Hydrogen As an Energy Carrier for Railway Traction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Innovative Technologies for Light Rail and Tram: a European Reference Resource
Innovative Technologies for Light Rail and Tram: A European reference resource Briefing Paper 6 Hydrail - Hydrogen Hybrid and Hydrogen Fuel Cell Systems September 2015 Sustainable transport for North-West Europe’s periphery Sintropher is a five-year €23m transnational cooperation project with the aim of enhancing local and regional transport provision to, from and withing five peripheral regions in North-West Europe. INTERREG IVB INTERREG IVB North-West Europe is a financial instrument of the European Union’s Cohesion Policy. It funds projects which support transnational cooperation. Innovative technologies for light rail and tram Working in association with the POLIS European transport network, who are kindly hosting these briefing papers on their website. Report produced by University College London Lead Partner of Sintropher project Authors: Charles King, Giacomo Vecia, Imogen Thompson, Bartlett School of Planning, University College London. The paper reflects the views of the authors and should not be taken to be the formal view of UCL or Sintropher project. 4 Innovative technologies for light rail and tram Table of Contents Background .................................................................................................................................................. 6 Innovative technologies for light rail and tram – developing opportunities ................................................... 6 Hydrail Trams .............................................................................................................................................. -
Blending Hydrogen Into Natural Gas Pipeline Networks: a Review of Key Issues
Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5600-51995 March 2013 Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5600-51995 Golden, Colorado 80401 March 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. -
The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility
The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility Andreas Hoffrichter, PhD Nick Little Shanelle Foster, PhD Raphael Isaac, PhD Orwell Madovi Darren Tascillo Center for Railway Research and Education Michigan State University Henry Center for Executive Development 3535 Forest Road, Lansing, MI 48910 NCDOT Project 2019-43 FHWA/NC/2019-43 October 2020 -i- FEASIBILITY REPORT The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 Prepared by Center for Railway Research and Education Eli Broad College of Business Michigan State University 3535 Forest Road Lansing, MI 48910 USA Prepared for North Carolina Department of Transportation – Rail Division 860 Capital Boulevard Raleigh, NC 27603 -ii- Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA/NC/2019-43 4. Title and Subtitle 5. Report Date The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Andreas Hoffrichter, PhD, https://orcid.org/0000-0002-2384-4463 Nick Little Shanelle N. Foster, PhD, https://orcid.org/0000-0001-9630-5500 Raphael Isaac, PhD Orwell Madovi Darren M. Tascillo 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Railway Research and Education 11. Contract or Grant No. Michigan State University Henry Center for Executive Development 3535 Forest Road Lansing, MI 48910 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report Research and Development Unit 104 Fayetteville Street December 2018 – October 2020 Raleigh, North Carolina 27601 14. Sponsoring Agency Code RP2019-43 Supplementary Notes: 16. -
Hydrogen Storage for Mobility: a Review
materials Review Hydrogen Storage for Mobility: A Review Etienne Rivard * , Michel Trudeau and Karim Zaghib * Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Quebec, 1806, boul. Lionel-Boulet, Varennes J3X 1S1, Canada; [email protected] * Correspondence: [email protected] (E.R.); [email protected] (K.Z.) Received: 18 April 2019; Accepted: 11 June 2019; Published: 19 June 2019 Abstract: Numerous reviews on hydrogen storage have previously been published. However, most of these reviews deal either exclusively with storage materials or the global hydrogen economy. This paper presents a review of hydrogen storage systems that are relevant for mobility applications. The ideal storage medium should allow high volumetric and gravimetric energy densities, quick uptake and release of fuel, operation at room temperatures and atmospheric pressure, safe use, and balanced cost-effectiveness. All current hydrogen storage technologies have significant drawbacks, including complex thermal management systems, boil-off, poor efficiency, expensive catalysts, stability issues, slow response rates, high operating pressures, low energy densities, and risks of violent and uncontrolled spontaneous reactions. While not perfect, the current leading industry standard of compressed hydrogen offers a functional solution and demonstrates a storage option for mobility compared to other technologies. Keywords: hydrogen mobility; hydrogen storage; storage systems assessment; Kubas-type hydrogen storage; hydrogen economy 1. Introduction According to the Intergovernmental Panel on Climate Change (IPCC), it is almost certain that the unusually fast global warming is a direct result of human activity [1]. The resulting climate change is linked to significant environmental impacts that are connected to the disappearance of animal species [2,3], decreased agricultural yield [4–6], increasingly frequent extreme weather events [7,8], human migration [9–11], and conflicts [12–14]. -
Hydrogen Delivery Roadmap
Hydrogen Delivery Hydrogen Storage Technologies Technical Team Roadmap RoadmapJuly 2017 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non‐binding, and nonlegal partnership among the U.S. Department of Energy; United States Council for Automotive Research (USCAR), representing Chrysler Group LLC, Ford Motor Company, and General Motors; five energy companies — BPAmerica, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities — Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Hydrogen Delivery Technical Team is one of 13 U.S. DRIVE technical teams (“tech teams”) whose mission is to accelerate the development of pre‐competitive and innovative technologies to enable a full range of efficient and clean advanced light‐duty vehicles, as well as related energy infrastructure. For more information about U.S. DRIVE, please see the U.S. DRIVE Partnership Plan, https://energy.gov/eere/vehicles/us-drive-partnership-plan-roadmaps-and-accomplishments or www.uscar.org. Hydrogen Delivery Technical Team Roadmap Table of Contents Acknowledgements .............................................................................................................................................. vi Mission ................................................................................................................................................................. -
Hírek a Vasút Világából
HÍREK HÍREK A VASÚT VILÁGÁBÓL Sopron, 2018. március 2. mű beszerzését egy „egy változat, egy szerződés, egy ár” ETCS vonatbefolyásoló rendszert épít ki a GYSEV a alapján. Sopron-Szombathely-Szentgotthárd vasútvonalon A Smartron a Siemens sikeres Vectron platformján Biztonságosabbá válik a vasúti közlekedés a Sop- alapul, és megegyezik az előd legfontosabb jellemzőivel, ron-Szombathely-Szentgotthárd vasútvonalon. A GYSEV többek között a vezetőfülke elrendezésével. Zrt. kiépíti az Egységes Európai Vonatbefolyásoló Rend- A Smartron 140 km/ h-s 15 kV-os változatban lesz kap- szert (ETCS L2), amely folyamatosan figyeli a vonalsza- ható, maximális teljesítménye pedig az 5.6 MW és a PZB kaszon közlekedő vonatok sebességét, szükség esetén pe- / LZB vonatbefolyásolóval lesz felszerelve. dig lecsökkenti azt. A rendszer kiépítésére uniós források adnak lehetőséget. 2018. február 19. A GYSEV Zrt. az elmúlt években több, jelentős be- A Stadler, és a BOLIVIA Andoki Vasút (FCA) ruházást végzett el a Sopron-Szombathely-Szentgotthárd szerződést, hogy Bolíviába mozdonyokat szállítsanak vasútvonalon: lezajlott a pálya rekonstrukciója, a hiányzó szakaszokat villamosította a vasúttársaság, nagyszámú P+R, ill. B+R parkoló épült és megvalósult az intermodá- lis csomópont kiépítése Körmenden. Az említett fejlesz- téseknek köszönhetően jelentősen nőtt a vasútvonalon utazók száma 2011 óta. A vasútvonal teljes körű korszerűsítéséhez Európai Unió átjárhatósági előírásainak megfelelően szükséges az Egységes Európai Vonatbefolyásoló Rendszer (ETCS L2) telepítése is. A GYSEV Zrt. ezért pályázott és nyert erre a célra uniós forrásokat. Az ETCS L2 vonatbefolyásoló rendszer biztonságo- sabbá teszi a vasúti közlekedést: a biztosítóberendezések- 2. ábra: Magasföldi üzemre tervezett Stadler dízelmozdony ből kapott információkat feldolgozza és tárolja az adott A mozdonyokat a spanyolországi Stadler Valencia-i vasúti pályaszakaszra vonatokozó adatokat. -
Assessing Steam Locomotive Dynamics and Running Safety by Computer Simulation
TRANSPORT PROBLEMS 2015 PROBLEMY TRANSPORTU Volume 10 Special Edition steam locomotive; balancing; reciprocating; hammer blow; rolling stock and track interaction Dāvis BUŠS Institute of Transportation, Riga Technical University Indriķa iela 8a, Rīga, LV-1004, Latvia Corresponding author. E-mail: [email protected] ASSESSING STEAM LOCOMOTIVE DYNAMICS AND RUNNING SAFETY BY COMPUTER SIMULATION Summary. Steam locomotives are preserved on heritage railways and also occasionally used on mainline heritage trips, but since they are only partially balanced reciprocating piston engines, damage is made to the railway track by dynamic impact, also known as hammer blow. While causing a faster deterioration to the track on heritage railways, the steam locomotive may also cause deterioration to busy mainline tracks or tracks used by high speed trains. This raises the question whether heritage operations on mainline can be done safely and without influencing the operation of the railways. If the details of the dynamic interaction of the steam locomotive's components are examined with computerised calculations they show differences with the previous theories as the smaller components cannot be disregarded in some vibration modes. A particular narrow gauge steam locomotive Gr-319 was analyzed and it was found, that the locomotive exhibits large dynamic forces on the track, much larger than those given by design data, and the safety of the ride is impaired. Large unbalanced vibrations were found, affecting not only the fatigue resistance of the locomotive, but also influencing the crew and passengers in the train consist. Developed model and simulations were used to check several possible parameter variations of the locomotive, but the problems were found to be in the original design such that no serious improvements can be done in the space available for the running gear and therefore the running speed of the locomotive should be limited to reduce its impact upon the track. -
Rail Industry Decarbonisation Taskforce
RAIL INDUSTRY DECARBONISATION TASKFORCE FINAL REPORT TO THE MINISTER FOR RAIL JULY 2019 | WITH THE SUPPORT OF RSSB DECARBONISATION TASKFORCE | FINAL REPORT | 01 Foreword I am pleased to present, on behalf of the Rail Industry Decarbonisation Taskforce and RSSB, the final report responding to the UK Minister for Rail’s challenge to the industry to remove “all diesel only trains off the track by 2040” and “produce a vision for how the rail industry will decarbonise.” The initial report, published in January 2019, set out credible technical options to achieve this goal and was widely welcomed by stakeholders. RIA has published its report on the Electrification Cost Challenge. This final report confirms that the rail industry can lead the way in Europe on the drive to decarbonise. It sets out the key building blocks required to achieve the vision that the rail industry can be a major contributor to the UK government’s1 target of net zero carbon2, 3 by 2050, provided that we start now. The GB rail system continues to be one of the lowest carbon modes of transport. It has made material progress in the short time since the publication of the initial report. • The industry has continued to develop technologies toward lower carbon. • RSSB has completed its technical report into decarbonisation, T1145. • The investigation into alternatives for freight, T1160, is well underway. • The Network Rail System Operator is conducting a strategic review to develop the lowest cost pathway for rail to decarbonise to contribute to the national net zero carbon target. The Taskforce is very cognisant of the government review of the rail industry ongoing under the independent chairmanship of Keith Williams and we have provided evidence accordingly. -
Fuel Cell Transit Buses: Thunderpower Bus Evaluation at Sunline Transit Agency
Hydrogen, Fuel Cells & Infrastructure Technologies Program Fuel Cell Transit Buses ThunderPower Bus Evaluation at SunLine Transit Agency A Strong Energy Portfolio for a Strong America Energy effi ciency and clean, renewable energy will mean a stronger economy, a cleaner en- vironment, and greater energy independence for America. By investing in technology break- throughs today, our nation can look forward to a more resilient economy and secure future. Far-reaching technology changes will be essential to America’s energy future. Working with a wide array of state, community, industry, and university partners, the U.S. Department of Energy’s Offi ce of Energy Effi ciency and Renewable Energy invests in a portfolio of energy technologies that will: • Conserve energy in the residential, commercial, industrial, government, and transportation sectors • Increase and diversify energy supply, with a focus on renewable domestic sources • Upgrade our national energy infrastructure • Facilitate the emergence of hydrogen technologies as vital new “energy carriers.” The Opportunities Biomass Program Hydrogen, Fuel Cells & Infrastructure Using domestic, plant-derived resources to Technologies Program meet our fuel, power, and chemical needs Paving the way toward a hydrogen econo- my and net-zero carbon energy future Building Technologies Program Homes, schools, and businesses that Industrial Technologies Program use less energy, cost less to operate, and Boosting the productivity and competi- ultimately, generate as much power as tiveness of U.S. industry -
Sprawni Dzieki Technice.Pdf
Sprawni dzięki technice i dostępnym przestrzeniom pod redakcją naukową Katarzyny Jach Oficyna Wydawnicza Politechniki Wrocławskiej Wrocław 2019 Monografia naukowa wydana pod patronatem Samodzielnej Sekcji ds. Wsparcia Osób z Niepełnosprawnością Politechniki Wrocławskiej Recenzenci prof. dr hab. inż. Jerzy GROBELNY, Politechnika Wrocławska dr Anna BORKOWSKA, Politechnika Wrocławska dr inż. Marcin BUTLEWSKI, Politechnika Poznańska dr inż. Katarzyna JACH, Politechnika Wrocławska dr inż. Aleksandra POLAK-SOPIŃSKA, Politechnika Łódzka dr hab. inż. Marek ZABŁOCKI, Politechnika Poznańska Koordynator Anna ZGRZEBNICKA Projekt graficzny Paulina SARZYŃSKA Do książki dołączono płytę CD Wszelkie prawa zastrzeżone. Niniejsza książka, zarówno w całości, jak i we fragmentach, nie może być reprodukowana w sposób elektroniczny, fotograficzny i inny bez zgody wydawcy i właścicieli praw autorskich. © Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2019 OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ Wybrzeże Wyspiańskiego 27, 50-370 Wrocław http://www.oficyna.pwr.edu.pl; e-mail: [email protected] [email protected] ISBN 978-83-7493-054-3 Druk i oprawa: beta-druk, www.betadruk.pl SŁOWO WSTĘPNE Jako Pełnomocnik Rektora Politechniki Wrocławskiej ds. Osób Niepełnospraw- nych z satysfakcją odnotowuję fakt włączenia się studentów z niepełnosprawnościami do promocji w środowisku akademickim działań przeciwdziałających wykluczeniu zawodowemu i społecznemu osób niepełnosprawnych. Przedłożona przez studentów skupionych w Studenckim Klubie -
Hydrogen Fuel Cell Vehicles in Tunnels
SAND2020-4507 R Hydrogen Fuel Cell Vehicles in Tunnels Austin M. Glover, Austin R. Baird, Chris B. LaFleur April 2020 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 2 ABSTRACT There are numerous vehicles which utilize alternative fuels, or fuels that differ from typical hydrocarbons such as gasoline and diesel, throughout the world. Alternative vehicles include those running on the combustion of natural gas and propane as well as electrical drive vehicles utilizing batteries or hydrogen as energy storage. Because the number of alternative fuels vehicles is expected to increase significantly, it is important to analyze the hazards and risks involved with these new technologies with respect to the regulations related to specific transport infrastructure, such as bridges and tunnels. This report focuses on hazards presented by hydrogen fuel cell electric vehicles that are different from traditional fuels. There are numerous scientific research and analysis publications on hydrogen hazards in tunnel scenarios; however, compiling the data to make conclusions can be a difficult process for tunnel owners and authorities having jurisdiction over tunnels. This report provides a summary of the available literature characterizing hazards presented by hydrogen fuel cell electric vehicles, including light-duty, medium and heavy-duty, as well as buses. Research characterizing both worst-case and credible scenarios, as well as risk-based analysis, is summarized. Gaps in the research are identified to guide future research efforts to provide a complete analysis of the hazards and recommendations for the safe use of hydrogen fuel cell electric vehicles in tunnels. -
Car Body and Bogie Connection Modification for Track Curves Passability Improvement
MATEC Web of Conferences 157, 03009 (2018) https://doi.org/10.1051/matecconf/201815703009 MMS 2017 Car body and bogie connection modification for track curves passability improvement Vladimír Hauser1,*, la . Nozhenko1, Kara Kravchenko1, Mária Loulová1, Juraj Gerlici1, Tomáš Lack1 1University of Ţilina, Faculty of Mechanical Engineering, Department of Transport and Handling Machines, Univerzitná 1, 010 26 Ţilina, Slovak Republic Abstract. For Tram cars, it is often necessary to operate in cities on strongly curved track, which is followed by an increased effect of the vehicle on the track. Especially, this increased effect occurs in spiral transition curves situated between direct and arc sections or between two arc sections of different radius. In such case, increased guiding forces, creep in the rail - wheel contact, wear and noise generation can be observed. Exactly with the aim to reduce these undesirable effects we designed a tram bogie with steered wheelsets. This paper deals with a modification of its coupling to vehicle body in order to improve vehicle dynamics in transition curves. Proposed innovative construction of this coupling unit is registered by authors under Utility Model Nr. u201609015 and Utility Model Nr. u201703246. Description of the proposed way for a vehicle to pass through curved track with regard to bogie-body coupling and wheelset steering mechanisms with usage of multibody computing software is given in this paper. Keywords: bogie to vehicle body coupling, track transition curves, tramcar throughput improvement 1 Introduction The way a vehicle passes a track arc depends on many factors. The most important of these include the bogie wheelbase, the distance of pivot pins, the way the car body is mounted on the bogie, the design of the wheelset guiding in the bogie, the track gauge and the width of the track free channel with which the geometry of the wheel and rail profiles is directly related.