Tracing the Impact of the Andean Uplift on Neotropical Plant Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Estudio Florístico De Los Páramos De Pajonal Meridionales De Ecuador
Versión Online ISSN 1727-9933 Rev. peru. biol. 14(2): 237-246 (Diciembre, 2007) PÁRAMOS DE PAJONAL MERIDIONALES DE ECUADOR © Facultad de Ciencias Biológicas UNMSM Estudio florístico de los páramos de pajonal meridionales de Ecuador Floristic study of the southern bunchgrass paramos of Ecuador Jesús Izco1, Íñigo Pulgar1, Zhofre Aguirre2 y Fernando Santin2 1 Departamento de Bo- tánica, Universidad de Resumen Santiago de Compostela. El presente trabajo es un estudio de la flora de los páramos de pajonal seriales de distintos ma- E- 15782 Santiago de cizos montañosos de los Andes del Sur de Ecuador (provincias de Azuay y Loja) comprendidos Compostela. España. entre los 2850 m y 3635 m. Fueron identificadas 43 familias de plantas vasculares, 120 géneros y 2 Herbario Reinaldo Espi- 216 especies. La flora local es comparada con la de otros páramos de pajonal andinos; la riqueza nosa, Universidad Nacio- nal. Loja. Ecuador florística (géneros y especies) es analizada por tramos altitudinales y se establece la flora caracter- ística de cada tramo del territorio estudiado. De forma complementaria, discutimos las influencias Email: Jesús Izco biogeográficas de la flora de los páramos de pajonal. [email protected] Palabras clave: Andes, Biodiversidad, Biogeografía, Páramo, Riqueza florística. Abstract A study of the flora of the bunchgrass paramo with antropic origin of different mountain ranges from the Andean areas in southern Ecuador (provinces of Azuay and Loja) was conducted. The study areas range between the 2850 m and 3635 m of altitude. The local flora is composed by 43 families, 120 genera and 216 species of vascular plants; this particular flora is compared with http://sisbib.unmsm.edu.pe/BVRevistas/biologia/biologiaNEW.htm that of other Andean bunchgrass paramos, the floristic richness of genus and species is studied Presentado: 28/03/2007 by altitudinal levels (100 m), and the characteristic flora of each level of the area is established. -
Inventory of Rubiaceae Species in Mt. Pao Range, Ilocos Norte, Northwestern Luzon, Philippines
BIODIVERSITAS ISSN: 1412-033X Volume 22, Number 8, August 2021 E-ISSN: 2085-4722 Pages: 3604-3612 DOI: 10.13057/biodiv/d220862 Inventory of Rubiaceae species in Mt. Pao Range, Ilocos Norte, Northwestern Luzon, Philippines MAE ANN R. BATUYONG1,2,♥, MICHAEL A. CALARAMO3, GRECEBIO JONATHAN D. ALEJANDRO1,4 1The Graduate School, University of Santo Tomas. España Blvd., 1015 Manila, Philippines, ♥email: [email protected] 2Department of Biological Sciences, College of Arts and Sciences, Mariano Marcos State University, City of Batac, 2906, Ilocos Norte, Philippines 3Northwestern University Ecological Park & Botanical Garden. Airport Avenue, Bengcag, Laoag City, 2900, Ilocos Norte, Philippines 4Department of Biological Sciences, College of Science & Research Center for the Natural and Applied Sciences, University of Santo Tomas. España Boulevard, 1015 Manila, Philippines. Manuscript received: 17 June 2021. Revision accepted: 31 July 2021. Abstract. Batuyong MAR, Calaramo MA, Alejandro GJD. 2021. Inventory of Rubiaceae species in Mt. Pao Range, Ilocos Norte, Northwestern Luzon, Philippines. Biodiversitas 22: 3604-3612. Botanical assessments in the Philippines are mostly conducted on declared Protected Areas (PAs). However, many remaining potentially interesting and largely unexplored floristic sites are not considered PA, one of which is the Mt. Pao Range in the Municipality of Adams, located in Ilocos Norte, Philippines. Among the flowering plant family, Rubiaceae is one with the largest number of endemic species and genera in the Philippines Thus, floristic surveys of Rubiaceae species were conducted, and collections were made from September 2019 to March 2021. A total of 39 species belonging to 13 tribes and 24 genera of the family were recorded. These constitute 7.09% of the total Philippine Rubiaceae. -
Rubiaceae) in Africa and Madagascar
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Plant Syst Evol (2010) 285:51–64 DOI 10.1007/s00606-009-0255-8 ORIGINAL ARTICLE Adaptive radiation in Coffea subgenus Coffea L. (Rubiaceae) in Africa and Madagascar Franc¸ois Anthony • Leandro E. C. Diniz • Marie-Christine Combes • Philippe Lashermes Received: 31 July 2009 / Accepted: 28 December 2009 / Published online: 5 March 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Phylogeographic analysis of the Coffea subge- biogeographic differentiation of coffee species, but they nus Coffea was performed using data on plastid DNA were not congruent with morphological and biochemical sequences and interpreted in relation to biogeographic data classifications, or with the capacity to grow in specific on African rain forest flora. Parsimony and Bayesian analyses environments. Examples of convergent evolution in the of trnL-F, trnT-L and atpB-rbcL intergenic spacers from 24 main clades are given using characters of leaf size, caffeine African species revealed two main clades in the Coffea content and reproductive mode. subgenus Coffea whose distribution overlaps in west equa- torial Africa. Comparison of trnL-F sequences obtained Keywords Africa Á Biogeography Á Coffea Á Evolution Á from GenBank for 45 Coffea species from Cameroon, Phylogeny Á Plastid sequences Á Rubiaceae Madagascar, Grande Comore and the Mascarenes revealed low divergence between African and Madagascan species, suggesting a rapid and radial mode of speciation. A chro- Introduction nological history of the dispersal of the Coffea subgenus Coffea from its centre of origin in Lower Guinea is pro- Coffeeae tribe belongs to the Ixoroideae monophyletic posed. -
The Cinchona Program (1940-1945): Science and Imperialism in the Exploitation of a Medicinal Plant
The Cinchona Program (1940-1945): science and imperialism in the exploitation of a medicinal plant Nicolás Cuvi (*) (*) Facultad Latinoamericana de Ciencias Sociales, FLACSO-Ecuador; Centre d’Història de la Ciència, Universitat Autònoma de Barcelona. [email protected] Dynamis Fecha de recepción: 25 de enero de 2010 [0211-9536] 2011; 31 (1): 183-206 Fecha de aceptación: 27 de julio de 2010 SUMARIO: 1.—Introduction. 2.—Cinchona and its alkaloids. 3.—The War and the need for raw materials. 4.—The quest for Cinchona in the Andes. 5.—Extraction and sale of Cinchona. 6.—Nur- series, plantations and alkaloids factories. 7.—The end of the Cinchona Program. 8.—Epilogue. ABSTRACT: During World War II, the United States implemented programs to exploit hundreds of raw materials in Latin America, many of them botanical. This required the participation of the country’s scientific community and marked the beginning of intervention in Latin Ame- rican countries characterized by the active participation of the United States in negotiations (and not only by private firms supported by the United States). Many federal institutions and companies were created, others were adapted, and universities, research centers and pharma- ceutical companies were contracted. The programs undertaken by this coalition of institutions served to build and consolidate the dependence of Latin American countries on United States technology, to focus their economies on the extraction and development of resources that the United States could not obtain at home (known as «complementary») and to impede the development of competition. Latin American republics had been historically dependant on raw material exports (minerals and plants). -
3 Vindas-Barcoding RR
Ciencia y Tecnología, 27(1 y 2): 24-34 ,2011 ISSN: 0378-0524 EVALUATION OF THREE CHROROPLASTIC MARKERS FOR BARCODING AND FOR PHYLOGENETIC RECONSTRUCTION PURPOSES IN NATIVE PLANTS OF COSTA RICA * Milton Vindas-Rodríguez1, Keilor Rojas-Jiménez2,3 , Giselle Tamayo-Castillo 2,4. 1Escuela de Biología, Instituto Tecnológico de Costa Rica; 2Instituto Nacional de Biodiversidad, Costa Rica 3Biotec Soluciones Costa Rica, S.A. 4Escuela de Química, Universidad de Costa Rica. Recibido 6 de diciembre, 2010; aceptado 30 de junio, 2011 Abstract DNA barcoding has been proposed as a practical and standardized tool for species identification. However, the determination of the appropriate marker DNA regions is still a major challenge. In this study, we eXtracted DNA from 27 plant species belonging to 27 different families native of Costa Rica, amplified and sequenced the plastid genes matK and rpoC1 and the intergenic spacer trnH-psbA. Bioinformatic analyses were performed with the aim of determining the utility of these markers as possible barcodes to discriminate among species and for phylogenetic reconstruction. From the markers selected, the trnH-psbA spacer was the most variable in terms of genetic distance and the most promising region for barcoding. However, it presented a limited use for constructing phylogenies due to the compleXity of its alignment. The locus matK was less variable but was also useful for species discrimination and for phylogenetic tree generation. The rpoC1 region was highly conserved and suitable for phylogenetic studies, but presented a limited utility as a barcode. The marker combination matK and rpoC1 provided the best resolution for establishing valid phylogenetic relationships among the analyzed plant families. -
South Cameroon)
Plant Ecology and Evolution 152 (1): 8–29, 2019 https://doi.org/10.5091/plecevo.2019.1547 CHECKLIST Mine versus Wild: a plant conservation checklist of the rich Iron-Ore Ngovayang Massif Area (South Cameroon) Vincent Droissart1,2,3,8,*, Olivier Lachenaud3,4, Gilles Dauby1,5, Steven Dessein4, Gyslène Kamdem6, Charlemagne Nguembou K.6, Murielle Simo-Droissart6, Tariq Stévart2,3,4, Hermann Taedoumg6,7 & Bonaventure Sonké2,3,6,8 1AMAP Lab, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Montpellier, France 2Missouri Botanical Garden, Africa and Madagascar Department, P.O. Box 299, St. Louis, Missouri 63166-0299, U.S.A. 3Herbarium et Bibliothèque de Botanique africaine, C.P. 265, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, BE-1050 Brussels, Belgium 4Meise Botanic Garden, Domein van Bouchout, Nieuwelaan 38, BE-1860 Meise, Belgium 5Evolutionary Biology and Ecology, Faculté des Sciences, C.P. 160/12, Université Libre de Bruxelles, 50 Avenue F. Roosevelt, BE-1050 Brussels, Belgium 6Plant Systematics and Ecology Laboratory, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon 7Bioversity International, P.O. Box 2008 Messa, Yaoundé, Cameroon 8International Joint Laboratory DYCOFAC, IRD-UYI-IRGM, BP1857, Yaoundé, Cameroon *Author for correspondence: [email protected] Background and aims – The rapid expansion of human activities in South Cameroon, particularly mining in mountainous areas, threatens this region’s exceptional biodiversity. To comprehend the effects of land- use change on plant diversity and identify conservation priorities, we aim at providing a first comprehensive plant checklist of the Ngovayang Massif, focusing on the two richest plant families, Orchidaceae and Rubiaceae. -
Diversidad De Plantas Y Vegetación Del Páramo Andino
Plant diversity and vegetation of the Andean Páramo Diversidad de plantas y vegetación del Páramo Andino By Gwendolyn Peyre A thesis submitted for the degree of Doctor from the University of Barcelona and Aarhus University University of Barcelona, Faculty of Biology, PhD Program Biodiversity Aarhus University, Institute of Bioscience, PhD Program Bioscience Supervisors: Dr. Xavier Font, Dr. Henrik Balslev Tutor: Dr. Xavier Font March, 2015 Aux peuples andins Summary The páramo is a high mountain ecosystem that includes all natural habitats located between the montane treeline and the permanent snowline in the humid northern Andes. Given its recent origin and continental insularity among tropical lowlands, the páramo evolved as a biodiversity hotspot, with a vascular flora of more than 3400 species and high endemism. Moreover, the páramo provides many ecosystem services for human populations, essentially water supply and carbon storage. Anthropogenic activities, mostly agriculture and burning- grazing practices, as well as climate change are major threats for the páramo’s integrity. Consequently, further scientific research and conservation strategies must be oriented towards this unique region. Botanical and ecological knowledge on the páramo is extensive but geographically heterogeneous. Moreover, most research studies and management strategies are carried out at local to national scale and given the vast extension of the páramo, regional studies are also needed. The principal limitation for regional páramo studies is the lack of a substantial source of good quality botanical data covering the entire region and freely accessible. To meet the needs for a regional data source, we created VegPáramo, a floristic and vegetation database containing 3000 vegetation plots sampled with the phytosociological method throughout the páramo region and proceeding from the existing literature and our fieldwork (Chapter 1). -
Diversity and Evolution of Asterids
Diversity and Evolution of Asterids . gentians, milkweeds, and potatoes . Core Asterids • two well supported lineages of the ‘true’ or core asterids ‘ ’ lamiids • lamiid or Asterid I group • ‘campanulid’ or Asterid II group • appear to have the typical fused corolla derived independently and via two different floral developmental pathways campanulids lamiid campanulid Core Asterids • two well supported lineages of the ‘true’ or core asterids lamiids = NOT fused corolla tube • Asterids primitively NOT fused corolla at maturity campanulids • 2 separate origins of fused petals in “core” Asterids (plus several times in Ericales) Early vs. Late Sympetaly euasterids II - campanulids euasterids I - lamiids Calendula, Asteraceae early also in Cornaceae of Anchusa, Boraginaceae late ”basal asterids” Gentianales • order within ‘lamiid’ or Asterid I group • 5 families and nearly 17,000 species dominated by Rubiaceae (coffee) and Apocynaceae lamiids (milkweed) • iridoids, opposite leaves, contorted corolla Rubiaceae Apocynaceae campanulids Gentianales corolla aestivation *Gentianaceae - gentians Cosmopolitan family of 87 genera and nearly 1700 species. Herbs to small trees (in the tropics) or mycotrophs. Gentiana Symbolanthus Voyria *Gentianaceae - gentians • opposite leaves • flowers right contorted • glabrous - no hairs! Gentiana Gentianopsis Blackstonia Gentiana *Gentianaceae - gentians CA (4-5) CO (4-5) A 4-5 G (2) • flowers 4 or 5 merous Gentiana • pistil superior of 2 carpels • parietal placentation; fruit capsular *Gentianaceae - gentians Gentiana -
Phylogeny of the Tribe Cinchoneae (Rubiaceae), Its Position in Cinchonoideae, and Description of a New Genus, Ciliosemina
54 (1) • February 2005: 17–28 Andersson & Antonelli • Phylogeny of Cinchoneae MOLECULAR PHYLOGENETICS Phylogeny of the tribe Cinchoneae (Rubiaceae), its position in Cinchonoideae, and description of a new genus, Ciliosemina Lennart Andersson* & Alexandre Antonelli Botanical Institute, Göteborg University, P. O. Box 461, SE-405 30 Göteborg, Sweden. alexandre.antonelli@ botany.gu.se (author for correspondence) Relationships of and within the Rubiaceae tribe Cinchoneae were estimated based on DNA sequence variation in five loci: the ITS region, the matK and rbcL genes, the rps16 intron, and the trnL-F region including the trnL intron and the trnL-F intergenic spacer. Within Cinchonoideae s.s., the tribe Naucleeae is the sister group of a clade that comprises all other taxa. Cinchoneae and Isertieae s.s., are strongly supported as sister groups. The tribe Cinchoneae is strongly supported as monophyletic in a restricted sense, including the genera Cinchona, Cinchonopsis, Joosia, Ladenbergia, Remijia and Stilpnophyllum. There is strong support that these genera are monophyletic as presently conceived, except that one species mostly referred to Remijia is of uncer- tain phylogenetic affinity. To accommodate this species and a morphologically closely similar one, a new genus, Ciliosemina A. Antonelli, is proposed and two new combinations are made. KEYWORDS: Cinchona, Cinchoneae, Cinchonopsis, Joosia, Ladenbergia, Remijia, Stilpnophyllum, Rubiaceae; ITS, matK, rbcL, rps16 intron, trnL-F. oideae. Bremekamp (e.g., 1966) revised Schumann’s INTRODUCTION classification and redefined Cinchonoideae to comprise Traditionally (e.g., Candolle, 1830; Schumann, only genera without raphides, with imbricate or valvate 1891, 1897; Robbrecht, 1988), the tribe Cinchoneae has corolla aestivation and testa cells with coarsely pitted been circumscribed to include about 50 genera with basal walls. -
Alexandre Antonelli
CURRICULUM VITAE: Alexandre Antonelli My passion is nature, and my mission is to stop biodiversity loss. To tackle this major challenge, I study the distribution and evolution of species, develop methods to speed up scientific discovery and work with bright people around the world. My focus is on the tropics, where most species occur and the threats are most acute. EMPLOYMENT / KAW Bergström © Magnus Current: ● Director of Science – Royal Botanic Gardens, Kew (Feb 2019 – present) RBG Kew is the world’s leading botanical garden in terms of research and collections of plants and fungi. My role entails leadership and management across the entire Science Directorate and scientific collections, including the library, arts and archives, at Kew Gardens, Wakehurst and Madagascar. ● Full Professor in Systematics and Biodiversity – University of Gothenburg (Jun 2015 – present) Leader of an active and cross-disciplinary research group in evolutionary biology, supervisor of several students and post-docs, and lecturer in courses at basic and advanced levels. Previous: ● Founder & Director – Gothenburg Global Biodiversity Centre (Jan 2017 – Mar 2019) ● Chairman and founder – knowme.earth (2015 – 2020) ● Scientific Curator – Gothenburg Botanical Garden (Aug 2010 – Jan 2019) ● Science Advisor – Universeum Science Centre (Jan 2016 – Dec 2018) ● Cisneros Visiting Scholar – Harvard University (Jan 2018 – Jul 2018) ● Associate Professor and Senior Lecturer – University of Gothenburg (Apr 2014 – Jun 2015) ● Researcher – University of Gothenburg (Jan 2012 -
Botanical Classification and Nomenclature an Introduction —
Botanical classification and nomenclature an introduction — Marc S.M. Sosef Jérôme Degreef Henry Engledow Pierre Meerts Botanical classification and nomenclature an introduction — Marc S.M. Sosef Jérôme Degreef Henry Engledow Pierre Meerts by Marc S.M. Sosef1, Jérôme Degreef1,2, Henry Engledow1 & Pierre Meerts3 1 Meise Botanic Garden, Nieuwelaan 38, B-1860 Meise, Belgium 2 Service Général de l’Enseignement supérieur et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A. Lavallée 1, B-1080 Brussels, Belgium 3 Herbarium et bibliothèque de botanique africaine, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, CP 265, B-1050 Brussels, Belgium Copyright © 2020 Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium. Printed in Belgium by Gewadrupo, Arendonk. This publication is published and distributed in Open Access under the Creative Commons Attribution 4.0 International license (CC-BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. A PDF file of this publication can be ordered, free of charge (send an email to [email protected]), or downloaded from the webshop of Meise Botanic Garden at http://shopbotanicgarden.weezbe.com. DOI: 10.5281/zenodo.3706707 CIP Royal Library Albert I, Brussels Botanical classification and nomenclature, an introduction. Marc S.M. Sosef, Jérôme Degreef, Henry Engledow & Pierre Meerts - Meise, Meise Botanic Garden, 2020. - 72 p.; ill.; 22 x 15 cm. ISBN 9789492663207 Subject: Botany D/2020/0325/002 Content Introduction . 5 1. The history of classification . 9 1.1 Theophrastus to the Middle Ages . 11 1.2 Renaissance, Pre-Linnean period . 13 1.3 Linnaeus and the Linnaeans . -
Molecular Support for a Basal Grade of Morphologically
TAXON 60 (4) • August 2011: 941–952 Razafimandimbison & al. • A basal grade in the Vanguerieae alliance MOLECULAR PHYLOGENETICS AND BIOGEOGRAPHY Molecular support for a basal grade of morphologically distinct, monotypic genera in the species-rich Vanguerieae alliance (Rubiaceae, Ixoroideae): Its systematic and conservation implications Sylvain G. Razafimandimbison,1 Kent Kainulainen,1,2 Khoon M. Wong, 3 Katy Beaver4 & Birgitta Bremer1 1 Bergius Foundation, Royal Swedish Academy of Sciences and Botany Department, Stockholm University, 10691 Stockholm, Sweden 2 Department of Botany, Stockholm University, 10691, Stockholm, Sweden 3 Singapore Botanic Gardens, 1 Cluny Road, Singapore 259569 4 Plant Conservation Action Group, P.O. Box 392, Victoria, Mahé, Seychelles Author for correspondence: Sylvain G. Razafimandimbison, [email protected] Abstract Many monotypic genera with unique apomorphic characters have been difficult to place in the morphology-based classifications of the coffee family (Rubiaceae). We rigorously assessed the subfamilial phylogenetic position and generic status of three enigmatic genera, the Seychellois Glionnetia, the Southeast Asian Jackiopsis, and the Chinese Trailliaedoxa within Rubiaceae, using sequence data of four plastid markers (ndhF, rbcL, rps16, trnTF). The present study provides molecular phylogenetic support for positions of these genera in the subfamily Ixoroideae, and reveals the presence of a basal grade of morphologically distinct, monotypic genera (Crossopteryx, Jackiopsis, Scyphiphora, Trailliaedoxa, and Glionnetia, respectively) in the species-rich Vanguerieae alliance. These five genera may represent sole representatives of their respective lineages and therefore may carry unique genetic information. Their conservation status was assessed, applying the criteria set in IUCN Red List Categories. We consider Glionnetia and Jackiopsis Endangered. Scyphiphora is recognized as Near Threatened despite its extensive range and Crossopteryx as Least Concern.