Simulation Models for Estimating Productivity and Trade-Offs in the Data-Limited Fisheries of New South Wales, Australia

Total Page:16

File Type:pdf, Size:1020Kb

Simulation Models for Estimating Productivity and Trade-Offs in the Data-Limited Fisheries of New South Wales, Australia SIMULATION MODELS FOR ESTIMATING PRODUCTIVITY AND TRADE-OFFS IN THE DATA-LIMITED FISHERIES OF NEW SOUTH WALES, AUSTRALIA by ROBYN ELIZABETH FORREST B.A., Curtin University, 1988 B.Sc. (Hons 1, University Medal), University of Sydney, 2000 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Resource Management and Environmental Studies) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2008 © Robyn Elizabeth Forrest, 2008 Abstract Recent shifts towards ecosystem based fisheries management (EBFM) around the world have necessitated consideration of effects of fishing on a larger range of species than previously. Non- selective multispecies fisheries are particularly problematic for EBFM, as they can contribute to erosion of ecosystem structure. The trade-off between catch of productive commercial species and abundance of low-productivity species is unavoidable in most multispecies fisheries. A first step in evaluation of this trade-off is estimation of productivity of different species but this is often hampered by poor data. This thesis develops techniques for estimating productivity for data-limited species and aims to help clarify EBFM policy objectives for the fisheries of New South Wales (NSW), Australia. It begins with development of an age-structured model parameterised in terms of optimal harvest rate, UMSY. UMSY is a measure of productivity, comparable among species and easily communicated to managers. It also represents a valid threshold for prevention of overfishing. The model is used to derive UMSY for 54 Atlantic fish stocks for which recruitment parameters had previously been estimated. In most cases, UMSY was strongly limited by the age at which fish were first caught. However, for some species, UMSY was more strongly constrained by life history attributes. The model was then applied to twelve species of Australian deepwater dogshark (Order Squaliformes), known to have been severely depleted by fishing. Results showed that the range of possible values of UMSY for these species is very low indeed. These findings enabled a preliminary stock assessment for three dogsharks (Centrophorus spp.) currently being considered for threatened species listing. Preliminary results suggest they have been overfished and that overfishing continues. Finally, an Ecopath with Ecosim ecosystem model, representing the 1976 NSW continental slope, is used to illustrate trade-offs in implementation of fishing policies under alternative policy objectives. Results are compared with those of a biogeochemical ecosystem model (Atlantis) of the same system, built by scientists from CSIRO. While there were large differences in model predictions for individual species, they gave similar results when ranking alternative fishing policies, suggesting that ecosystem models may be useful for exploring broad-scale strategic management options. ii Table of contents Abstract........................................................................................................................................................................ii Table of contents ........................................................................................................................................................iii List of tables................................................................................................................................................................vi List of figures............................................................................................................................................................viii Acknowledgements.....................................................................................................................................................xi Dedication .................................................................................................................................................................xiii Chapter 1. General introduction................................................................................................................................1 Context .....................................................................................................................................................................1 Background ..............................................................................................................................................................1 Fisheries off the coast of New South Wales...........................................................................................................16 Aims of the project.................................................................................................................................................20 Figures....................................................................................................................................................................23 Chapter 2. An age-structured model with leading management parameters, incorporating age-specific selectivity and maturity ............................................................................................................................................26 Introduction ............................................................................................................................................................26 Population model with MSY and UMSY as leading parameters ..............................................................................29 Equilibrium properties: relationships between life history, density dependence and UMSY....................................33 Bayesian estimation of MSY and UMSY..................................................................................................................34 Results ....................................................................................................................................................................36 Discussion ..............................................................................................................................................................37 Acknowledgements ................................................................................................................................................41 Tables .....................................................................................................................................................................42 Figures....................................................................................................................................................................43 Chapter 3. Extension of a meta-analysis of 54 fish stocks for evaluating effects of life history, selectivity and density dependence on optimal harvest rate UMSY .................................................................................................47 Introduction ............................................................................................................................................................47 Methods..................................................................................................................................................................50 Deriving UMSY for 54 Atlantic stocks .................................................................................................................50 Uncertainty in parameter values .......................................................................................................................53 Effect of selectivity on UMSY ...............................................................................................................................53 Results ....................................................................................................................................................................54 Derived estimates of UMSY..................................................................................................................................54 Relationship between density dependence, SPR0 and UMSY................................................................................55 Relative effects of selectivity..............................................................................................................................57 Discussion ..............................................................................................................................................................60 Acknowledgements ................................................................................................................................................65 Tables .....................................................................................................................................................................67 Figures....................................................................................................................................................................73 iii Chapter 4. Optimal harvest rate for long-lived, low-fecundity species: deepwater dogsharks of the continental slope of southeastern Australia ................................................................................................................................84 Introduction ............................................................................................................................................................84 Methods..................................................................................................................................................................87
Recommended publications
  • Does Plant Morphology Influence Fish Fauna Associated with Seagrass Meadows?
    Edith Cowan University Research Online Theses : Honours Theses 2002 Does plant morphology influence fish fauna associated with seagrass meadows? Michael C. Burt Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Marine Biology Commons Recommended Citation Burt, M. C. (2002). Does plant morphology influence fish fauna associated with seagrass meadows?. https://ro.ecu.edu.au/theses_hons/568 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/568 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
    Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/
    [Show full text]
  • Marine Biodiversity of the Northern and Yorke Peninsula NRM Region
    Marine Environment and Ecology Benthic Ecology Subprogram Marine Biodiversity of the Northern and Yorke Peninsula NRM Region SARDI Publication No. F2009/000531-1 SARDI Research Report series No. 415 Keith Rowling, Shirley Sorokin, Leonardo Mantilla and David Currie SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 December 2009 Prepared for the Department for Environment and Heritage 1 Marine Biodiversity of the Northern and Yorke Peninsula NRM Region Keith Rowling, Shirley Sorokin, Leonardo Mantilla and David Currie December 2009 SARDI Publication No. F2009/000531-1 SARDI Research Report Series No. 415 Prepared for the Department for Environment and Heritage 2 This Publication may be cited as: Rowling, K.P., Sorokin, S.J., Mantilla, L. & Currie, D.R. (2009) Marine Biodiversity of the Northern and Yorke Peninsula NRM Region. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2009/000531-1. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Chief of Division. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions. SARDI does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it.
    [Show full text]
  • Observations on Some Tasmanian Fishes: Part Ix
    PAPERS AND PROCEEDINGS OF THE ROYAL SOCIETY OF TASMANIA, VOLUME 94 OBSERVATIONS ON SOME TASMANIAN FISHES: PART IX By E. O. G. SCOTT One text figure ABSTRACT West Coast '. Again, Bridport, Lat. 41 0 01' S., Long. A case of mass mortality in Navodon setosus 147 0 23' E., and st. Helens, Lat. 41 0 20' S., Long. (Waite), 1899 [Aluteridae], a species now first 148 0 14' E., are approximately equidistant-west­ formally recorded from Tasmania, is reported: ward, southward, respectively-from Cape Port­ land; yet the former is a 'North East Coast', the some features of two juveniles are described and 0 figured. Taxonomic data on Mitotichthys tuckeri latter an 'East Coast " town: Stanley, Lat. 40 (Scott), 1942 [Syngnathidae], hitherto known 47' S., Long. 145 0 19' E., which stands in about the only from the holotype, are extended by an account same relation to Cape Grim as Bridport does to of two virtual topotypes. Miscellaneous observations Cape Portland, belongs to the' Far North West '. are made on Stigmatopora argus (Richardson), Entries in tables of synonymy, particularly 1840 [Syngnathidae] (status of several species citations from the earlier authors, are not neces­ commonly reduced to synonymy); Lampris regius sarily identical with the originals in point of typo­ (Bonnaterre), 1788 [Lampridae] (third Tasmanian graphical detail (earlier employment of initial record; dimensions) ; Dactylosargus arctidens capitals for some trivial names; no general, cr (Richardson), 1839 [Aplodactylidae] (differences indescriminate use of parentheses; and so on); from published accounts and figures; general being rendered in a standard pattern in accord observations); Lepidopus caudatus Euphrasen), with contemporary conventions.
    [Show full text]
  • Impact on Local Fishermen on Inhaca Island, Mozambique, Due to Introduction of a New Marine Reserve
    Impact on local fishermen on Inhaca Island, Mozambique, due to introduction of a new marine reserve – with focus on fish catches Caroline Enebrand Uppsats för avläggande av naturvetenskaplig kandidatexamen i Miljövetenskap 15 hp Institutionen för biologi och miljövetenskap Göteborgs universitet Juni 2012 Abstract In July 2009 the government of Mozambique approved a new Marine Protected Area, the Ponta do Ouro Partial Marine Reserve (PPMR). The reserve extends from Ponta do Ouro (in the south of Mozambique) up to the mouth of Maputo River near the capital Maputo. Recently the Ministry of Tourism wrote a management plan for the reserve. Along with the new management come new restrictions, which can affect local communities depending on the marine resources. As an example it will be prohibited to fish demersal fish and use vertical jigs. This report will focus on the area of Inhaca Island, which is located in the Indian Ocean within the area of the new reserve. The main purpose of this study was to analyze how the artisanal fishery on Inhaca could be affected by the new restrictions. This was based on semi-structured interviews with local fishermen from Inhaca to learn about their fish habits such as caught fish species. The result showed that 21 % of the total amount of caught fish species stated by all fishermen from the interviews, was demersal species. Since demersal fishing will not be allowed within the new marine reserve, they have to fish differently to be able to fish legally. This report also contains a brief description of the current management system regarding fishery, which is based on interviews with managers/actors from different public sectors within the fishing industry.
    [Show full text]
  • Towards Sustainability in World Fisheries
    insight review articles Towards sustainability in world fisheries Daniel Pauly, Villy Christensen, Sylvie Guénette, Tony J. Pitcher, U. Rashid Sumaila, Carl J. Walters, R. Watson & Dirk Zeller Fisheries Centre, University of British Columbia, 2204 Main Mall, Vancouver, British Columbia, Canada V6T 1Z4 (e-mail: [email protected]) Fisheries have rarely been ‘sustainable’. Rather, fishing has induced serial depletions, long masked by improved technology, geographic expansion and exploitation of previously spurned species lower in the food web. With global catches declining since the late 1980s, continuation of present trends will lead to supply shortfall, for which aquaculture cannot be expected to compensate, and may well exacerbate. Reducing fishing capacity to appropriate levels will require strong reductions of subsidies. Zoning the oceans into unfished marine reserves and areas with limited levels of fishing effort would allow sustainable fisheries, based on resources embedded in functional, diverse ecosystems. ishing is the catching of aquatic wildlife, the aftermath of the Second World War added another ‘peace equivalent of hunting bison, deer and rabbits on dividend’ to the industrialization of fishing: freezer trawlers, land. Thus, it is not surprising that industrial- radar and acoustic fish finders. The fleets of the Northern scale fishing should generally not be sustainable: Hemisphere were ready to take on the world. industrial-scale hunting, on land, would not be, Fisheries science advanced over this time as well: the two Feither. What is surprising rather, is how entrenched the world wars had shown that strongly exploited fish popula- notion is that unspecified ‘environmental change’ caused, tions, such as those of the North Sea, would recover most, if and continues to cause, the collapse of exploited fish not all, of their previous abundance when released from populations.
    [Show full text]
  • Assessing the Effectiveness of Surrogates for Conserving Biodiversity in the Port Stephens-Great Lakes Marine Park
    Assessing the effectiveness of surrogates for conserving biodiversity in the Port Stephens-Great Lakes Marine Park Vanessa Owen B Env Sc, B Sc (Hons) School of the Environment University of Technology Sydney Submitted in fulfilment for the requirements of the degree of Doctor of Philosophy September 2015 Certificate of Original Authorship I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used as indicated in the thesis. Signature of Student: Date: Page ii Acknowledgements I thank my supervisor William Gladstone for invaluable support, advice, technical reviews, patience and understanding. I thank my family for their encouragement and support, particularly my mum who is a wonderful role model. I hope that my children too are inspired to dream big and work hard. This study was conducted with the support of the University of Newcastle, the University of Technology Sydney, University of Sydney, NSW Office of the Environment and Heritage (formerly Department of Environment Climate Change and Water), Marine Park Authority NSW, NSW Department of Primary Industries (Fisheries) and the Integrated Marine Observing System (IMOS) program funded through the Department of Industry, Climate Change, Science, Education, Research and Tertiary Education. The sessile benthic assemblage fieldwork was led by Dr Oscar Pizarro and undertaken by the University of Sydney’s Australian Centre for Field Robotics.
    [Show full text]
  • Laboratory Evaluation of the Predation Efficacy of Native Australian Fish on Culex Annulirostris (Diptera: Culicidae)
    Journal of the Americctn Mosquito Control Association, 20(3):2g6_291,2OO4 Copyright A 2OO4by the American Mosquib Control Association, Inc. LABORATORY EVALUATION OF THE PREDATION EFFICACY OF NATIVE AUSTRALIAN FISH ON CULEX ANNULIROSTRIS (DIPTERA: CULICIDAE) TIMOTHY P HURST, MICHAEL D. BRowNI eNo BRIAN H. KAY Australian Centre International for and Tropical Health and Nutrition at the eueensland Institute of Medical pO Research, Royal Brisbane H<tspital, eueensland 4029, Austalia ABSTRACT. The introduction and establishment of fish populations can provide long-term, cost-effective mosquito control in habitats such as constructed wetlands and ornamental lakes. The p.idution efficacy of 7 native Brisbane freshwater fish on I st and 4th instars of the freshwater arbovirus vector culex annulirostris was evaluated in a series of 24-h laboratory trials. The trials were conducted in 30-liter plastic carboys at 25 + l"C urder a light:dark cycle of l4:10 h. The predation eflcacy of native crimson-spotted rainbowfish Melanotaenia (Melanotaeniidae), cluboulayi Australian smelt Retropinna semoni (Retropinnadae), pacific blue-eye pseudomugil (Atherinidae), signfer fly-specked hardyhead Craterocephalus stercusmLtscarum (Atherinidae), hretail gudgeon Hypseleotris gttlii (Eleotridae), empire gudgeon Hypseleotris compressa (Eleotridae), and estuary percilet Am- bassis marianus (Ambassidae) was compared with the exotic eaitern mosquitofish Getmbusia iolbrooki (poe- ciliidae). This environmentally damaging exotic has been disseminated worldwide and has been declared noxrous in Queensland. Melanotaenia duboulayi was found to consume the greatest numbers of both lst and 4th instars of Cx. annuliro.t/ri.t. The predation efficacy of the remaining Australian native species was comparable with that of the exotic G. holbrooki. With the exception of A- marianu^s, the maximum predation rates of these native species were not statistically different whether tested individually or in a school of 6.
    [Show full text]
  • Management of the Proposed Geographe Bay Blue Swimmer and Sand Crab Managed Fishery
    Research Library Fisheries management papers Fisheries Research 8-2003 Management of the proposed Geographe Bay blue swimmer and sand crab managed fishery. Jane Borg Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/fr_fmp Part of the Aquaculture and Fisheries Commons, Business Administration, Management, and Operations Commons, and the Natural Resources and Conservation Commons Recommended Citation Borg, J. (2003), Management of the proposed Geographe Bay blue swimmer and sand crab managed fishery.. Department of Fisheries Western Australia, Perth. Report No. 170. This report is brought to you for free and open access by the Fisheries Research at Research Library. It has been accepted for inclusion in Fisheries management papers by an authorized administrator of Research Library. For more information, please contact [email protected]. MANAGEMENT OF THE PROPOSED GEOGRAPHE BAY BLUE SWIMMER AND SAND CRAB MANAGED FISHERY A management discussion paper By Jane Borg and Cathy Campbell FISHERIES MANAGEMENT PAPER NO. 170 Department of Fisheries 168 St. George's Terrace Perth WA 6000 August 2003 ISSN 0819-4327 Fisheries Management Paper No. 170 Management of the Proposed Geographe Bay Blue Swimmer and Sand Crab Managed Fishery August 2003 Fisheries Management Paper No. 170 ISSN 0819-4327 2 Fisheries Management Paper No. 170 CONTENTS OPPORTUNITY TO COMMENT................................................................................ 5 EXECUTIVE SUMMARY ..........................................................................................
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China
    KOREAN JOURNAL OF ICHTHYOLOGY, Vol. 21 Supplement, 63-72, July 2009 Received : April 17, 2009 ISSN: 1225-8598 Revised : June 15, 2009 Accepted : July 13, 2009 Taxonomic Research of the Gobioid Fishes (Perciformes: Gobioidei) in China By Han-Lin Wu, Jun-Sheng Zhong1,* and I-Shiung Chen2 Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 1Ichthyological Laboratory, Shanghai Ocean University, 999 Hucheng Ring Rd., 201306 Shanghai, China 2Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan ABSTRACT The taxonomic research based on extensive investigations and specimen collections throughout all varieties of freshwater and marine habitats of Chinese waters, including mainland China, Hong Kong and Taiwan, which involved accounting the vast number of collected specimens, data and literature (both within and outside China) were carried out over the last 40 years. There are totally 361 recorded species of gobioid fishes belonging to 113 genera, 5 subfamilies, and 9 families. This gobioid fauna of China comprises 16.2% of 2211 known living gobioid species of the world. This report repre- sents a summary of previous researches on the suborder Gobioidei. A recently diagnosed subfamily, Polyspondylogobiinae, were assigned from the type genus and type species: Polyspondylogobius sinen- sis Kimura & Wu, 1994 which collected around the Pearl River Delta with high extremity of vertebral count up to 52-54. The undated comprehensive checklist of gobioid fishes in China will be provided in this paper. Key words : Gobioid fish, fish taxonomy, species checklist, China, Hong Kong, Taiwan INTRODUCTION benthic perciforms: gobioid fishes to evolve and active- ly radiate. The fishes of suborder Gobioidei belong to the largest The gobioid fishes in China have long received little group of those in present living Perciformes.
    [Show full text]