1 Archimedes: the First Mathematical Physicist

Total Page:16

File Type:pdf, Size:1020Kb

1 Archimedes: the First Mathematical Physicist 1 Archimedes: The first mathematical physicist 1.1 Quadrature of a parabola Problem Compute the area of a section of a parabola, delimited by a parabola and an arbitrary secant. Tools and Methods Some results from Euclid and method of triangulation, along with geometric progression. Notation _ AB is the base and P , the vertex (the point farthest from AB of the parabolic section AP B . M is the midpoint of AB and M1 is the midpoint of AM. Define P2 and M2 in a similar fashion. Step 1: 1 1 Now, a(4AP M1) = 2 a(4AP M) (easy) and a(4AP1P ) = 2 a(4AP M1) (based on Euclid’s results). 1 Thus, a(4AP1P ) + a(4PP2B) = 4 a(4AP B). Write α = a(4AP B). 1 If P1 is the polygon AP1PP2B, then a(P1) = α + 4 α. Step 2: Repeat the argument with the parabolic section AP1P on base AP , as with PP2B on base PB. 1 1 If P2 is the resulting nine-sided polygon, then a(P2) = α + 4 α + 42 α. Pn α In general, if Pn is the polygon resulting after n steps,, then a(Pn) = 0 4k . Pn 1 1 1 4 Identity: 0 4k + 3 : 4n = 3 . Observe that: n−1 n n−1 rn 1 if r < 1, then (1 + r + ::: + r )(1 − r) = 1 − r and hence (1 + r + ::: + r ) + 1−r = 1−r : 1 1 _ Final Step: Given " > 0, choose n such that 3 : 4n < " and thus area of the parabolic segment AP B 4 4 _ is at least [ 3 −"]α and hence at least 3 α. Intuitively, area of the region AP B nPn is infinitesimally small (too small to measure). Thus, _ 4 a( AP B ) = a(4AP B) 3 1 1.2 Measurement of a Circle Suppose A denotes area of a circle of radius r and C its circumference. It was known that. 2 A = π1r and C = 2π2r,implying that the length of an arc with central angle θ is rθ. Archimedes showed that 1 A = rC ) π = π (= π) 2 1 2 Basic Geometry Suppose Pn and Qn are regular n-gons, inscribed in and circumscribing the circle. Each of Pn and Qn consists of n congruent isosceles triangles with central angle 2π=n. Suppose base and height of Pn are denoted by sn and rn and perimeter by pn and base, height and perimeter of Qn by 2tn; r and qn. π π π π Clearly, sn = 2 sin( n ); tn = tan( n ) and pn = nsn = 2n sin( n ) and qn = 2ntn = 2n tan( n ). Lemma 1.2.1. : Clearly, pn < C < qn Proof. Recall that if θ 2 (0; π=2), then sinθ < θ < tanθ Corollary 1.2.2. Thus, 1 1 (i)a(P ) < rC (ii)a(Q ) > rC n 2 n 2 Lemma 1.2.3. Given " > 0, one can inscribe and circumscribe regular n-gons Pn and Qn such that A − a(Pn) < " and a(Qn) − A < ". Proof is deferred while we show how this proves Archimedes’s result. 1 Corollary 1.2.4. A = 2 rC Proof. To prove his result, Archimedes uses an argument, known as reductio ad absurdum. 1 1 Case 1: Assume A > 2 rC and let A − 2 rC = ". By Lemma 1.2.3, we choose n so that A − a(Pn) < ". It follows that a(Pn) ≥ A − " 1 = rC 2 1 1 Case 2: Assume A < 2 rC and let 2 rC − A = ". a(Qn) ≤ A + " 1 = rC 2 In each case, we have a contradiction. By trichotomy, 1 A = rC 2 2 This refers to Lemma 1.2.2. Start with a square P0 and extend to an octagon Observe that a(4AGH) < a(4T AG) since P1. Write E0 = A−a(P0) and E1 = A−a(P1). _ Now E0 = 4a( EKF ). T G > GH(\T AG is a right angle). E0(= area between the square and the circle) = _ 4a( T EAH ). E0 − E1 = a(P1) − a(P0) If E1 = area between the square and the octagon, = 4a(4EF K) then E0 − E1 = 4a(4TFG). Now, 0 0 = 2a(EF F E ) _ _ _ a T AH = a(4T AG) + a AGH > 2a EKF 1 < a(4T AG) + a(4AGH) > E 2 0 < 2a(4T AG) Thus E > 2E and continuing the pattern, we 0 1 i.e. E0=4 < (E0 − E1)=2. Thus, inscribe Pn, write En = A − a(Pn). Now, E 1 E < 0 E < E 1 2 n+1 2n 0 As before we conclude that if E = a(Q ) − A, One is not permitted to take limits, so we rely on n n then the principle of Eudoxus, which we illustrate. 1 E < E Suppose " > 0 is given. Choose N such that n+1 2n 0 (N + 1)" > E0. We illustrate the process. By the same argument as before, given ", we Suppose 5" > E0. It follows that 3" > E1 and may choose n such that a(Qn) − A < ". 2" > E2, resulting in " > E3. In general, N steps suffice and we get, " > En. In other words, A − a(Pn) < ". 3 2 Geometric Series and Extensions Oresme (1350) found the following formula for an integer k > 1: a a 1 a 1 a 1 + (1 − ) + (1 − )2 + ::: + (1 − )n + ::: = a k k k k k k k It is easy to see that this encompasses Archimedes’s use of: 1 1 4 1 + + ( )2 + ::: = 4 4 3 Swineshead posed and solved a problem which when posed as describing motion of a particle reads as follows: If a point moves throughout the first half of a certain time interval with a constant velocity, through- out the next quarter of the interval at double the initial velocity, throughout the following eighth at triple the initial velocity, and so on ad infinitum; then the average velocity during the whole time interval will be double the initial velocity. Taking both the time interval and the initial velocity as unity, this is equivalent to the following: 1 2 3 n + + + ::: + + ::: = 2 2 4 8 2n Swineshead gave a long and tedious proof verbal proof. Again, Oresme came to the rescue and gave a geometric method of summing the series. In his ”Treatise on Configurations”, Orseme used n two dissections of the graph of the graph of the Swineshead motion. It is clear that a(An) = 2n 1 and a(Bn) = n . 2 P P P Exercise: Show that a(An) = a(Bn) to conclude that a(An) = 2. Historical Note: Nicole Orseme taught at University of Paris and in a commentary he wrote on Euclid’s ”Elements”, he made a more detailed analysis of motion. 4.
Recommended publications
  • A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected]
    Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Pre-calculus and Trigonometry Mathematics via Primary Historical Sources (TRIUMPHS) Spring 3-2017 A Genetic Context for Understanding the Trigonometric Functions Danny Otero Xavier University, [email protected] Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_precalc Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits oy u. Recommended Citation Otero, Danny, "A Genetic Context for Understanding the Trigonometric Functions" (2017). Pre-calculus and Trigonometry. 1. https://digitalcommons.ursinus.edu/triumphs_precalc/1 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Pre-calculus and Trigonometry by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. A Genetic Context for Understanding the Trigonometric Functions Daniel E. Otero∗ July 22, 2019 Trigonometry is concerned with the measurements of angles about a central point (or of arcs of circles centered at that point) and quantities, geometrical and otherwise, that depend on the sizes of such angles (or the lengths of the corresponding arcs). It is one of those subjects that has become a standard part of the toolbox of every scientist and applied mathematician. It is the goal of this project to impart to students some of the story of where and how its central ideas first emerged, in an attempt to provide context for a modern study of this mathematical theory.
    [Show full text]
  • Squaring the Circle a Case Study in the History of Mathematics the Problem
    Squaring the Circle A Case Study in the History of Mathematics The Problem Using only a compass and straightedge, construct for any given circle, a square with the same area as the circle. The general problem of constructing a square with the same area as a given figure is known as the Quadrature of that figure. So, we seek a quadrature of the circle. The Answer It has been known since 1822 that the quadrature of a circle with straightedge and compass is impossible. Notes: First of all we are not saying that a square of equal area does not exist. If the circle has area A, then a square with side √A clearly has the same area. Secondly, we are not saying that a quadrature of a circle is impossible, since it is possible, but not under the restriction of using only a straightedge and compass. Precursors It has been written, in many places, that the quadrature problem appears in one of the earliest extant mathematical sources, the Rhind Papyrus (~ 1650 B.C.). This is not really an accurate statement. If one means by the “quadrature of the circle” simply a quadrature by any means, then one is just asking for the determination of the area of a circle. This problem does appear in the Rhind Papyrus, but I consider it as just a precursor to the construction problem we are examining. The Rhind Papyrus The papyrus was found in Thebes (Luxor) in the ruins of a small building near the Ramesseum.1 It was purchased in 1858 in Egypt by the Scottish Egyptologist A.
    [Show full text]
  • Unit 3, Lesson 1: How Well Can You Measure?
    GRADE 7 MATHEMATICS NAME DATE PERIOD Unit 3, Lesson 1: How Well Can You Measure? 1. Estimate the side length of a square that has a 9 cm long diagonal. 2. Select all quantities that are proportional to the diagonal length of a square. A. Area of a square B. Perimeter of a square C. Side length of a square 3. Diego made a graph of two quantities that he measured and said, “The points all lie on a line except one, which is a little bit above the line. This means that the quantities can’t be proportional.” Do you agree with Diego? Explain. 4. The graph shows that while it was being filled, the amount of water in gallons in a swimming pool was approximately proportional to the time that has passed in minutes. a. About how much water was in the pool after 25 minutes? b. Approximately when were there 500 gallons of water in the pool? c. Estimate the constant of proportionality for the number of gallons of water per minute going into the pool. Unit 3: Measuring Circles Lesson 1: How Well Can You Measure? 1 GRADE 7 MATHEMATICS NAME DATE PERIOD Unit 3: Measuring Circles Lesson 1: How Well Can You Measure? 2 GRADE 7 MATHEMATICS NAME DATE PERIOD Unit 3, Lesson 2: Exploring Circles 1. Use a geometric tool to draw a circle. Draw and measure a radius and a diameter of the circle. 2. Here is a circle with center and some line segments and curves joining points on the circle. Identify examples of the following.
    [Show full text]
  • Archimedes and Pi
    Archimedes and Pi Burton Rosenberg September 7, 2003 Introduction Proposition 3 of Archimedes’ Measurement of a Circle states that π is less than 22/7 and greater than 223/71. The approximation πa ≈ 22/7 is referred to as Archimedes Approximation and is very good. It has been reported that a 2000 B.C. Babylonian approximation is πb ≈ 25/8. We will compare these two approximations. The author, in the spirit of idiot’s advocate, will venture his own approximation of πc ≈ 19/6. The Babylonian approximation is good to one part in 189, the author’s, one part in 125, and Archimedes an astonishing one part in 2484. Archimedes’ approach is to circumscribe and inscribe regular n-gons around a unit circle. He begins with a hexagon and repeatedly subdivides the side to get 12, 24, 48 and 96-gons. The semi-circumference of these polygons converge on π from above and below. In modern terms, Archimede’s derives and uses the cotangent half-angle formula, cot x/2 = cot x + csc x. In application, the cosecant will be calculated from the cotangent according to the (modern) iden- tity, csc2 x = 1 + cot2 x Greek mathematics dealt with ratio’s more than with numbers. Among the often used ratios are the proportions among the sides of a triangle. Although Greek mathematics is said to not know trigonometric functions, we shall see how conversant it was with these ratios and the formal manipulation of ratios, resulting in a theory essentially equivalent to that of trigonometry. For the circumscribed polygon We use the notation of the Dijksterhuis translation of Archimedes.
    [Show full text]
  • Understand the Principles and Properties of Axiomatic (Synthetic
    Michael Bonomi Understand the principles and properties of axiomatic (synthetic) geometries (0016) Euclidean Geometry: To understand this part of the CST I decided to start off with the geometry we know the most and that is Euclidean: − Euclidean geometry is a geometry that is based on axioms and postulates − Axioms are accepted assumptions without proofs − In Euclidean geometry there are 5 axioms which the rest of geometry is based on − Everybody had no problems with them except for the 5 axiom the parallel postulate − This axiom was that there is only one unique line through a point that is parallel to another line − Most of the geometry can be proven without the parallel postulate − If you do not assume this postulate, then you can only prove that the angle measurements of right triangle are ≤ 180° Hyperbolic Geometry: − We will look at the Poincare model − This model consists of points on the interior of a circle with a radius of one − The lines consist of arcs and intersect our circle at 90° − Angles are defined by angles between the tangent lines drawn between the curves at the point of intersection − If two lines do not intersect within the circle, then they are parallel − Two points on a line in hyperbolic geometry is a line segment − The angle measure of a triangle in hyperbolic geometry < 180° Projective Geometry: − This is the geometry that deals with projecting images from one plane to another this can be like projecting a shadow − This picture shows the basics of Projective geometry − The geometry does not preserve length
    [Show full text]
  • Archimedes Palimpsest a Brief History of the Palimpsest Tracing the Manuscript from Its Creation Until Its Reappearance Foundations...The Life of Archimedes
    Archimedes Palimpsest A Brief History of the Palimpsest Tracing the manuscript from its creation until its reappearance Foundations...The Life of Archimedes Birth: About 287 BC in Syracuse, Sicily (At the time it was still an Independent Greek city-state) Death: 212 or 211 BC in Syracuse. His age is estimated to be between 75-76 at the time of death. Cause: Archimedes may have been killed by a Roman soldier who was unaware of who Archimedes was. This theory however, has no proof. However, the dates coincide with the time Syracuse was sacked by the Roman army. The Works of Archimedes Archimedes' Writings: • Balancing Planes • Quadrature of the Parabola • Sphere and Cylinder • Spiral Lines • Conoids and Spheroids • On Floating Bodies • Measurement of a Circle • The Sandreckoner • The Method of Mechanical Problems • The Stomachion The ABCs of Archimedes' work Archimedes' work is separated into three Codeces: Codex A: Codex B: • Balancing Planes • Balancing Planes • Quadrature of the Parabola • Quadrature of the Parabola • Sphere and Cylinder • On Floating Bodies • Spiral Lines Codex C: • Conoids and Spheroids • The Method of Mechanical • Measurement of a Circle Problems • The Sand-reckoner • Spiral Lines • The Stomachion • On Floating Bodies • Measurement of a Circle • Balancing Planes • Sphere and Cylinder The Reappearance of the Palimpsest Date: On Thursday, October 29, 1998 Location: Christie's Acution House, NY Selling price: $2.2 Million Research on Palimpsest was done by Walter's Art Museum in Baltimore, MD The Main Researchers Include: William Noel Mike Toth Reviel Netz Keith Knox Uwe Bergmann Codex A, B no more Codex A and B no longer exist.
    [Show full text]
  • On Archimedes' Measurement of a Circle, Proposition 3
    On Archimedes’ Measurement of a circle, Proposition 3 Mark Reeder February 2 1 10 The ratio of the circumference of any circle to its diameter is less than 3 7 but greater than 3 71 . Having related the area of a circle to its perimeter in Prop. 1, Archimedes next approximates the circle perimeter with circumscribed and inscribed regular polygons and then finds good rational estimates for these polygon perimeters, thereby approximating the ratio of circumference to diameter. The main geometric step is to see how the polygon perimeter changes when the number of sides is doubled. We will consider the circumscribed case. Let AC be a side of a regular circumscribing polygon, and let AD be a side of a regular polygon with the number of sides doubled. C D θ O A θ B To make Archimedes’ computation easier to follow, let x = AC, y = AD, r = OA, c = OC, d = OD. We want to express the new ratio y/r in terms of the old ratio x/r. But these numbers will be very small after a few subdivisions, so they will be difficult to estimate. Instead, we will express r/y in terms of r/x. These are big numbers, which can be estimated by integers. 1 From Euclid VI.3, an angle bisector divides the opposite side in the same ratio as the other two sides of a triangle. Hence CD : DA = OC : OA. In our notation, this means x − y c x c + r r r c = , or = , or = + . y r y r y x x From Euclid I.47, we have r c r2 = 1 + , x x2 so that r r r r2 = + 1 + (1) y x x2 Thus, the new ratio r/y is expressed in terms of the old ratio r/x, as desired.
    [Show full text]
  • Post-Euclid Greek Mathematics
    Archimedes Apollonius and the Conics How Apollonius described and classified the conic sections Some high points of Greek mathematics after Euclid Algebra Through History October 2019 Algebra Through History Greek Math Post Euclid Archimedes Apollonius and the Conics How Apollonius described and classified the conic sections Outline 1 Archimedes 2 Apollonius and the Conics 3 How Apollonius described and classified the conic sections Algebra Through History Greek Math Post Euclid Archimedes Apollonius and the Conics How Apollonius described and classified the conic sections Who was Archimedes? Lived ca. 287 - 212 BCE, mostly in Greek city of Syracuse in Sicily Studied many topics in what we would call mathematics, physics, engineering (less distinction between them at the time) We don’t know much about his actual life; much of his later reputation was based on somewhat dubious anecdotes, e.g. the “eureka moment,” inventions he was said to have produced to aid in defense of Syracuse during Roman siege in which he was killed, etc. Perhaps most telling: we do know he designed a tombstone for himself illustrating the discovery he wanted most to be remembered for (discussed by Plutarch, Cicero) Algebra Through History Greek Math Post Euclid Archimedes Apollonius and the Conics How Apollonius described and classified the conic sections Figure: Sphere inscribed in cylinder of equal radius 3Vsphere = 2Vcyl and Asphere = Acyl (lateral area) Algebra Through History Greek Math Post Euclid Archimedes Apollonius and the Conics How Apollonius described and classified the conic sections Surviving works On the Equilibrium of Planes (2 books) On Floating Bodies (2 books) Measurement of a Circle On Conoids and Spheroids On Spirals On the Sphere and Cylinder (2 books) Algebra Through History Greek Math Post Euclid Archimedes Apollonius and the Conics How Apollonius described and classified the conic sections Surviving works, cont.
    [Show full text]
  • Archimedes and Liu Hui on Circles and Spheres Joseph W
    www.ontologia.net/studies Ontology Studies 10, 2010 21-38 Archimedes and Liu Hui on Circles and Spheres Joseph W. Dauben Department of History Herbert H. Lehman College and Ph.D. Program in History The Graduate Center The City University of New York Reception date / Fecha de recepción: 27-05-2009 Acceptation date / Fecha de aceptación: 22-06-2009 Abstract This article describes the mystery of a long lost codex of Archimedes that resurfaced briefly at the turn of the last century by Johan Ludwig Heiberg. Long enough for the Danish historian of mathematics Heiberg to identify, photograph and eventually transcribe “The Method” and several other works by Archimedes of considerable mathematical interest. In 1879 Heiberg completed his dissertation, Quaestiones Archimedeae, devoted to Archimedes’ life, works, and transmission of his texts. Keywords: Archimedes, Ephodos, Method, Johan Ludwig Heiberg. Resumen. Arquímedes y Hui Liu en torno a círculos y esferas. Este artículo describe el misterio de un códice de Arquímedes perdido hace mucho tiempo que reapareció brevemente a principios del siglo pasado de la mano de Johan Ludwig Heiberg. Tiempo suficiente para que el historiador danés de las matemáticas Heiberg pudiese identificar, fotografiar y, finalmente, transcribir “El Método” y varias otras obras de Arquímedes de interés matemático considerable. En 1879 Heiberg completó su tesis doctoral, Quaestiones Archimedeae, dedicado a la vida de Arquímedes, las obras, y la transmisión de sus textos. Palabras clave: Arquímedes, ephodos, método, Johan Ludwig Heiberg. This story begins with a mystery—the mystery of a long lost codex of Archimedes that resurfaced briefly at the turn of the last century, long enough for the Danish historian of mathematics Johan Ludwig Heiberg to identify, photograph and eventually transcribe “The Method” and several other works by Archimedes of considerable mathematical 22 Ontology Studies 10, 2010 Joseph W.
    [Show full text]
  • Undergraduate Students' Meanings for Central Angle and Inscribed Angle
    The Mathematics Educator 2020 Vol. 29, No. 1, 53–84 Undergraduate Students’ Meanings for Central Angle and Inscribed Angle Biyao Liang and Carlos Castillo-Garsow Contributing to research on students’ multifaceted meanings for angles (e.g., angles as ray pairs, as regions, and as turns), we report on three undergraduate students’ meanings for central and inscribed angles in circles. Specifically, we characterize how these meanings govern their mathematical activities when engaging in a circle geometry task, including their experienced perturbations and reconciliation of those perturbations. Our conceptual analysis reveals that some meanings are productive for students to conceive of a reflex angle in a circle and the correspondence between a central and an inscribed angle, while other meanings are limited. Angle and angle measure are critical topics in mathematics curricula. Writers of the Common Core State Standards for Mathematics (National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010) specify angle-related content in Grade 2 through high school, starting from identification of angles in planar shapes to radian angle measure in trigonometry. Correspondingly, mathematics curricula in the United States convey a variety of angle definitions, such as angles as geometric shapes formed by two rays that share a common endpoint, angle measures as turns, and angle measures as fractional amounts of a circle’s circumference. Despite fruitful research findings on students’ and teachers’ understandings of angles and angle measures (e.g., Clements & Burns, 2000; Devichi & Munier, 2013; Hardison, 2018; Keiser, 2004; Keiser et al., 2003; Mitchelmore & White, Biyao Liang is a doctoral candidate in mathematics education at The University of Georgia.
    [Show full text]
  • Addition of Vectors 296 Additive Inverse 297 Adjacent Angles 18 D
    Index A of square 83 of trapezoid 89 Addition of vectors 296 of triangle 86 Additive inverse 297 Area under dilation 220, 272 Adjacent angles 18 Area under shearing 267 d'Alembert 117 ASA 181, 381 Alternate angles 49 Associativity 297 Altitude 86 Axioms 3, 31 Angle bisector 18, 25, 196 Axis 65 Angle of incidence 63 Angle of polygon 166 Angle of reflection 62 B Angles 13 adjacent 18 Ball 281 alternate 49 Band 223, 231 central 148 Base angles 140 inscribed 170 Base of cylinder 263 opposite 28, 30, 58 Base of trapezoid 89 parallel 49 Base of triangle 86 polygon 166, 168 Bisector 18, 107, 124 right 16 Blow up 212 straight 15 Boxes 261 vertical 28 Angles of triangle 50 c Apollonius theorem 154 Arc 14, 148 Cancellation law 308 Area 81 Central angle 148 of circle 221 Chord 132 of parallelogram 193 Circle 10, 119, 128, 148, 158, 235, 290 of rectangle 83 Circumference 11, 235, 290 of right triangle 84 Circumscribed 128 of sector 224-230 Collinear 4 of sphere 292 Commutativity 296 392 INDEX Component 311, 317 F Composition of isometries 369-372 Concentric circles 158 Feynman 188, 351 Conclusion 13 Fixed point 385 Cone 274, 275 Forty-five degree triangle 200 Congruence 178, 377 Frustrum 281 Congruent triangles 178, 381 Full angle 16 Construction of triangle 6 Contradiction 38 Converse 13 G Convex polygon 165 Coordinate 67, 115, 117 Graph 73 Corollary 141 Cylinder 263 H Half line 2 D Height 86, 89, 263, 274, 275 Hexagon 163 d'Alembert 117 Higher dimensional space 114 Degree 16 Hypotenuse 46 Diagonal 48, 167, 196 Hypothesis 13 Diameter of circle 154,
    [Show full text]
  • 11.1 Circumference and Arc Length
    11.1 Circumference and Arc Length EEssentialssential QQuestionuestion How can you fi nd the length of a circular arc? Finding the Length of a Circular Arc Work with a partner. Find the length of each red circular arc. a. entire circle b. one-fourth of a circle y y 5 5 C 3 3 1 A 1 A B −5 −3 −1 1 3 5 x −5 −3 −1 1 3 5 x −3 −3 −5 −5 c. one-third of a circle d. fi ve-eighths of a circle y y C 4 4 2 2 A B A B −4 −2 2 4 x −4 −2 2 4 x − − 2 C 2 −4 −4 Using Arc Length Work with a partner. The rider is attempting to stop with the front tire of the motorcycle in the painted rectangular box for a skills test. The front tire makes exactly one-half additional revolution before stopping. LOOKING FOR The diameter of the tire is 25 inches. Is the REGULARITY front tire still in contact with the IN REPEATED painted box? Explain. REASONING To be profi cient in math, you need to notice if 3 ft calculations are repeated and look both for general methods and for shortcuts. CCommunicateommunicate YourYour AnswerAnswer 3. How can you fi nd the length of a circular arc? 4. A motorcycle tire has a diameter of 24 inches. Approximately how many inches does the motorcycle travel when its front tire makes three-fourths of a revolution? Section 11.1 Circumference and Arc Length 593 hhs_geo_pe_1101.indds_geo_pe_1101.indd 593593 11/19/15/19/15 33:10:10 PMPM 11.1 Lesson WWhathat YYouou WWillill LLearnearn Use the formula for circumference.
    [Show full text]