Readings in Systems Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Readings in Systems Engineering _¢q .. SP-6102 -" READINGS IN SYSTEMS ENGINEERING Edited by Francis T. Hoban and William M. Lawbaugh co ! (NASA-SP-6102) REAOINGS IN SYSTEMS N93-24678 ENGINEERING (NASa) 215 p --THRU-- N93-24693 Unclas H1/31 0158570 .J T ,j J READINGS IN SYSTEMS ENGINEERING Edited by Francis T. Hoban and William M. Lawbaugh Scientific and Technical Information Program N_A National Aeronautics and Space Administration Washington, DC 1993 READINGS IN SYSTEMS ENGINEERING Introduction by Francis T. Hoban and William M. Lawbaugh Author Title Page Robert A. Frosch A Classic Look at Systems Engineering 1 .*J,_._r_ Defense Systems Management Systems Engineering Overview and Process 9 College Paul E. Lewkowicz Systems Engineering for 17 Very Large Systems Marshall Space Flight What is a System ? NASA 's Phased 23 Center SE Handbook Project Description J NASA SE Handbook (Draft) Management Issues in Systems Engineering 35 Tony Fragomeni and Spacecraft Systems Engineering: An 79 :_ Mike Ryschkewitsch Introduction to the Process of GSFC Owen Morris SE&I and Management for Manned 87 Space Programs Charles W. Mathews The Systems Engineering Role in Top-Level Requirements 105 John D. Hodge Cost Considerations in the Systems Engineering Process 115 John E. Naugle Systems Engineering and User Requirements 127 " Eugene Kranz and SE&I in Manned Missions Christopher Kraft J Robert O. Aller Systems Engineering for Operational 157 ! Support Systems / John F. Yardley and Political and Institutional Factors of 163 zl David Wensley Systems Engineering i ] Loren A. Lemmerman Optimization in the SE Process 173 _ j_ / NASA Investigation Board Initial Flight Anomalies of Skyiab I 181 : NASA Investigation Board The Seasat Failure 201 George Trimble Defining Systems Engineering INTRODUCTION INTRODUCTION by Francis T. Hoban and William M. Lawbaugh Systems engineering is not new--it's been This group, in its final report to the around for quite some time. The ancient NASA administrator on December 30, 1986 engineers who designed and built the pyra- also recommended a renewed effort in the mids practiced some form of what we today education and training of the NASA pro- call "systems engineering." Modern systems gram and project management workforce. engineering emerged during and immediate- Unwritten but well understood in this rec- ly following World War II as weapons grew ommendation was renewed emphasis on sys- into weapon systems, due to the degree of tems engineering training. It was no easy complexity in design, development and de- task to build a knowledge base, create a li- ployability. The advent of space exploration brary collection and develop courses and further increased the need for and use of sys- workshops in systems engineering, but the tems engineering processes and practices. efforts took shape, as one essential part of The Apollo Program is perhaps NASA's NASA's Program and Project Management best example of the application of systems Initiative. This became a continuing educa- engineering. During Apollo, systems engi- tion process assisted on an Agency-wide neering processes were in place in NASA basis by the Systems Engineering Working Headquarters and at all field centers. At Group. some locations the process was formalized; at Today most large engineering organiza- others it was a back-of-the-envelope applica- tions, including NASA, have a systems engi- tion, but it was in place. It was widely prac- neering process containing elements both ticed, and it sustained a young and vibrant common and unique to those practiced by organization during the design, development other organizations. To document these and operations of the world's greatest engi- processes NASA is now involved in the prep- neering feat. NASA systems engineering aration of the first Agency-wide systems capabilities grew out of its NACA heritage, engineering manual. The manual addresses bolstered by people from the Department of common systems engineering practices and Defense, industry and academia who joined tools, as well as those unique to NASA and the team during the Apollo build-up. It the aerospace industry. This manual, togeth- should be noted that during the Apollo era, er with those describing the individual Cen- systems engineering was conducted without ters' practices, will fully document systems Agency-wide guidance, standards or lexicon. engineering at NASA and add to the educa- After Apollo, the various NASA centers con- tion process. tinued to implement systems engineering on This present collection was inspired by complex projects but perhaps with less vigor seven papers prepared by the NASA Alumni and enthusiasm than that displayed during League, illustrating the members' systems Apollo. engineering experience. These papers make The discipline again became a priority in up the heart of this collection. We have sup- NASA when the study team of the National plemented them with papers describing Academy of Public Administration, led by industry processes and other governmental Lt. General Sam C. Phillips, recommended practices to illustrate the diversity of sys- the strengthening of systems engineering in tems engineering as it is formulated and NASA. practiced. This is one discipline that clearly READINGS IN SYSTEMS ENGINEERING benefits from cross-fertilization and infusion Systems Engineering Handbook stress the of new ideas. engineering aspects of successful manage- There is also a wide variety of tools and ment of aerospace systems. techniques described herein, some standard In our second section, devoted to specific and some unique. It is not unlike an elite applications of systems engineering, we be- crew of talented carpenters showing up for a gin with two engineers from the Goddard job, each with some different tools in their re- Space Flight Center whose presentations are spective toolboxes, and each with different famous for explaining the process and pro- tricks or techniques to save time or money-- ducts of systems engineering in unmanned to do each one-of-a-kind job better, cheaper, spacecraft. Tony Fragomeni and Mike faster. Ryschkewitsch are associate chief and chief If all the authors of Readings in Systems respectively of Goddard's new Systems Engi- Engineering were ever to assemble in one neering Office. Owen Morris, who was place, there would be some unanimity on ba- NASA's Lunar module project manager and sics and essentials but much debate and the Space Shuttle Systems and Engineerng downright disagreement on the particulars. manager, then discusses the history of sys- Nevertheless, the meeting would be lively tems engineering and integration (SE&I) and interestingma decent description of the management in manned space programs. dynamic process of systems engineering it- Chuck Mathews, past president of the NASA self. Alumni League, and NASA's manager of the Gemini Program, director of the the Skylab APPROACH Program and associate administrator for Ap- plications, then focuses upon the systems en- We begin our collection with a now-famous gineering role in establishing, verifying and speech delivered by Bob Frosch to a group of controlling top-level program requirements. engineers in New York in 1969, shortly John D. Hodge, a 25-year veteran of the before his appointment as NASA Adminis- Department of Transportation and NASA, trator. The speech sets the tone best of all for including the Mercury, Gemini, Apollo and this volume: Frosch urges a common sense Space Station programs, retiring as an asso- approach to systems engineering. ciate administrator, explains cost consider- When weapons evolved into weapons sys- ations in the systems engineering process, tems, the Department of Defense took the urging clear definition of requirements, sta- lead in systems, engineering. Today the DoD ble management and strong central control approach is widely recognized, and so we to allocate funds properly. present the newly revised (1990) description John E. Naugle, retired NASA associate of the systems engineering process from the administrator and chief scientist, describes Defense Systems Management College at the dual role of "master" and "servant" for Fort Belvoir, Virginia. A senior project engi- the systems engineer, from the requirements neer formerly with Hughes Aircraft, Paul E. phase to preliminary design. Eugene F. Lewkowitcz, then discusses requirement Kranz, director of the Johnson Space Center analysis, technology assessment, solution Mission Operations Directorate, and synthesis and performance verification for Christopher C. Kraft Jr., former director of very large systems. Marshall Space Flight the Johnson Space Center, stress manned Center does it differently, but one of the best mission operations and SE&I. Robert O. descriptions of Phase A through C can be Aller, recently retired associate administra- found in Marshall's systems engineering tor for space operations, views operations handbook. To close out this overview section, support as the infrastructure of people, excerpts from the forthcoming NASA procedures, facilities and systems for flight ii INTRODUCTION success. John Yardley, NASA's associate scribed the uncritical acceptance of "stan- administrator for manned space flight dur- dard" or "flight proven" equipment that ing the Space Shuttle development, asserts failed in 1978. But no one wants to end on a that the systems engineer should consider 10 negative, so we reproduce a Johnson Space different politicaland nontechnical groups. Center engineer's attempt to define and ex- Associate David Wensley suggests ways of plain "systems
Recommended publications
  • Failure Engineering Artifacts
    This thesis is an attempt to clarify a concept we are all familiar with, engineers and non-engineers alike. It shows that, behind the first impression of familiarity, there is a Concept Analysis of an Engineering Failure: wide range of intuitions about failure which are not easily reconciled. While the ensuing ambiguities and lack of clarity may be tolerated in ordinary circumstances, engineers strive for precision and efficiency. These qualities become even more relevant given that engineering activities are increasingly carried out by multidisciplinary and multicultural teams. The chapters included in this thesis illustrate that pursuing conceptual clarification may result in valuable contributions to the existing literature. The identification of tacit assumptions that, so far, have gone undetected can help bringing some degree of order and unity to discussions that have shown a tendency towards fragmentation along disciplinary boundaries. As a whole, these chapters constitute the preliminaries of a conceptual framework that, once supplemented with additional engineering and philosophical contributions, may embrace the multiple facets of failure; a rather complex tangle of phenomena which, despite engineersí efforts to rein it in, is not going to disappear from the engineering agenda anytime soon. Luca Del Frate Del Luca Failure: Analysis of an ‘Wonder en is Engineering Concept gheen wonder’ Luca Del Frate Simon Stevin Series in the Philosophy of in the Philosophy Series Technology Stevin Simon Simon Stevin Series in the Philosophy of Technology Failure Analysis of an Engineering Concept Failure Analysis of an Engineering Concept Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof.
    [Show full text]
  • Failure Analysis Engineer Resume
    Failure Analysis Engineer Resume Sometimes ligamentous Karim preconstructs her waster hereabout, but undivided Petr rimming tautly or spread conjunctionally. How purging is Tray when palmaceous and estuarine Nevin encores some untying? Addorsed Roosevelt chandelle, his cutworm condones undressing groundlessly. When writing skills for failure engineer resumes you do a valid credit card number in the engineers to determine if it needs to receive suggestions for all. WHERE: X ray MSG: This word is normally spelled with hyphen. Chemistry or others relevant fields. You are given an assignment by your professor that you have to submit by tomorrow morning; but, you already have commitments with your friends for a party tonight and you can back out. The technical knowledge of? RCA is used in many areas but especially in evaluating issues dealing with Health and Safety, production areas, process manufacturing, technical failure analysis and operations management. Ever think of all failures have provided timely work environment by. Select at least one location. Marshal and engineering staff augmentation services! You can also add special certificate courses you undertook. Support failure analysis requests coming from doubt and considerable customer. Excellent ability of preparing highly qualified technical reports and publications. This is the journal is important for the american society board qualification name but you have on the world. Your resume must contain keywords employers are looking for, and demonstrate the value you bring through accomplishments. Developed advanced FA techniques such as laser applications, voltage contrast, liquid crystal techniques, etc. Analyze root causes for PCBA and system level failures in HP desktops, laptops, tablets, and servers.
    [Show full text]
  • International Topical Meeting on Probabilistic Safety Assessment and Analysis
    International Topic al Meeting on International Topic al Meeting on Pro babilistic Safety Assessment and Analysis September 24 – 28, 2017 www.psa2017.org 1 PSA 2017 International Topical Meeting on Probabilistic Safety Assessment and Analysis Our most sincere thanks to our sponsors for their support of the 2017 PSA Conference URANIUM SPONSORS RADIUM SPONSORS ZIRCONIUM SPONSORS Table of Contents Welcome Messages . 2 Welcome message from the General Chair . 2 Welcome message from the International Chair . 3 Welcome message from the Academic Chair . 4 Acknowledgement . 5 Organizing Committee . 6 Technical Program Committee . 7 Daily Schedule . 8 General Information . 11 Registration . 11 Guidelines for Speakers . 12 Mobile App Instructions . 12 Workshops . 13 Workshop #1 – RAVEN . 13 Workshop #2 – Bayesian Inference for PRA . 13 Workshop #3 – PyCATSHOO . 14 Plenary Speakers . 15 Plenary Lecture #1 – Confidence in Nuclear Safety under Uncertainties and Unknowns 15 Plenary Lecture #2 – Safety Culture and the One Reactor At a Time Mindset . 16 Plenary Lecture #3 – Computational Risk Assessment . 17 Plenary Lecture #4 – PRA Community Support for Delivery of the Nuclear Promise . 18 Plenary Lecture #5 – PRA R&D – Changing the Way We Do Business? . 18 Special Sessions . 19 Special Session #1 – Bayesian Inference for PRA . 19 Special Session #2 – MUPRA Advances, Issues, Impediments and Promise . 19 Special Session #3 – Delivering the Nuclear Promise with Risk-Informed Regulations 20 Special Session #4 – Accident Tolerant Fuel Panel . 20 Technical Tour . 21 Technical Session Abstracts . 22 Conference Rooms Maps . 84 1 Welcome Messages Welcome message from the General Chair Welcome to the 2017 International Topical Meeting on Probabilistic Safety Assessment and Analysis (PSA 2017).
    [Show full text]
  • Biodegradable Surgical Staple Composed of Magnesium Alloy
    www.nature.com/scientificreports OPEN Biodegradable Surgical Staple Composed of Magnesium Alloy Hizuru Amano 1, Kotaro Hanada2, Akinari Hinoki3, Takahisa Tainaka3, Chiyoe Shirota3, Wataru Sumida3, Kazuki Yokota3, Naruhiko Murase3, Kazuo Oshima3, Kosuke Chiba3, 3 3 Received: 11 February 2019 Yujiro Tanaka & Hiroo Uchida Accepted: 25 September 2019 Currently, surgical staples are composed of non–biodegradable titanium (Ti) that can cause allergic Published: xx xx xxxx reactions and interfere with imaging. This paper proposes a novel biodegradable magnesium (Mg) alloy staple and discusses analyses conducted to evaluate its safety and feasibility. Specifcally, fnite element analysis revealed that the proposed staple has a suitable stress distribution while stapling and maintaining closure. Further, an immersion test using artifcial intestinal juice produced satisfactory biodegradable behavior, mechanical durability, and biocompatibility in vitro. Hydrogen resulting from rapid corrosion of Mg was observed in small quantities only in the frst week of immersion, and most staples maintained their shapes until at least the fourth week. Further, the tensile force was maintained for more than a week and was reduced to approximately one-half by the fourth week. In addition, the Mg concentration of the intestinal artifcial juice was at a low cytotoxic level. In porcine intestinal anastomoses, the Mg alloy staples caused neither technical failure nor such complications as anastomotic leakage, hematoma, or adhesion. No necrosis or serious infammation reaction was histopathologically recognized. Thus, the proposed Mg alloy staple ofers a promising alternative to Ti alloy staples. Intestinal anastomosis using staples is widely practiced in surgery nowadays1–4. Staples used for this procedure are primarily composed of non–biodegradable titanium (Ti) alloy.
    [Show full text]
  • Analysis of Alternatives
    ANALYSIS OF ALTERNATIVES Legal name of applicants: AKZO Nobel Car Refinishes B.V. Habich GmbH; Henkel Global Supply Chain B.V.; Indestructible Paint Ltd.; Finalin GmbH; Mapaero; PPG Central (UK) Ltd in its legal capacity as Only Representative of PRC DeSoto International Inc. - OR5; PPG Industries (UK) Ltd; PPG Coatings SA; Aviall Services Inc. Submitted by: AKZO Nobel Car Refinishes B.V. Substance: Strontium chromate, EC No: 232-142-6, CAS No: 7789-06-2 Use title: Application of paints, primers and specialty coatings containing Strontium chromate in the construction of aerospace and aeronautical parts, including aeroplanes / helicopters, space craft, satellites, launchers, engines, and for the maintenance of such constructions, as well as for such aerospace and aeronautical parts, used elsewhere, where the supply chain and exposure scenarios are identical. Use number: 2 Use number: 2 Copy right protected - Property of Members of the CCST Consortium - No copying / use allowed. ANALYSIS OF ALTERNATIVES Disclaimer This document shall not be construed as expressly or implicitly granting a license or any rights to use related to any content or information contained therein. In no event shall applicant be liable in this respect for any damage arising out or in connection with access, use of any content or information contained therein despite the lack of approval to do so. ii Use number: 2 Copy right protected - Property of Members of the CCST Consortium - No copying / use allowed. ANALYSIS OF ALTERNATIVES CONTENTS 1. SUMMARY 1 2. INTRODUCTION 8 2.1. Substance 8 2.2. Uses of Cr(VI) containing substances 8 2.3. Purpose and benefits of Cr(VI) compounds 8 3.
    [Show full text]
  • Piper PA-28R-200-2 Cherokee Arrow II, G-BKCB
    Piper PA-28R-200-2 Cherokee Arrow II, G-BKCB Contents Air Accident Investigation - Summary table ...............................................................2 Synopsis...........................................................................................................................2 History of flight...............................................................................................................2 Meteorology ....................................................................................................................5 Aircraft Information ......................................................................................................5 Pilot's flying experience .................................................................................................5 Aircraft occupants..........................................................................................................5 Pathology.........................................................................................................................6 On-site wreckage distribution and examination .........................................................6 Detailed wreckage examination ....................................................................................8 Aircraft design standards ............................................................................................11 Significant features of PA-28 Wing Structure...........................................................11 Other significant information .....................................................................................11
    [Show full text]
  • Anchoring Guidelines: a Risk-Based Approach
    INTERTANKO London St Clare House 30-33 Minories London EC3N 1DD United Kingdom Tel: +44 20 7977 7010 Fax:+44 20 7977 7011 [email protected] INTERTANKO Oslo Nedre Vollgate 4 5th floor PO Box 761 Sentrum N-0106 Oslo Norway Tel: +47 22 12 26 40 Fax:+47 22 12 26 41 [email protected] INTERTANKO Asia 70 Shenton Way #20-04 Eon Shenton 079118 Singapore Tel: +65 6333 4007 Fax: +65 6333 5004 [email protected] INTERTANKO North America 801 North Quincy Street – Suite 200 Arlington, VA 22203 USA Tel: +1 703 373 2269 Fax:+1 703 841 0389 [email protected] INTERTANKO Athens Karagiorgi Servias 2 Syntagma Athens 10 562 Greece Tel: +30 210 373 1772/1775 Fax: +30 210 876 4877 [email protected] INTERTANKO Brussels Rue du Congrès 37-41 B-1000 Brussels Belgium Tel: +32 2 609 54 40 Fax: +32 2 609 54 49 [email protected] Anchoring Guidelines: www.intertanko.com A Risk-Based Approach 9 Anchoring Guidelines: A Risk-Based Approach © INTERTANKO 2019 All rights reserved Whilst every effort has been made to ensure that the information contained in this publication is correct, neither the authors nor INTERTANKO can accept any responsibility for any errors or omissions or any consequences resulting therefrom. No reliance should be placed on the information or advice contained in this publication without independent verification. All rights reserved. Distribution or reproduction of this publication is strictly prohibited unless prior authorisation has been granted by INTERTANKO. V1. March 2019 Contents Introduction 5 Scope of the guidelines
    [Show full text]
  • Methods for Determining and Processing Probabilities
    4 Methods for determining and processing probabilities PUBLICATIEREEKS GEVAARLIJKE STOFFEN Publication Series on Dangerous Substances 4 (PGS 4) Methods for determining and processing probabilities Preface Starting from June 1st 2004, the Advisory Council on Dangerous Substances (Adviesraad Gevaarlijke Stoffen - AGS) was installed by the Cabinet. At the same time the Committee for the Prevention of Disasters (Commissie voor de Preventie van Rampen- CPR) was abolished. CPR issued several publications, the so-called CPR-guidelines (CPR-richtlijnen), that are often used in environmental permits, based on the Environmental Protection Law, and in the fields of of labour safety, transport safety and fire safety. The CPR-guidelines have been transformed into the Publication Series on Dangerous Substances (Publicatiereeks Gevaarlijke Stoffen – PGS). The aim of these publications is generally the same as that of the CPR-guidelines. All CPR-guidelines have been reviewed, taking into account the follo- wing questions: 1. Is there still a reason for existence for the guideline or can the guideline be abolished; 2. Can the guideline be reintroduced without changes or does it need to be updated. This fourth publication in the Series on Dangerous Substances (PGS 4) is not different from the former publication CPR 12E, second edition 1997. Also on behalf of my colleagues at the Ministries of Transport, Social Affairs and of the Interior, The State Secretary of Housing Spatial Planning and the Environment (VROM). Drs. P.L.B.A van Geel [december] 2005 Methods for determining and processing probabilities ‘Red Book’ CPR 12E Principal author J.C.H. Schüller, m.sc. Co-authors J.L.
    [Show full text]
  • Improving the Reliability of Ship Machinery a Step Towards Unmanned Shipping
    Improving The Reliability Of Ship Machinery A Step Towards Unmanned Shipping E. M. Brocken Improving The Reliability Of Ship Machinery A Step Towards Unmanned Shipping by E. M. Brocken to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Wednesday November 16, 2016 at 09:30 AM. Student number: 4104811 Project duration: January 18, 2016 – November 16, 2016 Thesis committee: Prof. ir. J.J. Hopman TU Delft Ir. R.G. Hekkenberg TU Delft, supervisor Dr. R.R. Negenborn TU Delft Dr. ir. P.R. Wellens TU Delft SDPO.16.031.m An electronic version of this thesis is available at http://repository.tudelft.nl/. Abstract Due to the increasing seaborne trade, shortage of officers, constant work of crew on machinery during voyage and the large contribution of human error to shipping accidents it is time for shipbuilding to take the next step in automation. Unmanned shipping is the way to move forward and since the engine room houses some of the most important machinery in the ship, this is the equipment which has to be made more reliable first. Improving the reliability of ship machinery is the goal of this thesis, and this will be done for ship types with a simple design and relatively simple equipment, namely general cargo ships, container ships, bulk carriers and oil and chemical tankers. In order to increase the reliability of the machinery, it will first have to be determined which failures occur to the machinery. The main engine, steering gear, fuel system, electrical system, cooling water system, diesel generator, shafting and other have all been found to be responsible for fatal technical failures in the past.
    [Show full text]
  • Analysis of Alternatives
    ANALYSIS OF ALTERNATIVES ANALYSIS OF ALTERNATIVES Legal name of applicants: PPG Industries (UK) Ltd; Finalin GmbH; PPG Central (UK) Ltd in its legal capacity as Only Representative of PRC DeSoto International Inc. - OR5; PPG Coatings SA; Aviall Services Inc. Submitted by: PPG Industries (UK) Ltd. Substance: Potassium hydroxyoctaoxodizincatedichromate EC No: 234- 329-8, CAS No: 11103-86-9 Use title: Use of Potassium hydroxyoctaoxodizincatedichromate in paints, in primers, sealants and coatings (including as wash primers). Use number: 2 Use number: 2 Copy right protected - Property of Members of the CCST Consortium - No copying / use allowed. ANALYSIS OF ALTERNATIVES Disclaimer This document shall not be construed as expressly or implicitly granting a license or any rights to use related to any content or information contained therein. In no event shall applicant be liable in this respect for any damage arising out or in connection with access, use of any content or information contained therein despite the lack of approval to do so. i Use number: 2 Copy right protected - Property of Members of the CCST Consortium - No copying / use allowed. ANALYSIS OF ALTERNATIVES CONTENTS DECLARATION .......................................................................................................................................................... XII 1. SUMMARY ............................................................................................................................................................ 1 2. INTRODUCTION .................................................................................................................................................
    [Show full text]
  • Nuclear Safety
    Nuclear safety Jan Willem Storm van Leeuwen Independent consultant member of the Nuclear Consulting Group October 2019 [email protected] Note In this document the references are coded by Q-numbers (e.g. Q6). Each reference has a unique number in this coding system, which is consistently used throughout all publications by the author. In the list at the back of the document the references are sorted by Q-number. The resulting sequence is not necessarily the same order in which the references appear in the text. m21safety20191027 1 Contents 1 Ageing of materials and structures Second Law of thermodynamics Electronic devices Life extension of nuclear power plants 2 Ageing of spent fuel Degradation Dispersion of radioactivity from spent fuel 3 Bathtub hazard function Failure rates Preflight testing Bathtub function and nuclear technology 4 Nuclear safety Military and civil nuclear technology are inseparable Proliferation Nuclear terrorism and MOX fuel Main concern: dispersion of radioactivity 5 Theory versus practice Limited scope of safety studies Reactor safety studies of the Western nuclear industry 6 Engineered safety Narrow safety margins High quality requirements Human factor 7 Economic preferences versus security The economic connection Radiological protection recommendations Life extension of nuclear power plants Relaxation of clearance standards Regulations and quality control Relaxation of discharge standards How independent are the inspections? 8 Preventable accidents are unavoidable References FIGURES Figure 1 Bathtub curve Figure 2 Decision tree of reactor safety studies m21safety20191027 2 1 Ageing of materials and structures Second Law of thermodynamics All materials and structures inevitably deteriorate by time due to a combination of spontaneous chemical and physical processes, a phenomenon usually called ageing.
    [Show full text]
  • Award Number DE-NE0000566 Development of LWR Fuels With
    Westinghouse Non-Proprietary Class 3 Award Number DE-NE0000566 Development of LWR Fuels with Enhanced Accident Tolerance DRAFT Final Technical Report RT-TR-15-34 October 30, 2015 Westinghouse Electric Company LLC 1000 Cranberry Woods Drive Cranberry Woods, PA 16066 Principal Investigator: Edward J. Lahoda Project Manager: Frank A. Boylan Team Member Authors Edison Welding Institute General Atomics Idaho National Laboratory Los Alamos National Laboratory Massachusetts Institute of Technology Southern Nuclear Company Texas A&M University Westinghouse Electric Company LLC Table of Contents List of Tables.................................................................................................................. 3 Executive Summary..................................................................................................... 4 1. Introduction .............................................................................................................. 7 2. Accident Tolerant Fuel Development Efforts................................................. 7 2.1 Proposed ATF Fuel Technical Concept Description.............................................................................8 2.2 Research and Development Required for ATF Commercialization...................................................10 2.3 Licensing Path for ATF.......................................................................................................................11 2.4 Business Case Development for ATF.................................................................................................12
    [Show full text]