPS positional data as well as the sensor data are collected on selected time intervals. All of these methods allow for the development of two-dimensional analysis as well as generating line profiles from the collected data. Data collected from these instruments provides information on the capabilities for “families” of instruments that measure a specific physical property (such as magnetic gradient, total magnetic field, etc.) by means of recording a digital signal response. These four instruments were used as examples for families of equipment that measure either a single time window of a time domain EM response (EM61), two or more time windows of a time domain EM response (EM61-HH), total magnetic fields and magnetic field gradients using cesium vapor sensor technology (G-858), or frequency domain EM response (GEM-3). Analog instruments such as the Schonstedt were not used during the Static Test since there is no consistent method for determining the magnitude and shape of the response. However, analog instruments were used during the Seeded Test and Field Trial Site phases of the ODDS. 2.2 ORDNANCE USED IN STATIC TEST A total of sixteen OE items were used during the Static Test. Table 2-1 is a list of the OE items tested and the dimensions, weights and depth of penetration in sand for these items. [It should be noted that, for the sake of brevity and consistency, shortened descriptions of OE items have been used throughout the document. The full description of the OE items can be found in the Acronyms and Abbreviations section at the end of the table of contents.] All but two of the OE items were inert items obtained from previous OE investigations at Fort Ord. The 105mm and 155mm inert projectiles were collected from Fort Irwin, CA. Most of the items were rusted but in good, intact condition. Pictures of the OE items used in the testing are presented in Appendix A. The categories in Table 2-1 are discussed in Section 2.5.1. 2-2 ODDS REPORT Table 2-1 Characterization of OE Items Used in Static Tests Ordnance Detection and Discrimination Study Fort Ord, California ODDS REPORT Depth of Depth of Diameter Length Weight Penetration Penetration Ordnance Item (Inches) (Inches) (lbs.) In Sanda Plus One Footb Categorye 14.5mm Projectile 0.57 2.55 0.152 0.2 1.2 II 22mm subcaliber 0.87 7 0.625 1.4 2.4 III 35mm Subcaliber 0.75 7.5 0.32 0.5 1.5 II 37mm Projectile 1.46 4.5 1.75 3.9 4.9 V M9/M11 Grenade 2.25 3.5 1 0.1 1.1 II 60mm Projectile 2.36 7 4.25 1.1 2.1 III 2.36-inch Rocket 2.36 19.5 3.25 0.4 1.4 II 75mm Projectile 3 11 12 3.9 4.9 V 81mm Projectile 3.18 11 5.25 2.7 3.7 IV f 2 81mm Illumination 3.18 25 10.7 NA NA IV - 3 3.5-inch Rocket 3.5 23.6 9 0.8 1.8 II Signal Illumination Flare 1.5 10 0.53 0 1 I 90mm Projectile 4 9.5 22.3 2 3 III d 105mm Projectile 4.13 16.8 NA 7.7 8.7 IX d 155mm Projectile 6.1 26.93 NA 14 15 X Stokes Mortar 3 14 8.25 3.3 4.3 V MKII Grenade 4.75 4.75 1 0 1 I a Penetration Depths were taken from Table 4.1-1 of the Former Fort Ord Phase II EE/CA, April 1998. b Includes a one foot cover of post deposition material c Category of munitions determined by rounding up to the nearest foot d Used smoke OE Item to simulate shape of high explosive version of item. e See Section 2.5.1 of text. f Category depth for 81mm Illumination based on potential penetration of “dud” item NA - Data not available 2.3 STATIC TEST PROCEDURES The following subsections describe the Static Test area setup, test stand construction and test procedures. 2.3.1 Static Test Area Before placing the Static Test stand in the test area, the OE contractor, USA, performed a magnetometer clearance of the entire area removing detected metal debris to a depth of four feet. Hand-held magnetometers (Schonstedt Model GA-52/Cx) were used in the clearance process. Ferrous metallic items detected using the Schonstedts were removed from the area. During the clearance process, a number of live UXO items were identified and detonated in place. A work plan variance was developed as the presence of UXO affected the Static Test schedule originally proposed in the Work Plan. Work plan variance forms are provided in Appendix B Tab 4. Following the clearance by USA, EM61 and G-858 magnetometer surveys were conducted over the test stand area. Seventeen EM and two magnetometer anomalies were identified, located in the field, and intrusively investigated. Metal sources were removed. Results of the investigation are presented in Appendix B Tab 6. Once identified anomalies were removed, the test stand was placed with the longest dimension of the stand oriented in a magnetic north-south direction. 2.3.2 Test Stand Construction The test stand was constructed entirely of a nonmetallic, nonconductive polymer (see Appendix B Tab 5 for specifications). All supporting beams, the floor of the stand, bolts, and nuts were also of polymer material. A polymer frame and ordnance holder were constructed to allow the raising and lowering of the OE test items at fixed distances or intervals from the sensors. The dimensions of the deck were approximately 8 feet wide and 12 feet long and it was elevated approximately 10 feet above ground surface. Photographs showing the Static Test stand are presented in Appendix A. Before Static Testing was performed, conductivity and magnetic response measurements were taken on the stand platform to ensure that the construction materials were non-responsive to the instruments being tested. Responses were within the background range of the instruments. Three 8-foot long profile lines were marked on the platform, with fiducial marks at the start, middle and end of each line. The centerline was positioned directly over the center of the platform; two profile lines were located 2 feet on either side of the centerline profile. The center of the ordnance holder was constructed so that the center of the holder was located directly under the mid-point of the centerline. A work plan variance (see Appendix B Tab 4) was prepared to describe two modifications to the test procedures because of stand construction limitations. Originally, the side profiles were to be spaced 2.5 feet on either side of the centerline; however, 2-4 ODDS REPORT because of the addition of safety side rails on the platform the profiles were located on 2-foot centers.
Recommended publications
  • Exo-Atmospheric Intercepts: Bringing New Challenges to Standard Missile
    G. A. SULLINS Exo-atmospheric Intercepts: Bringing New Challenges to Standard Missile Gary A. Sullins The Navy Theater Wide System is being designed to provide defense for U.S. forces and our Allies against medium- to long-range tactical ballistic missiles. As part of this system, a new variant of Standard Missile, SM-3, will be introduced to the Fleet. SM-3 will perform a hit-to-kill intercept of the ballistic missile while it is in exo-atmospheric flight (i.e., while outside the Earth’s atmosphere). Exo-atmospheric flight and hit-to-kill intercepts have brought new challenges to the SM Program. These challenges have intro- duced new technologies, which in turn have created the need for new tests to be added to an already robust SM ground test program. This article discusses these new challenges and describes tests geared to verify SM-3 design, with emphasis given to those tests performed at APL. INTRODUCTION The threat of ballistic missile attacks to U.S. forces and the ability of the combat system to engage them and our Allies continues to grow. Currently over 40 by guiding the missile to an intercept. Modifications are nations have the capability to launch ballistic missile being made to the AWS to change the logic consistent attacks. Most of these missiles are not capable of reaching with tracking and engaging ballistic missiles rather than U.S. soil; nevertheless, they do pose a significant threat its traditional Anti-Air Warfare role. to our forces stationed overseas. Many of these nations In addition to modifications to the AWS, the NTW also have the ability to build chemical, biological, or System is developing a new SM variant, SM-3.
    [Show full text]
  • Ballistic Missile Defense Technology: Weapons, Power, Communications, and Space Transportation CONTENTS Page Introduction
    Chapter 5 Ballistic Missile Defense Technology: Weapons, Power, Communications, and Space Transportation CONTENTS Page Introduction . ......................105 5-6b. Boost and Post-Boost Kill Weapons . ..................,......105 Effectiveness (500 single-RV Kinetic-Energy Weapons (KEW) ....106 ICBMs atone site) . ...........117 Directed-Energy Weapons . .........123 5-7. Boost and Post-Boost Kill Power and Power Conditioning . ......142 Effectiveness (200 “medium- Space Power Requirements . ........142 bum-booster” ICBMs at one site). .............118 Space Power Generation Technology .143 5-8. Schematic of an Electromagnetic Power Conditioning . .. ..........145 Launcher (EML) or “Railgun” ..119 Communication Technology . .........146 5-9. Lightweight Homing Projectile. .l2l 60-GHz Communication Links .. ....147 5-10. Illustration of the Relationships Laser Communication Links . .......148 Between Laser Parameters and Space Transportation . ..............148 Power Density Projected on a Space Transportation Target . .............125 Requirements. ................149 5-11. FEL Waveforms . .............125 Space Transportation Alternatives ...149 5-12. Schematic of a Neutral Particle Space Transportation Cost Beam Weapon.. .............129 Reduction . ................153 5-13a. Annual Space Launch Capacity .152 Conclusions . ....................153 5-13b. Space Transportation . .........152 Weapon Technology Conclusions ....153 Space Power Conclusions. .........155 Tables Space Communications Conclusion. ..l55 Table No. Page Space Transportation
    [Show full text]
  • Design and Optimization of an Electromagnetic Railgun
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2018 DESIGN AND OPTIMIZATION OF AN ELECTROMAGNETIC RAILGUN Nihar S. Brahmbhatt Michigan Technological University, [email protected] Copyright 2018 Nihar S. Brahmbhatt Recommended Citation Brahmbhatt, Nihar S., "DESIGN AND OPTIMIZATION OF AN ELECTROMAGNETIC RAILGUN", Open Access Master's Report, Michigan Technological University, 2018. https://doi.org/10.37099/mtu.dc.etdr/651 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Controls and Control Theory Commons DESIGN AND OPTIMIZATION OF AN ELECTROMAGNETIC RAIL GUN By Nihar S. Brahmbhatt A REPORT Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Electrical Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2018 © 2018 Nihar S. Brahmbhatt This report has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Electrical Engineering. Department of Electrical and Computer Engineering Report Advisor: Dr. Wayne W. Weaver Committee Member: Dr. John Pakkala Committee Member: Dr. Sumit Paudyal Department Chair: Dr. Daniel R. Fuhrmann Table of Contents Abstract ........................................................................................................................... 7 Acknowledgments........................................................................................................... 8 List of Figures ................................................................................................................
    [Show full text]
  • House Bill No. 944
    FIRST REGULAR SESSION HOUSE COMMITTEE SUBSTITUTE FOR HOUSE BILL NO. 944 101ST GENERAL ASSEMBLY 1836H.02C DANA RADEMAN MILLER, Chief Clerk AN ACT To repeal section 571.030, RSMo, and to enact in lieu thereof one new section relating to unlawful use of weapons, with penalty provisions. Be it enacted by the General Assembly of the state of Missouri, as follows: Section A. Section 571.030, RSMo, is repealed and one new section enacted in lieu 2 thereof, to be known as section 571.030, to read as follows: 571.030. 1. A person commits the offense of unlawful use of weapons, except as 2 otherwise provided by sections 571.101 to 571.121, if he or she knowingly: 3 (1) Carries concealed upon or about his or her person a knife, a firearm, a blackjack or 4 any other weapon readily capable of lethal use into any area where firearms are restricted under 5 section 571.107; [or] 6 (2) Sets a spring gun; [or] 7 (3) Discharges or shoots a firearm into a dwelling house, a railroad train, boat, aircraft, 8 or motor vehicle as defined in section 302.010, or any building or structure used for the 9 assembling of people; [or] 10 (4) Exhibits, in the presence of one or more persons, any weapon readily capable of 11 lethal use in an angry or threatening manner; [or] 12 (5) Has a firearm or projectile weapon readily capable of lethal use on his or her person, 13 while he or she is intoxicated, and handles or otherwise uses such firearm or projectile weapon 14 in either a negligent or unlawful manner or discharges such firearm or projectile weapon unless 15 acting in self-defense; [or] 16 (6) Discharges a firearm within one hundred yards of any occupied schoolhouse, 17 courthouse, or church building; [or] EXPLANATION — Matter enclosed in bold-faced brackets [thus] in the above bill is not enacted and is intended to be omitted from the law.
    [Show full text]
  • Complex Projectile Technology and Homo Sapiens Dispersal Into Western Eurasia
    Complex Projectile Technology and Homo sapiens Dispersal into Western Eurasia JOHN J. SHEA Department of Anthropology and Turkana Basin Institute, Stony Brook University, Stony Brook, NY 11794-4364, USA; [email protected] MATTHEW L. SISK Interdepartmental Doctoral Program in Anthropological Science, Stony Brook University, Stony Brook, NY 11794-4364, USA; [email protected] ABSTRACT This paper proposes that complex projectile weaponry was a key strategic innovation driving Late Pleistocene human dispersal into western Eurasia after 50 Ka. It argues that complex projectile weapons of the kind used by ethnographic hunter-gatherers, such as the bow and arrow, and spearthrower and dart, enabled Homo sapiens to overcome obstacles that constrained previous human dispersal from Africa to temperate western Eurasia. In the East Mediterranean Levant, the only permanent land bridge between Africa and Eurasia, stone and bone projectile armatures like those used in the complex weapon systems of recent humans appear abruptly ca 45–35 Ka in early Upper Paleolithic contexts associated with Homo sapiens fossils. Such artifacts are absent from Middle Paleolithic contexts associated with Homo sapiens and Neandertals. Hypotheses concerning the indigenous vs. exogenous origins of complex projectile weaponry in the Levant are reviewed. Current evidence favors the hypothesis that complex projectile technology developed as an aid to ecological niche broadening strategies among African popu- lations between 50–100 Ka. It most likely spread to western Eurasia along with dispersing Homo sapiens popula- tions. Neandertals did not routinely deploy projectile weapons as subsistence aids. This puzzling gap in their otherwise impressive record for survival in some of the harshest environments ever occupied by primates may reflect energetic constraints and time-budgeting factors associated with complex technology.
    [Show full text]
  • The Strategic Defense Initiative and the Militarization of Space: Scientific Responsibility and Citizen Resistance
    Penn State International Law Review Volume 9 Article 2 Number 2 Dickinson Journal of International Law 1991 The trS ategic Defense Initiative and the Militarization of Space: Scientific Responsibility and Citizen Resistance Matthew Lippman Follow this and additional works at: http://elibrary.law.psu.edu/psilr Part of the International Law Commons, and the Military, War, and Peace Commons Recommended Citation Lippman, Matthew (1991) "The trS ategic Defense Initiative and the Militarization of Space: Scientific Responsibility and Citizen Resistance," Penn State International Law Review: Vol. 9: No. 2, Article 2. Available at: http://elibrary.law.psu.edu/psilr/vol9/iss2/2 This Article is brought to you for free and open access by Penn State Law eLibrary. It has been accepted for inclusion in Penn State International Law Review by an authorized administrator of Penn State Law eLibrary. For more information, please contact [email protected]. The Strategic Defense Initiative and the Militarization of Space: Scientific Responsibility and Citizen Resistance Matthew Lippman* I. Introduction The moderating of international tensions between the superpow- ers, the slowing of the nuclear arms race and the promise of a peace dividend have all contributed to a lessened popular concern over is- sues of national defense.1 The diversion of attention from war and peace has resulted in little scholarly attention being paid to the omi- nous potential growth in third-generation high-technology weapons. 2 These automated weapons systems are being designed primarily to operate in outer space where, despite claims to the contrary, they will be used to enhance the United States'ability to launch a first strike nuclear attack.3 The technological and strategic foundation of this revolution in weaponry is the Strategic Defense Initiative (SDI).
    [Show full text]
  • Projectile Motion
    PROJECTILE MOTION Objectives • Distinguish between a vector PROJECTILE MOTION quantity and a scalar quantity. 5 (5.1) • Explain how to find the Projectile motion can be resultant of two perpendicular THE BIG vectors. (5.2) described by the horizontal and • Describe how the components IDEA .......... vertical components of motion. of a vector affect each other. (5.3) • Describe the components of n the previous chapter, we studied simple straight-line projectile motion. (5.4) motion—linear motion. We distinguished between motion • Describe the downward motion with constant velocity, such as a bowling ball rolling of a horizontally launched I projectile. (5.5) horizontally, and accelerated motion, such as an object • Describe how far below an falling vertically under the influence of gravity. Now we imaginary straight-line path a extend these ideas to nonlinear motion—motion along projectile falls. (5.6) a curved path. Throw a baseball and the path it follows is a curve. This curve is a combination of constant- velocity horizontal motion and accelerated vertical discover! motion. We’ll see that the velocity of a thrown ball at any instant has two independent “components” of MATERIALS cardboard, tape, motion—what happens horizontally is not affected soda straws, pencil, ruler, two marbles by what happens vertically. EXPECTED OUTCOME Marble 2 will hit Marble 1. ANALYZE AND CONCLUDE 1. Yes; the speed of Marble 2 discover! 2. Same 3. Gravity accelerates both How Should You Aim to Hit a Falling 4. At the same time, marbles equally. Target? release Marble 1 and launch TEACHING TIP Known to many 1.
    [Show full text]
  • Assessing Israel's Iron Dome Missile Defense System
    Research memo Assessing Israel’s Iron Dome Missile Defense System By Jacob Nagel and Jonathan Schanzer November 13, 2019 The Israeli Iron Dome missile defense system continues to make headlines as it knocks Hamas and Palestinian Islamic Jihad rockets out of the sky. The system is the crucial lower tier of Israel’s layered missile defense system, which guards Israel’s skies from threats near and far. The David’s Sling system covers middle-layer threats, and the Arrow system defends against long-range projectiles. Iron Dome has earned great praise across professional, political, military, and civilian circles. The U.S. Army recently acquired two Iron Dome batteries as an interim solution to existing vulnerabilities, and may acquire more for the long term. The U.S. Marine Corps has also expressed interest and recently conducted several successful tests in the United States. Even among Israel’s foes, Iron Dome is widely recognized as a remarkable military innovation. But over time, certain potential disadvantages also have become a topic for debate. For one, Iron Dome’s efficacy in shooting down projectiles may encourage Israel’s enemies to increase their rocket launches to achieve their aims. And by granting time and space to Israeli officials to consider a proportional or surgical strike, Iron Dome can have the unintended consequence of potentially prolonging a conflict. In other words, the system raises the threshold for Israeli political leaders and military brass to launch a decisive operation, even as the volume of rocket provocations increases. There is also a psychological warfare element. Israel’s enemies can repeatedly broadcast photos of their cadres firing rockets with relatively little response from the Israeli side.
    [Show full text]
  • Q-1M Page 1 of 7 STOCKTON POLICE DEPARTMENT GENERAL
    STOCKTON POLICE DEPARTMENT GENERAL ORDER IMPACT PROJECTILE WEAPON SYSTEMS SUBJECT DATE: AUGUST 10, 2020 NO: Q-1m FROM: CHIEF ERIC JONES TO: ALL PERSONNEL INDEX: REMINGTON 870 DEDICATED IMPACT PROJECTILE WEAPON SYSTEM 40MM SINGLE LAUNCHER WEAPON SYSTEM I. POLICY It is the policy of the Stockton Police Department to utilize Impact Projectile Weapon Systems whenever sshould give a verbal warning, when feasible, before using force, whether lethal or less-lethal. II. DEFINITION OF TERMS A. Impact Projectile Weapon Systems – Intermediate force options designed to resolve potentially dangerous situations by striking a subject with one or more flexible or non-flexible projectiles specifically designed to be fired from either 12-gauge or 40mm weapon systems, with the goal of gaining the subject’s compliance and the cessation of their hostile behavior. Use of an Impact Projectile Weapon System is not intended as a substitute for a firearm used exclusively for the application of lethal force. B. Impact Projectile Munitions – Those munitions specifically designed to be either hand delivered (in the case of sting ball grenades or diversionary devices), or fired from an Impact Projectile Weapon System (12-gauge and 40mm). Impact Projectile Munitions are not designed to inflict lethal injury; however, a potential exists that lethal injury can be inflicted as a result of their use. III. PROCEDURE A. Use of Impact Projectile Weapon Systems 1. Situations for the use of a Less Lethal Weapon System may include, but are not limited to: a. To gain control over subjects that are armed, actively resisting, and appear violent or threaten significant aggressive action when such use can be accomplished with a reasonable degree of safety to collateral citizens and officers.
    [Show full text]
  • Report to Congress on the Strategic Defense System Architecture (U)
    Sr:CfCr:T/NOfiOftN/fiOflM!flLY ReSTRICT!!) DATA DECLASSIFIED UNDER AUTHORITY OF THE INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL. E.O. 13526, SECTION 5.3(b)(3) ISCAP No. ;tt>09 - 0 a3> , document '1. REPORT TO CONGRESS ON THE STRATEGIC DEFENSE SYSTEM ARCHITECTURE (U) \.. 17 DECEMBER 1987 ', .. , ... ,:' Prepared by the Strategic Defense Initiative Organization Washington. D.C. 20301-7100 St!CRETfNOFORN/FORMERLV RESTRICTED DATA a,... M" ff}I /" seCRET/NOFORN/FORMERLV RESTRICTED DATA' REPORT TO CONGRESS ON 'THE STRATEGIC DEFENSE· SYSTEM ARCHITECTURE (U) 17 DECEMBER 1987 Prepared by the Strategic Defense Initiative Organization Washington, D.C. 20301-7100 SRCIR' T ABLE OF CONTENTS UST OF ACRONYMS ii I. INlROOUcnON 1 A. Purpose of Repon 1 B. Strategic Defense System Architecture Concept 1 II. STRATEGIC DEFENSE SYSTEM DESCRIPTION 3 A. Overview 3 B. Phased Deployment 4 C. Phase I 5 O. Description of Selected Architecture for Phase I 8 E. Follow-on Phases 11 III. STRATEGIC DEFENSE SYSTEM PHASE I 15 A. Strategic Defense Mission 17 B. System Characteristics 18 C. Concept of Operation 21 IV. 50S FOLLOW-ON PHASES CONCEPT OF OPERATION 27 V. ACQUISmON STRATEGY 29 A. Acquisition Approach 29 B. SOS Acquisition Strategy Elements 29 VI. ISSUES 31 A. Interaction With Interim Operational Command 31 B. Survivability 31 C. Discrimination 31 D. Affotdability 32 E. Lethality 32 F. Readiness 32 G. Security 33 H. Advanced Launch System 33 I. Industrial Base 33 1. Effectiveness in Natural and Nuclear Perturbed Environments 34 vn. SDS ARCIm'ECfURE DEVELOPMENT 35 A. SOS Srudies. - Phase I 35 B. Architecture Analysis - Phase I 35 C.
    [Show full text]
  • Terminal Ballistics- Part I SUBJECT FORENSIC SCIENCE
    SUBJECT FORENSIC SCIENCE Paper No. and Title PAPER No. 6: Forensic Ballistics Module No. and Title MODULE No.17: Terminal Ballistics - Part I Module Tag FSC_P6_M17 FORENSIC SCIENCE PAPER No.6: Forensic Ballistics MODULE No.17: Terminal Ballistics- Part I TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Penetration Potential 4. Concept of Wound Ballistics 5. Target Site 6. Identification of Entry Wound 7. Yaw and Wounds 8. Velocity of Missiles & Wounds 9. Constructional Features & Wounding Capability 10. Summary FORENSIC SCIENCE PAPER No.6: Forensic Ballistics MODULE No.17: Terminal Ballistics- Part I 1. Learning Outcomes After studying this module, you shall be able to know about- What is Terminal Ballistics What is penetration potential and the concept behind wound ballistics You will be also made familiar with the identification of entry wounds and the constructional features and wounding capabilities 2. Introduction Ballistics is the science involving study of motion of projectiles. The term Ballistics is derived from the Latin word “Ballistic” meaning a cross-bow like device for throwing stones by means of twisted ropes. When firing pin hits the primer, excessive heat is generated and the bullet (projectile) get pushed from the cartridge and start moving inside the barrel of a fire arm. This comes under the field of internal ballistics. The study of internal ballistics involves burning or combustion of grains of the propellants. The study is called internal ballistics so long as motion of projectile is inside the barrel of the weapon. As soon as the projectile leaves the muzzle end of the weapon the External ballistics comes into play and remain till the projectile hits the target.
    [Show full text]
  • PHYSICS Projectile Motion Investigation Manual
    PHYSICS Projectile Motion Investigation Manual PROJECTILE MOTION Table of Contents Overview In this investigation, students study projectile motion by exploring 2 Overview two-dimensional motion and how vectors are used to describe the 2 Outcomes trajectory of an object. They will observe the motion of an object 2 Time Requirements launched horizontally at various speeds and will learn how to predict the motion of the launched object by combining their prior 3 Background knowledge of kinematics with new knowledge of vectors and the 6 Materials trajectory of projectiles. 7 Safety 7 Technology Outcomes 8 Preparation • Describe what factors affect the trajectory of a projectile. 9 Activity 1 • Explain how vectors are used to describe two-dimensional and 10 Disposal and Cleanup projectile motion. • Predict the trajectory of a horizontally launched projectile using 10 Observations vectors and kinematic equations. Time Requirements Preparation .................................................................... 15 minutes Activity 1: Launching a Projectile in a Horizontal Direction ...................................... 30 minutes Key Personal protective equipment (PPE) follow photograph stopwatch link to results and required goggles gloves apron video submit warning corrosion flammable toxic environment health hazard Made ADA compliant by NetCentric Technologies using the CommonLook® software 2 Carolina Distance Learning Background Projectiles are objects that are given an initial questions can all be calculated by applying velocity and subsequently travel along their kinematic equations and some knowledge about trajectory (flight path) due to their own inertia. vectors. In sports, a projectile is a basketball that has Projectiles tend to follow a parabolic trajectory. been thrown through a hoop, a pitched baseball, If you draw a line that follows the movement or a golf ball that has been hit by a golf club.
    [Show full text]