Physical Cell ID Allocation in Cellular Networks

Total Page:16

File Type:pdf, Size:1020Kb

Physical Cell ID Allocation in Cellular Networks Linköping University | Department of Computer Science Master thesis, 30 ECTS | Informationsteknologi 2016 | LIU-IDA/LITH-EX-A--16/039--SE Physical Cell ID Allocation in Cellular Networks Sofia Nyberg Supervisor : Kaj Holmberg Examiner : Niklas Carlsson Linköpings universitet SE–581 83 Linköping +46 13 28 10 00 , www.liu.se Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och admin- istrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sam- manhang som är kränkande för upphovsmannenslitterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/. Copyright The publishers will keep this document online on the Internet – or its possible replacement – for a period of 25 years starting from the date of publication barring exceptional circum- stances. The online availability of the document implies permanent permission for anyone to read, to download, or to print out single copies for his/hers own use and to use it unchanged for non-commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional upon the con- sent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping Uni- versity Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its www home page: http://www.ep.liu.se/. c Sofia Nyberg Abstract In LTE networks, there are several properties that need to be carefully planned for the network to be well performing. As the networks’ traffic increases and the networks are getting denser, this planning gets even more important. The Physical Cell Id (PCI) is the identifier of a network cell in the physical layer. This property is limited to 504 values, and therefore needs to be reused in the network. If the PCI assignment is poorly planned, the risk for network conflicts is high. In this work, the aim is to develop a distributed approach where the planning is per- formed by the cells involved in the specific conflict. Initially, the PCI allocation problem is formulated mathematically and is proven to be NP-complete by a reduction to the vertex colouring problem. Two optimisation models are developed which are minimising the number of PCI changes and the number of PCIs used within the network respectively. An approach is developed which enlargers the traditional decision basis for a distributed approach by letting the confused cell request neighbour information from its confusion- causing neighbours. The approach is complemented with several decision rules for the confused cell to be able to make an as good decision as possible and by that mimic the be- haviour of the optimisation models. Three different algorithms are implemented using the approach as a basis. For evaluation purpose, two additional algorithms are implemented, one which is applicable to today’s standard and one inspired by the work by Amirijoo et al. The algorithms were tested against three different test scenarios where the PCI range was narrowed, the number of cells was increased and the network was extended. The algorithms were also tested on a small world network. The testing showed promising results for the approach, especially for larger and denser networks. Acknowledgments This report is a master thesis at the program Master of Science in Information Technology at the Institute of Technology at Linköping University. The study was conducted at Ericsson in Mjärdevi, Linköping. I would like to thank Ericsson and all people involved for giving me the opportunity and support to investigate this interesting subject. A special thanks to my supervisor Tobias Ahlström and Line Manager Ove Linnell. Also, I would like to thank my supervisor Kaj Holmberg at the Department of Mathematics (MAI) and my examiner Niklas Carlsson at the Department of Computer and Information Science (IDA) for their contribution in time and support. iv Contents Abstract iii Acknowledgments iv Contents v List of Figures viii List of Tables x 1 Introduction 1 1.1 Motivation . 3 1.2 Aim............................................ 3 1.3 Research Questions . 4 1.4 Limitations . 4 1.5 Terminology . 5 2 Background 6 2.1 Long Term Evolution . 6 2.1.1 E-UTRAN . 6 2.2 Self-organising Networks . 8 2.2.1 Automatic Neighbour Relation . 9 2.3 Physical Cell Identity . 11 2.3.1 The PCI Construction . 12 2.3.2 The PCI Management . 12 3 Graph-based Optimisation Formulation 15 3.1 Graph Theory . 15 3.2 Network Graph Representation . 16 3.2.1 Network Matrix Representation . 16 3.3 Problem Definitions . 17 3.4 Network Optimisation . 17 3.4.1 NP-completeness . 18 3.4.2 The Vertex Colouring Problem . 18 3.4.3 Problem Reduction . 19 3.5 Optimisation Models . 20 3.5.1 Minimum Number of PCI Changes . 20 3.5.2 Minimum Number of Used PCIs . 21 3.5.3 Optimisation Model with Multiple Goals . 21 3.5.4 Execution Limitations . 21 4 Allocation Algorithms 23 4.1 Related Approaches . 23 v 4.1.1 Centralised Approaches . 23 4.1.2 Decentralised Approaches . 24 4.2 The Suggested Approach . 26 4.3 The Algorithms . 28 4.3.1 Algorithm I - "Standard" . 28 4.3.2 Algorithm II - "Research" . 29 4.3.3 Algorithm III - "Basic" . 29 4.3.4 Algorithm IV - "Extended" . 29 4.3.5 Algorithm V - "Focused" . 30 5 Evaluation Methodology 32 5.1 The Simulation Environment . 32 5.1.1 Adding Additional Nodes . 34 5.1.2 Real Time Simulation . 34 5.2 Evaluation Scenarios . 35 5.2.1 PCI Restriction . 35 5.2.2 Neighbour Magnitude . 35 5.2.3 Network Extension . 36 5.2.4 Watts-Strogatz Small World Network . 36 5.3 Reliability and Validity . 37 6 Evaluation Results 38 6.1 Test Phase I . 38 6.1.1 PCI Restriction . 38 6.1.2 Neighbour Magnitude . 39 6.1.3 Network Extension . 41 6.2 Test Phase II . 45 6.2.1 Neighbour Magnitude . 45 6.2.2 Network Extension . 47 6.3 Test phase III . 47 6.3.1 Variation of β .................................. 48 6.3.2 Repetition of β ................................. 49 7 Discussion 50 7.1 Results . 50 7.1.1 Test Phase I . 50 7.1.2 Test Phase II . 52 7.1.3 Test Phase III . 52 7.2 The Algorithms . 53 7.2.1 Algorithm I - Standard . 53 7.2.2 Algorithm II - Research . 53 7.2.3 Algorithm III - Basic . 54 7.2.4 Algorithm IV - Extended . 54 7.2.5 Algorithm V - Focused . 56 7.3 The Optimisation Models . 57 7.3.1 Model Modifications . 57 7.3.2 Execution Possibilities . 57 7.4 The Test Environment . 58 7.4.1 Pros and Cons . 58 7.4.2 Alternative Methods . 59 7.5 Method . 59 7.6 The Work in a Wider Context . 60 8 Conclusion 61 8.1 Future Work . 61 Bibliography 63 List of Figures 1.1 Illustration of a collision. 2 1.2 Illustration of a confusion. 2 1.3 Terminology clarification. 5 2.1 E-UTRAN structure. 7 2.2 Illustration of the overlapping area where the handover from one cell to another is performed. 10 2.3 ECGI construction. ..
Recommended publications
  • Get SATA Cell D
    US 20100189035A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0189035 A1 Pehrsson et al. (43) Pub. Date: Jul. 29, 2010 (54) SERVICE AREAS IN CS DOMAIN SERVICES (86). PCT No.: PCT/EP2007/056278 (75) Inventors: Arne Pehrsson, Huddinge (SE); S371 (c)(1), Magnus Hallenstal, Taby (SE); (2), (4) Date: Feb. 22, 2010 Göran Rune, Linkoping (SE); Jari Publication Classification Vikberg, Jarna (SE); Andreas (51) Int. Cl. Witzel, Herzogenrath (DE) H0474/00 (2009.01) (52) U.S. Cl. ......................................... 370/328; 370/352 Correspondence Address: (57) ABSTRACT ERCSSON INC. 6300 LEGACY DRIVE, M/S EVR1-C-11 The invention provides a method of enabling the service level networks (e.g. CSoLTE or IMS CN) to provide location PLANO, TX 75024 (US) dependent services based on a circuit Switched domain from a service level network to a mobile station communicating (73) Assignee: TELEFONAKTIEBOLAGET with a cell in a radio access network that utilises a packet LM ERICSSON (PUBL), Switched domain. The method includes providing cell loca Stockholm (SE) tion information relating to the location of the cell; determin ing a Service Area Identifier based on the cell location infor mation; and providing the Service Area Identifier to the (21) Appl. No.: 12/666,036 service level network. The Service Area Identifier is then used for different location based services and applications in the (22) PCT Filed: Jun. 22, 2007 service level network nodes. Get SATA cell D Send SASA Patent Application Publication Jul. 29, 2010 Sheet 1 of 5 US 2010/O189035 A1 Contro interface Internet, " see Data litterface Operator Services, etc.
    [Show full text]
  • LTE-M Deployment Guide to Basic Feature Set Requirements
    LTE-M DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS JUNE 2019 LTE-M DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS Table of Contents 1 EXECUTIVE SUMMARY 4 2 INTRODUCTION 5 2.1 Overview 5 2.2 Scope 5 2.3 Definitions 6 2.4 Abbreviations 6 2.5 References 9 3 GSMA MINIMUM BAseLINE FOR LTE-M INTEROPERABILITY - PROBLEM STATEMENT 10 3.1 Problem Statement 10 3.2 Minimum Baseline for LTE-M Interoperability: Risks and Benefits 10 4 LTE-M DATA ARCHITECTURE 11 5 LTE-M DePLOYMENT BANDS 13 6 LTE-M FeATURE DePLOYMENT GUIDE 14 7 LTE-M ReLEAse 13 FeATURes 15 7.1 PSM Standalone Timers 15 7.2 eDRX Standalone 18 7.3 PSM and eDRX Combined Implementation 19 7.4 High Latency Communication 19 7.5 GTP-IDLE Timer on IPX Firewall 20 7.6 Long Periodic TAU 20 7.7 Support of category M1 20 7.7.1 Support of Half Duplex Mode in LTE-M 21 7.7.2 Extension of coverage features (CE Mode A / B) 21 7.8 SCEF 22 7.9 VoLTE 22 7.10 Connected Mode Mobility 23 7.11 SMS Support 23 7.12 Non-IP Data Delivery (NIDD) 24 7.13 Connected-Mode (Extended) DRX Support 24 7.14 Control Plane CIoT Optimisations 25 7.15 User Plane CIoT Optimisations 25 7.16 UICC Deactivation During eDRX 25 7.17 Power Class 26 LTE-M DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS 8 LTE-M ReLEAse 14 FeATURes 27 8.1 Positioning: E-CID and OTDOA 27 8.2 Higher data rate support 28 8.3 Improvements of VoLTE and other real-time services 29 8.4 Mobility enhancement in Connected Mode 29 8.5 Multicast transmission/Group messaging 29 8.6 Relaxed monitoring for cell reselection 30 8.7 Release Assistance Indication
    [Show full text]
  • Investigation of Handovers in 3G Umts Traffic Classes
    MEE10:16 INVESTIGATION OF HANDOVERS IN 3G UMTS TRAFFIC CLASSES Maqsood Muhammad Khan [email protected] Muhammad Saad Khan [email protected] This thesis is presented as part of Degree of Master of Science in Electrical Engineering Blekinge Institute of Technology March 2010 Blekinge Institute of Technology School of Computing Supervisor: Prof. Dr. Adrian Popescu Examiner: Prof. Dr. Adrian Popescu ii ABSTRACT The Universal Mobile Telecommunication systems are one of the emerging cellular phone technologies which are known as the 3G systems. It support the high speed data transfer, speech, web browsing, email, video telephony, multimedia and the audio streaming. These services are divided in to the classes depending upon the QoS requirements. With the development of these cellular networks, a major problem came up; it was the call handover from one cell to the other cell during an ongoing session without dropping the connection with the base station. A lot of techniques were developed and used to cope with this major issue. The user’s movement is a dynamic process considering its location. This means that the mobile users can change its way any time with any speed, so there should be a mechanism and a way that the network should be aware of this process. For this purpose different types of handovers techniques are used which include soft, hard and softer handovers. The thesis work is about the investigation of different handovers in the 3G UMTS network which is the vital issue to the network to maintain the user’s connection during in the ongoing session with the user’s movement.
    [Show full text]
  • Cell Oscillation Resolution in Mobility Profile Building Cell Oscillation
    Cell oscillation resolution in mobility profile building Shafqat Ali Shad 1, Enhong Chen 2 1 Department of Computer Science and Technology University of Science and Technology of China Huangshan Road, Hefei, 230027 Anhui, China [email protected] 2 Department of Computer Science and Technology University of Science and Technology of China Huangshan Road, Hefei, 230027 Anhui, China [email protected] Abstract depending on its configuration and methods used. As for Mobility profile building became extensively examined mobile users GPS is discouraging in term of high power area in Location based services (LBS) through extraction consumption and extra equipment installation in network. of significant locations. Mobility traces are recorded under This makes its use limited for positioning or location three reference positioning systems that are Satellite based extraction. While in case of Local positioning systems i.e. i.e. GPS, Network based i.e. GSM and Local positioning Bluetooth, RFID, Infrared, Wifi, IrDA they operate in i.e. WLAN, RFID, IrDA. Satellite based and local limited space area due to of its short range signal positioning due to of high power consumption, additional capabilities. So only viable solution for position extraction resource installation, low accuracy and space limitation are widely spread and examined is Network position system less encouraging. So network based positioning i.e. GSM i.e. GSM. While in case of GSM, location exaction can be is only viable solution for mobility tracing through Cell done through Assisted-GPS (A-GPS), Time difference of global identity (CGI). CGI presents the Cell-ids to extract arrival (TDOA) and Enhanced observed time difference the significant locations from mobility history.
    [Show full text]
  • Miot Location in Roaming Version 1.0 20 May 2020
    GSM Association Confidential - Full, Rapporteur, Associate and Affiliate Members Official Document NG.120 - MIoT Location in Roaming MIoT Location in Roaming Version 1.0 20 May 2020 This is a Non-binding Permanent Reference Document of the GSMA Security Classification: Confidential - Full, Rapporteur, Associate and Affiliate Members Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is confidential to the Association and is subject to copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without the prior written approval of the Association. Copyright Notice Copyright © 2020 GSM Association Disclaimer The GSM Association (“Association”) makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained in this document may be subject to change without prior notice. Antitrust Notice The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. V1.0 Page 1 of 37 GSM Association Confidential - Full, Rapporteur, Associate and Affiliate Members Official Document NG.120 - MIoT Location
    [Show full text]
  • On the Role of Infrastructure Sharing for Mobile Network Operators in Emerging Markets
    On the Role of Infrastructure sharing for Mobile Network Operators in Emerging Markets Djamal-Eddine Meddour1, Tinku Rasheed2 and Yvon Gourhant1 1France Telecom-Orange R&D, Lannion, France 2CREATE-NET Research Center, Trento, Italy Abstract The traditional model of single ownership of all the physical network elements and network layers by mobile network operators is beginning to be challenged. This has been attributed to the rapid and complex technology migration compounded with rigorous regulatory requirements and ever increasing capital expenditures. These trends, combined together with the increasing competition, rapid commoditization of telecommunication equipments and rising separation of network and service provisioning are pushing the operators to adopt multiple strategies, with network infrastructure sharing in the core and radio access networks emerging as a more radical mechanism to substantially and sustainably improve network costs. Through infrastructure sharing, developing countries and other emerging economies can harness the technological, market and regulatory developments that have fostered affordable access to mobile and broadband services. Similarly, the network operators entering or consolidating in the emerging markets can aim for substantial savings on capital and operating expenses. The present paper aims to investigate the current technological solutions and regulatory and the technical-economical dimensions in connection with the sharing of mobile telecommunication networks in emerging countries. We analyze the estimated savings on capital and operating expenses, while assessing the technical constraints, applicability and benefits of the network sharing solutions in an emerging market context. Keywords : - Infrastructure sharing, mobile network sharing, RAN sharing, passive sharing, active sharing, network management, emerging markets. 1. Introduction Mobile telecommunication services have shown impressive uptake in the past decade.
    [Show full text]
  • UMTS Overview
    UMTS overview David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh 2720 Slides 12 UMTS • ETSI proposed GSM/NA-TDMA /GPRS evolution under name Universal Mobile Telecom. Services (UMTS) • Most of 3G licenses in Europe required operator to deploy a UMTS system covering x% of population by a specific date y – Germany: 25% of population by 12/03, 50% by 12/05 –Norway: 80% of population by 12/04 – In most countries operators have asked for and received deployment delay due to dot.com bust and equipment delays • Estimate 2.5 Billion euros to deploy a 5000 base station UMTS system • According to UMTS Forum – More than 90 million UMTS users as of 10/06 on operating networks in more than 50 countries – Most deployments of UMTS in Europe (~40% of market) and Pacific Rim (~38% market) Telcom 2720 2 UMTS • UMTS is a complete system architecture – As in GSM emphasis on standardized interfaces • mix and match equipment from various vendors – Simple evolution from GPRS – allows one to reuse/upgrade some of the GPRS backhaul equipment – Backward compatible handsets and signaling to support intermode and intersystem handoffs • Intermode; TDD to FDD, FDD to TDD • Intersystem: UMTS to GSM or UMTS to GPRS – UMTS supports a variety of user data rates and both packet and circuit switched services – System composed of three main subsystems Telcom 2720 3 UMTS System Architecture Node B MSC/VLR GMSC PSTN RNC USIM Node B HLR ME Internet Node B RNC SGSN GGSN Node B UE UTRAN CN External Networks • UE (User Equipment) that interfaces with the user • UTRAN (UMTS Terrestrial Radio Access Network) handles all radio related functionality – WCDMA is radio interface standard here.
    [Show full text]
  • UMTS); LTE; Nq and Nq' Application Protocol (Nq-AP); Stage 3 (3GPP TS 29.405 Version 15.0.0 Release 15
    ETSI TS 129 405 V15.0.0 (2018-07) TECHNICAL SPECIFICATION Universal Mobile Telecommunications System (UMTS); LTE; Nq and Nq' Application Protocol (Nq-AP); Stage 3 (3GPP TS 29.405 version 15.0.0 Release 15) 3GPP TS 29.405 version 15.0.0 Release 15 1 ETSI TS 129 405 V15.0.0 (2018-07) Reference RTS/TSGC-0429405vf00 Keywords LTE,UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • ETSI TS 123 060 V3.6.0 (2001-01) Technical Specification
    ETSI TS 123 060 V3.6.0 (2001-01) Technical Specification Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); General Packet Radio Service (GPRS); Service description; Stage 2 (3GPP TS 23.060 version 3.6.0 Release 1999) R GLOBAL SYSTEM FOR MOBILE COMMUNICATIONS 3GPP TS 23.060 version 3.6.0 Release 1999 1 ETSI TS 123 060 V3.6.0 (2001-01) Reference RTS/TSGS-0223060UR4 Keywords GSM, UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.:+33492944200 Fax:+33493654716 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/ If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • Handbook on the Use of Mobile Phone Data for Official Statistics
    Handbook on the Use of Mobile Phone Data for Official Statistics UN Global Working Group on Big Data for Official Statistics September 2019 1 Table of Contents Introduction ........................................................................................................................... 4 List of Definitions and Abbreviations .................................................................................... 5 1 Applications ................................................................................................................... 9 1.1 Mobile positioning data used in official statistics production ................................... 9 Travel statistics in Estonia .............................................................................................. 9 Inbound cross-border visitor arrival statistics in Indonesia .............................................. 9 1.2 Mobile positioning data used in research and pilots applicable for statistics ........... 10 Domain: Tourism and event statistics ........................................................................... 10 Domain: Population statistics ........................................................................................ 12 Domain: Migration statistics ......................................................................................... 14 Domain: Commuting statistics ...................................................................................... 15 Domain: Traffic flow statistics .....................................................................................
    [Show full text]
  • UMTS); UTRAN Overall Description (3G TS 25.401 Version 3.1.0 Release 1999) (3G TS 25.401 Version 3.1.0 Release 1999) 1 ETSI TS 125 401 V3.1.0 (2000-01)
    ETSI TS 125 401 V3.1.0 (2000-01) Technical Specification Universal Mobile Telecommunications System (UMTS); UTRAN Overall Description (3G TS 25.401 version 3.1.0 Release 1999) (3G TS 25.401 version 3.1.0 Release 1999) 1 ETSI TS 125 401 V3.1.0 (2000-01) Reference DTS/TSGR-0325401U Keywords UMTS ETSI Postal address F-06921 Sophia Antipolis Cedex - FRANCE Office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.:+33492944200 Fax:+33493654716 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Internet [email protected] Individual copies of this ETSI deliverable can be downloaded from http://www.etsi.org If you find errors in the present document, send your comment to: [email protected] Important notice This ETSI deliverable may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2000. All rights reserved. ETSI (3G TS 25.401 version 3.1.0 Release 1999) 2 ETSI TS 125 401 V3.1.0 (2000-01) Intellectual Property Rights IPRs essential or potentially essential to the present document may have been declared to ETSI.
    [Show full text]
  • We Know Where You Are!
    2016 8th International Conference on Cyber Conflict Permission to make digital or hard copies of this publication for internal use within NATO and for personal or educational use when for non-profit or non-commercial Cyber Power purposes is granted providing that copies bear this notice and a full citation on the N.Pissanidis, H.Rõigas, M.Veenendaal (Eds.) first page. Any other reproduction or transmission requires prior written permission by NATO CCD COE. 2016 © NATO CCD COE Publications, Tallinn We Know Where You Are! Siddharth Prakash Rao Dr Silke Holtmanns Department of Computer Science Bell Labs, Nokia Aalto University, Finland Espoo, Finland [email protected] [email protected] Dr Ian Oliver Dr Tuomas Aura Bell Labs, Nokia Department of Computer Science Espoo, Finland Aalto University, Finland [email protected] [email protected] Abstract: Mobile network technologies require some degree of tracking of user location, specifically user equipment tracking, as part of their fundamental mechanism of working. Without this basic function, features such as hand-over between cells would not work. Since mobile devices are typically associated with a single person, this provides a potential mechanism for user location surveillance. Network operators are bound by strict privacy legislation. However, spying by certain agencies, hackers and even advertisers without the users’ or operators’ knowledge has become a serious issue. In this article, we introduce and explain all known recent attacks on mobile networks that compromised user privacy. We focus on attacks using the Signalling System 7 (SS7) protocol as the interconnection interface between operators mainly in GSM networks.
    [Show full text]