Magnetism, Physical State (Solid, Liquid, and Gas), Relative Density

Total Page:16

File Type:pdf, Size:1020Kb

Magnetism, Physical State (Solid, Liquid, and Gas), Relative Density I know matter has measurable physical properties and those properties determine how matter is classified, changed, and used. I can classify matter based on physical properties, including mass, magnetism, physical state (solid, liquid, and gas), relative density (sinking and floating), solubility in water, and the ability to conduct or insulate thermal energy or electric energy. (5.5A) 5.5AB 4.5AB 3.5ABC What is Matter? • Everything in the universe that has MASS and takes up space (has volume) is classified as MATTER. Vocabulary Preview • Matter • Density • Physical Properties • Sinking • Mass • Floating • Magnetism • Conduct • Physical State • Insulate – Solid – Liquid • Thermal energy – Gas • Electric energy • Volume • Mixtures • Temperature • Maintain • Heating • Iron Filings • Cooling • Solution • Boiling point • Freezing point • Solubility • Dissolve What is Matter? • All matter is made up of small particles called molecules. • These molecules are so small that they can be seen only with the strongest microscopes. • The arrangement of molecules and the amount of energy in the molecules give matter properties (characteristics/qualities). Physical Properties • The physical properties of matter are measurable. • Physical properties are features you can observe with your senses. • Physical properties are characteristics you can measure with a tool. • Physical properties are qualities that can be changed without changing the matter itself. What are the physical properties of matter? 1. Mass 2. Volume 3. Temperature 4. Magnetism 5. Physical State (solid, liquid, gas) 6. Relative Density 7. Solubility in Water 8. Ability to Conduct thermal energy or electric energy 9. Ability to Insulate thermal energy or electric energy Mass • Mass is the amount of matter something contains. • Scientists measure the mass of matter instead of the weight of matter. • Mass is measured in metric units. • Mass is measured with a balance. • Mass is not effected by gravity like weight is. The mass of a dog is the same on Earth as it is on the moon. The weight of a dog is greater on Earth than on the moon. Volume • All matter has volume. • Volume is the amount of space something takes up. • Volume is measured in two ways. – 1. use a ruler: length x width x height – 2. use a graduated cylinder (displacement) Density • Items that are not dense will float. • Items that are very dense will sink. • Relative Density is the physical property of matter that compares the amount of matter to the space taken up. • When we talk about density, we are usually referring to “how crowded” the molecules are. • Density can be measured in grams per milliliter ( g/ml ). • Solids are the densest phase of matter. • Gases are the least dense. Magnetism • Magnetism is a type of force, an attraction, that pulls across a distance. • Matter that contains Nickel, Iron, or Cobalt are magnetic. • Steel is made of Iron, so a magnet attracts anything made of steel like paper clips, staples, and food cans. • Not all metals are attracted to a magnet. The metal must contain iron to be magnetic. A magnet does NOT attract aluminum, most coins, glass, plastic, wood, or rubber. • The center of the earth is iron which is why we have magnetic poles and why a compass works. • A magnet is an object that attracts certain metals (mainly iron). • One end of a magnet is called the south pole. The other end is called the north pole. • One end of a magnet repels while the other attracts. • Opposite poles attract. • The same poles repel. Temperature • Temperature measures the physical property of ‘how hot’ or ‘how cold’ material is. • Celsius is the common unit of measurement for temperature C • Thermometers are the scientific tools used to measure temperature. Boiling point is the temperature at which something becomes a gas. Water has a boiling point of 100 ° C. This means that at 100° C, water begins to change from a liquid to a gas. Melting point is the temperature at which something becomes a liquid. Water has a melting point of 0° C. This means that at 0° C, water in the form of ice begins to change from a solid to a liquid. Freezing point is the temperature at which something becomes a solid. Water has a freezing point of 0° C. This means that at 0° C, water begins to change from a liquid to a solid. Conductors of Heat Energy • Materials that DO transfer heat energy from higher temperature to lower temperature areas. Heat energy flow **************************************************************************************************************************************************** • Examples – materials made of metal and glass Conduction means allowing the transfer of heat from a higher temperature area to a lower temperature area. TEKS 5.7A Insulators of Heat Energy • A material that does NOT transfer heat readily Heat energy Insulator ************************************************************************************************************************************* • Examples – materials made of rubber, wood, cloth – materials that have air pockets Insulation means providing a barrier to the flow of energy, in this case, heat. TEKS 5.7A Heat insulation is also called thermal insulation The blanket keeps body heat (heat energy) close to the boy. Heat energy is not transferred into the surrounding air. The house insulation in the walls and attic will slow down the transfer of heat. In cold weather, inside a warm house will be warmer than the outside temperature. In hot weather, inside a cool house will be cooler than the outside temperature. The styrofoam cup slows down heat transfer. A cold drink in the cup will stay colder than the surrounding air. A hot drink in the cup will stay hotter than the surrounding air. TEKS 5.7A Practice your learning Conductors Insulators • Describe conductors. • Describe insulators. • Give an example of a • Give an example of an conductor. insulator. • Describe a practical • Describe a practical use of a heat use of a heat conductor. insulator. TEKS 5.7A The Physical States of Matter Solids • A solid is matter that has a definite shape and takes up a definite amount of space. • The particles in a solid are close together like neat and even stacks of tiny balls. • The particles are vibrating. Liquids • A liquid is matter that takes the shape of its container and takes up a definite amount of space. • When matter is a liquid, its particles slip and slide around each other. • They move from place to place, but they still stay close to each other. • If you pour a liquid from one container than the other, the amount of matter in the liquid stays the same Gases • A gas is matter that has no definite shape and takes up no definite amount of space. • Like liquid particles the particles in gases are not arranged in any pattern. • Unlike liquids, particles in gases don’t stay close together. • This is because the particles in gases are moving much faster than the particles in liquids. How does matter change? Matter • Can be changed from one state to another and back by heating or cooling PHASE CHANGES Description of Term for Phase Heat Movement During Phase Change Change Phase Change Heat goes into Solid to Melting the solid as it liquid melts. Heat leaves the Liquid to Freezing liquid as it solid freezes. PHASE CHANGES Description of Term for Phase Heat Movement During Phase Change Change Phase Change Vaporization, Liquid to which includes Heat goes into the gas boiling and liquid as it vaporizes. evaporation Heat leaves the gas Gas to liquid Condensation as it condenses. Heat goes into the Solid to gas Sublimation solid as it sublimates. What is happening? STARTS CHANGES TO WHAT HAPPENED? Solid Liquid Liquid Gas Liquid Solid Gas Liquid What happens when we mix matter? 5.5 CD 4.5C 5.3D Mixture – a combination of two or more materials that can be separated •Each material (substance) keeps most of its own physical properties. Solution – a transparent or translucent liquid mixture •Solutions are often solids dissolved into liquids. •Solutions can also be liquids dissolved into liquids. •The physical properties of the ingredients change in a solution. Solubility • Solubility is the physical property which describes how easily a substance breaks down smaller and smaller pieces until it gets so small that it dissolves and you can no longer see it. • If something is soluble it means it will dissolve. • A solid dissolves when it mixes evenly with the liquid and disappears. • A liquid dissolves when it mixes evenly with another liquid and disappears. .
Recommended publications
  • Electrodynamics of Topological Insulators
    Electrodynamics of Topological Insulators Author: Michael Sammon Advisor: Professor Harsh Mathur Department of Physics Case Western Reserve University Cleveland, OH 44106-7079 May 2, 2014 0.1 Abstract Topological insulators are new metamaterials that have an insulating interior, but a conductive surface. The specific nature of this conducting surface causes a mixing of the electric and magnetic fields around these materials. This project, investigates this effect to deepen our understanding of the electrodynamics of topological insulators. The first part of the project focuses on the fields that arise when a current carrying wire is brought near a topological insulator slab and a cylindrical topological insulator. In both problems, the method of images was able to be used. The result were image electric and magnetic currents. These magnetic currents provide the manifestation of an effect predicted by Edward Witten for Axion particles. Though the physics is extremely different, the overall result is the same in which fields that seem to be generated by magnetic currents exist. The second part of the project begins an analysis of a topological insulator in constant electric and magnetic fields. It was found that both fields generate electric and magnetic dipole like responses from the topological insulator, however the electric field response within the material that arise from the applied fields align in opposite directions. Further investigation into the effect this has, as well as the overall force that the topological insulator experiences in these fields will be investigated this summer. 1 List of Figures 0.4.1 Dyon1 fields of a point charge near a Topological Insulator .
    [Show full text]
  • Questions: Physical Properties and 7 Step Process
    Questions: Physical Properties and 7 Step Process 1. Why does a water-saturated sandstone typically have a higher P-wave velocity than a dry sandstone? A saturated sandstone: a. is more dense b. has a larger bulk modulus c. has a larger shear modulus d. has a higher tensile strength 2. The relative permittivity of a given rock is considered large when: a. it contains a lot of pore water b. an applied electric field results in a larger electric dipole moment c. it has a value of 30 d. b and c are correct e. a,b and c are correct 3. You measure a resistance of 16 kΩ between two parallel faces of a 2cm x 2cm x 2cm cube. Determine the resistivity. a. 320 Ωm b. 800000 Ωm c. 32000 Ωm d. 8000 Ωm 4. You are flying a gravity survey over a sedimentary basin. The flight path crosses a known dyke. What would be the expected gravity response and why? a. Gravity high over the dyke; the dyke is more dense than the background b. Gravity low over the dyke; the dyke is less dense than the background c. Gravity high over the dyke; the dyke is less dense than the background d. Gravity low over the dyke; the dyke is more dense than the background 5. You are building a road through known active Karst terrain in Ireland. Which set of physical property contrasts would be most diagnostic for locating regions where sink- holes could form? a. Karstified: low density, Limestone: high density b. Karstified: low resistivity, Limestone: high resistivity c.
    [Show full text]
  • Modulation of Crystal and Electronic Structures in Topological Insulators by Rare-Earth Doping
    Modulation of crystal and electronic structures in topological insulators by rare-earth doping Zengji Yue*, Weiyao Zhao, David Cortie, Zhi Li, Guangsai Yang and Xiaolin Wang* 1. Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2500, Australia 2. ARC Centre for Future Low-Energy Electronics Technologies (FLEET), University of Wollongong, Wollongong, NSW 2500, Australia Email: [email protected]; [email protected]; Abstract We study magnetotransport in a rare-earth-doped topological insulator, Sm0.1Sb1.9Te3 single crystals, under magnetic fields up to 14 T. It is found that that the crystals exhibit Shubnikov– de Haas (SdH) oscillations in their magneto-transport behaviour at low temperatures and high magnetic fields. The SdH oscillations result from the mixed contributions of bulk and surface states. We also investigate the SdH oscillations in different orientations of the magnetic field, which reveals a three-dimensional Fermi surface topology. By fitting the oscillatory resistance with the Lifshitz-Kosevich theory, we draw a Landau-level fan diagram that displays the expected nontrivial phase. In addition, the density functional theory calculations shows that Sm doping changes the crystal structure and electronic structure compared with pure Sb2Te3. This work demonstrates that rare earth doping is an effective way to manipulate the Fermi surface of topological insulators. Our results hold potential for the realization of exotic topological effects
    [Show full text]
  • AC Measurement System (ACMS) Option User's Manual
    Physical Property Measurement System AC Measurement System (ACMS) Option User’s Manual Part Number 1084-100 C-1 Quantum Design 11578 Sorrento Valley Rd. San Diego, CA 92121-1311 USA Technical support (858) 481-4400 (800) 289-6996 Fax (858) 481-7410 Fourth edition of manual completed June 2003. Trademarks All product and company names appearing in this manual are trademarks or registered trademarks of their respective holders. U.S. Patents 4,791,788 Method for Obtaining Improved Temperature Regulation When Using Liquid Helium Cooling 4,848,093 Apparatus and Method for Regulating Temperature in a Cryogenic Test Chamber 5,311,125 Magnetic Property Characterization System Employing a Single Sensing Coil Arrangement to Measure AC Susceptibility and DC Moment of a Sample (patent licensed from Lakeshore) 5,647,228 Apparatus and Method for Regulating Temperature in Cryogenic Test Chamber 5,798,641 Torque Magnetometer Utilizing Integrated Piezoresistive Levers Foreign Patents U.K. 9713380.5 Apparatus and Method for Regulating Temperature in Cryogenic Test Chamber CONTENTS Table of Contents PREFACE Contents and Conventions ...............................................................................................................................vii P.1 Introduction .......................................................................................................................................................vii P.2 Scope of the Manual..........................................................................................................................................vii
    [Show full text]
  • Lab 1 - Physical Properties of Minerals
    Page - Lab 1 - Physical Properties of Minerals All rocks are composed of one or more minerals. In order to be able to identify rocks you have to be able to recognize those key minerals that make of the bulk of rocks. By definition, any substance is classified as a mineral if it meets all 5 of the following criteria: - is naturally occurring (ie. not man-made); - solid (not liquid or gaseous); - inorganic (not living and never was alive); - crystalline (has an orderly, repetitive atomic structure); - a definite chemical composition (you can write a discrete chemical formula for any mineral). Identifying an unknown mineral is like identifying any group of unknowns (leaves, flowers, bugs... etc.) You begin with a box, or a pile, of unknown minerals and try to find any group features in the samples that will allow you to separate them into smaller and smaller piles, until you are down to a single mineral and a unique name. For minerals, these group features are called physical properties. Physical properties are any features that you can use your 5 senses (see, hear, feel, taste or smell) to aid in identifying an unknown mineral. Mineral physical properties are generally organized in a mineral key and the proper use of this key will allow you to name your unknown mineral sample. The major physical properties will be discussed briefly below in the order in which they are used to identify an unknown mineral sample. Luster Luster is the way that a mineral reflects light. There are two major types of luster; metallic and non-metallic luster.
    [Show full text]
  • Properties of Matter
    Properties of Matter Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook®, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform®. Copyright © 2013 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution/Non- Commercial/Share Alike 3.0 Unported (CC BY-NC-SA) License (http://creativecommons.org/licenses/by-nc-sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), which is incorporated herein by this reference.
    [Show full text]
  • Dielectric Properties and Other Physical Properties of Low-Acyl Gellan Gel As Relevant to Microwave Assisted Pasteurization Proc
    Journal of Food Engineering 149 (2015) 195–203 Contents lists available at ScienceDirect Journal of Food Engineering journal homepage: www.elsevier.com/locate/jfoodeng Dielectric properties and other physical properties of low-acyl gellan gel as relevant to microwave assisted pasteurization process ⇑ Wenjia Zhang a, Donglei Luan a, Juming Tang a, , Shyam S. Sablani a, Barbara Rasco b, Huimin Lin a, Fang Liu a a Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, United States b UI/WSU bi-State School of Food Science and Human Nutrition, Washington State University, Pullman, WA 99164-6120, United States article info abstract Article history: Various model foods were needed as chemical marker carriers for the heating pattern determination in Received 1 April 2014 developing microwave heating processes. It is essential that these model foods have matching physical Received in revised form 5 October 2014 properties with the food products that will be microwave processed, such as meat, vegetables, pasta, Accepted 13 October 2014 etc. In this study, the physical properties of low acyl gellan gel were investigated to evaluate its suitability Available online 22 October 2014 to be used as a possible model food for the development of single mode 915 MHz microwave assisted pasteurization processes. These physical properties included the dielectric properties, gel strength and Keywords: water holding capacities. In order to adjust the dielectric constant and loss factor, various amounts of Low acyl gellan gel sucrose (0, 0.1, 0.3 and 0.5 g/mL (solution)) and salt (0, 100, 200, and 300 mM) were added to 1% gellan Dielectric properties 2+ Gel strength gel (with 6 mM Ca addition).
    [Show full text]
  • PROPERTIES of MATERIALS This Page Intentionally Left Blank Properties of Materials Anisotropy, Symmetry, Structure
    PROPERTIES OF MATERIALS This page intentionally left blank Properties of Materials Anisotropy, Symmetry, Structure ROBERT E. NEWNHAM Pennsylvania State University 1 3 Great Clarendon Street, Oxford OX26DP Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi São Paulo Shanghai Taipei Tokyo Toronto Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York © Oxford University Press 2005 The moral rights of the authors have been asserted Database right Oxford University Press (maker) First published 2005 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer British Library Cataloguing in Publication Data Data available Library of Congress Cataloging in Publication Data Data available ISBN 0-19-852075-1 (hbk) ISBN 0-19-852076-x (pbk) 10987654321 Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India Printed in Great Britain on acid-free paper by Antony Rowe, Chippenham Preface This book is about anisotropy and structure–property relationships.
    [Show full text]
  • Conducting Properties of Polypropylene/ Carbon Nanofiber Composites
    16TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS CONDUCTING PROPERTIES OF POLYPROPYLENE/ CARBON NANOFIBER COMPOSITES W. H. Zhong, G. Sui, M. A. Fuqua and C. A. Ulven Department of Mechanical Engineering North Dakota State University, Fargo, ND 58105, USA Keywords: carbon nanofibers, polypropylene, nanocomposites, conductivity Abstract particular, very few have reported work Effects of carbon nanofibers (CNFs) on addressing the effects of CNFs on the final the microstructure and properties of semi- properties of the resulting nanocomposites crystalline polymers were studied based on through the crystallization behavior of the preparation of polypropylene (PP) polymer matrix. nanocomposites by a twin-screw extrusion. As an effective processing method, twin- Crystallization behavior and morphology, as screw extrusion can play an important role in well as dielectric property, thermal and preparing of nanocomposites to obtain electrical conductivity of the CNF/PP nanocomposites with uniform microstructure nanocomposites were characterized. The [4-6]. degree of crystallinity of the PP exhibited an This paper introduces the preparation increased trend with addition of CNFs carbon nanofiber/PP nanocomposites by a followed by moderate decreases at higher Micro-18mm twin-screw extruder which can content. The PP nanocomposite containing provide the high shear compounding for 5wt% CNFs exhibited a surprisingly high polymer melts. After a great deal of dielectric constant under wide sweep exploring experiments, the optimal extruding frequencies attended by low dielectric loss. procedures for carbon nanofiber/PP With the increasing of CNF content, nanocomposites were established. The aim of electrical and thermal conductivities of the present work is to study the effects of nanocomposites were enhanced continuously. carbon nanofiber content on crystallization behavior, mechanical properties, thermal 1.
    [Show full text]
  • Quantum Hall Effect on Top and Bottom Surface States of Topological
    Quantum Hall Effect on Top and Bottom Surface States of Topological Insulator (Bi1−xSbx)2Te 3 Films R. Yoshimi1*, A. Tsukazaki2,3, Y. Kozuka1, J. Falson1, K. S. Takahashi4, J. G. Checkelsky1, N. Nagaosa1,4, M. Kawasaki1,4 and Y. Tokura1,4 1 Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656, Japan 2 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan 3 PRESTO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0075, Japan 4 RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan. * Corresponding author: [email protected] 1 The three-dimensional (3D) topological insulator (TI) is a novel state of matter as characterized by two-dimensional (2D) metallic Dirac states on its surface1-4. Bi-based chalcogenides such as Bi2Se3, Bi2Te 3, Sb2Te 3 and their combined/mixed compounds like Bi2Se2Te and (Bi1−xSbx)2Te 3 are typical members of 3D-TIs which have been intensively studied in forms of bulk single crystals and thin films to verify the topological nature of the surface states5-12. Here, we report the realization of the Quantum Hall effect (QHE) on the surface Dirac states in (Bi1−xSbx)2Te 3 films (x = 0.84 and 0.88). With electrostatic gate-tuning of the Fermi level in the bulk band gap under magnetic fields, the quantum Hall states with filling factor ν = ± 1 are resolved with 2 quantized Hall resistance of Ryx = ± h/e and zero longitudinal resistance, owing to chiral edge modes at top/bottom surface Dirac states.
    [Show full text]
  • Electromagnetism - Lecture 13
    Electromagnetism - Lecture 13 Waves in Insulators Refractive Index & Wave Impedance • Dispersion • Absorption • Models of Dispersion & Absorption • The Ionosphere • Example of Water • 1 Maxwell's Equations in Insulators Maxwell's equations are modified by r and µr - Either put r in front of 0 and µr in front of µ0 - Or remember D = r0E and B = µrµ0H Solutions are wave equations: @2E µ @2E 2E = µ µ = r r r r 0 r 0 @t2 c2 @t2 The effect of r and µr is to change the wave velocity: 1 c v = = pr0µrµ0 prµr 2 Refractive Index & Wave Impedance For non-magnetic materials with µr = 1: c c v = = n = pr pr n The refractive index n is usually slightly larger than 1 Electromagnetic waves travel slower in dielectrics The wave impedance is the ratio of the field amplitudes: Z = E=H in units of Ω = V=A In vacuo the impedance is a constant: Z0 = µ0c = 377Ω In an insulator the impedance is: µrµ0c µr Z = µrµ0v = = Z0 prµr r r For non-magnetic materials with µr = 1: Z = Z0=n 3 Notes: Diagrams: 4 Energy Propagation in Insulators The Poynting vector N = E H measures the energy flux × Energy flux is energy flow per unit time through surface normal to direction of propagation of wave: @U −2 @t = A N:dS Units of N are Wm In vacuo the amplitudeR of the Poynting vector is: 1 1 E2 N = E2 0 = 0 0 2 0 µ 2 Z r 0 0 In an insulator this becomes: 1 E2 N = N r = 0 0 µ 2 Z r r The energy flux is proportional to the square of the amplitude, and inversely proportional to the wave impedance 5 Dispersion Dispersion occurs because the dielectric constant r and refractive index
    [Show full text]
  • Dielectric Optical Cloak
    Dielectric Optical Cloak Jason Valentine1*, Jensen Li1*, Thomas Zentgraf1*, Guy Bartal1 and Xiang Zhang1,2 1NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA 2Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 *These authors contributed equally to this work Invisibility or cloaking has captured human’s imagination for many years. With the recent advancement of metamaterials, several theoretical proposals show cloaking of objects is possible, however, so far there is a lack of an experimental demonstration at optical frequencies. Here, we report the first experimental realization of a dielectric optical cloak. The cloak is designed using quasi-conformal mapping to conceal an object that is placed under a curved reflecting surface which imitates the reflection of a flat surface. Our cloak consists only of isotropic dielectric materials which enables broadband and low-loss invisibility at a wavelength range of 1400-1800 nm. 1 For years, cloaking devices with the ability to render objects invisible were the subject of science fiction novels while being unattainable in reality. Nevertheless, recent theories including transformation optics (TO) and conformal mapping [1-4] proposed that cloaking devices are in principle possible, given the availability of the appropriate medium. The advent of metamaterials [5-7] has provided such a medium for which the electromagnetic material properties can be tailored at will, enabling precise control over the spatial variation in the material response (electric permittivity and magnetic permeability). The first experimental demonstration of cloaking was recently achieved at microwave frequencies [8] utilizing metallic rings possessing spatially varied magnetic resonances with extreme permeabilities.
    [Show full text]