Physical Cell ID Allocation in Cellular Networks
Total Page:16
File Type:pdf, Size:1020Kb
Linköping University | Department of Computer Science Master thesis, 30 ECTS | Informationsteknologi 2016 | LIU-IDA/LITH-EX-A--16/039--SE Physical Cell ID Allocation in Cellular Networks Sofia Nyberg Supervisor : Kaj Holmberg Examiner : Niklas Carlsson Linköpings universitet SE–581 83 Linköping +46 13 28 10 00 , www.liu.se Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och admin- istrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sam- manhang som är kränkande för upphovsmannenslitterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/. Copyright The publishers will keep this document online on the Internet – or its possible replacement – for a period of 25 years starting from the date of publication barring exceptional circum- stances. The online availability of the document implies permanent permission for anyone to read, to download, or to print out single copies for his/hers own use and to use it unchanged for non-commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional upon the con- sent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping Uni- versity Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its www home page: http://www.ep.liu.se/. c Sofia Nyberg Abstract In LTE networks, there are several properties that need to be carefully planned for the network to be well performing. As the networks’ traffic increases and the networks are getting denser, this planning gets even more important. The Physical Cell Id (PCI) is the identifier of a network cell in the physical layer. This property is limited to 504 values, and therefore needs to be reused in the network. If the PCI assignment is poorly planned, the risk for network conflicts is high. In this work, the aim is to develop a distributed approach where the planning is per- formed by the cells involved in the specific conflict. Initially, the PCI allocation problem is formulated mathematically and is proven to be NP-complete by a reduction to the vertex colouring problem. Two optimisation models are developed which are minimising the number of PCI changes and the number of PCIs used within the network respectively. An approach is developed which enlargers the traditional decision basis for a distributed approach by letting the confused cell request neighbour information from its confusion- causing neighbours. The approach is complemented with several decision rules for the confused cell to be able to make an as good decision as possible and by that mimic the be- haviour of the optimisation models. Three different algorithms are implemented using the approach as a basis. For evaluation purpose, two additional algorithms are implemented, one which is applicable to today’s standard and one inspired by the work by Amirijoo et al. The algorithms were tested against three different test scenarios where the PCI range was narrowed, the number of cells was increased and the network was extended. The algorithms were also tested on a small world network. The testing showed promising results for the approach, especially for larger and denser networks. Acknowledgments This report is a master thesis at the program Master of Science in Information Technology at the Institute of Technology at Linköping University. The study was conducted at Ericsson in Mjärdevi, Linköping. I would like to thank Ericsson and all people involved for giving me the opportunity and support to investigate this interesting subject. A special thanks to my supervisor Tobias Ahlström and Line Manager Ove Linnell. Also, I would like to thank my supervisor Kaj Holmberg at the Department of Mathematics (MAI) and my examiner Niklas Carlsson at the Department of Computer and Information Science (IDA) for their contribution in time and support. iv Contents Abstract iii Acknowledgments iv Contents v List of Figures viii List of Tables x 1 Introduction 1 1.1 Motivation . 3 1.2 Aim............................................ 3 1.3 Research Questions . 4 1.4 Limitations . 4 1.5 Terminology . 5 2 Background 6 2.1 Long Term Evolution . 6 2.1.1 E-UTRAN . 6 2.2 Self-organising Networks . 8 2.2.1 Automatic Neighbour Relation . 9 2.3 Physical Cell Identity . 11 2.3.1 The PCI Construction . 12 2.3.2 The PCI Management . 12 3 Graph-based Optimisation Formulation 15 3.1 Graph Theory . 15 3.2 Network Graph Representation . 16 3.2.1 Network Matrix Representation . 16 3.3 Problem Definitions . 17 3.4 Network Optimisation . 17 3.4.1 NP-completeness . 18 3.4.2 The Vertex Colouring Problem . 18 3.4.3 Problem Reduction . 19 3.5 Optimisation Models . 20 3.5.1 Minimum Number of PCI Changes . 20 3.5.2 Minimum Number of Used PCIs . 21 3.5.3 Optimisation Model with Multiple Goals . 21 3.5.4 Execution Limitations . 21 4 Allocation Algorithms 23 4.1 Related Approaches . 23 v 4.1.1 Centralised Approaches . 23 4.1.2 Decentralised Approaches . 24 4.2 The Suggested Approach . 26 4.3 The Algorithms . 28 4.3.1 Algorithm I - "Standard" . 28 4.3.2 Algorithm II - "Research" . 29 4.3.3 Algorithm III - "Basic" . 29 4.3.4 Algorithm IV - "Extended" . 29 4.3.5 Algorithm V - "Focused" . 30 5 Evaluation Methodology 32 5.1 The Simulation Environment . 32 5.1.1 Adding Additional Nodes . 34 5.1.2 Real Time Simulation . 34 5.2 Evaluation Scenarios . 35 5.2.1 PCI Restriction . 35 5.2.2 Neighbour Magnitude . 35 5.2.3 Network Extension . 36 5.2.4 Watts-Strogatz Small World Network . 36 5.3 Reliability and Validity . 37 6 Evaluation Results 38 6.1 Test Phase I . 38 6.1.1 PCI Restriction . 38 6.1.2 Neighbour Magnitude . 39 6.1.3 Network Extension . 41 6.2 Test Phase II . 45 6.2.1 Neighbour Magnitude . 45 6.2.2 Network Extension . 47 6.3 Test phase III . 47 6.3.1 Variation of β .................................. 48 6.3.2 Repetition of β ................................. 49 7 Discussion 50 7.1 Results . 50 7.1.1 Test Phase I . 50 7.1.2 Test Phase II . 52 7.1.3 Test Phase III . 52 7.2 The Algorithms . 53 7.2.1 Algorithm I - Standard . 53 7.2.2 Algorithm II - Research . 53 7.2.3 Algorithm III - Basic . 54 7.2.4 Algorithm IV - Extended . 54 7.2.5 Algorithm V - Focused . 56 7.3 The Optimisation Models . 57 7.3.1 Model Modifications . 57 7.3.2 Execution Possibilities . 57 7.4 The Test Environment . 58 7.4.1 Pros and Cons . 58 7.4.2 Alternative Methods . 59 7.5 Method . 59 7.6 The Work in a Wider Context . 60 8 Conclusion 61 8.1 Future Work . 61 Bibliography 63 List of Figures 1.1 Illustration of a collision. 2 1.2 Illustration of a confusion. 2 1.3 Terminology clarification. 5 2.1 E-UTRAN structure. 7 2.2 Illustration of the overlapping area where the handover from one cell to another is performed. 10 2.3 ECGI construction. ..