ISSN 0006-2979, Biochemistry (Moscow), 2013, Vol. 78, No. 13, pp. 1466-1489. © Pleiades Publishing, Ltd., 2013. Published in Russian in Uspekhi Biologicheskoi Khimii, 2013, Vol. 53, pp. 195-244. REVIEW Hypochlorous Acid as a Precursor of Free Radicals in Living Systems O. M. Panasenko1,2*, I. V. Gorudko3, and A. V. Sokolov1,4 1Research Institute of Physico-Chemical Medicine, Malaya Pirogovskaya str. 1a, 119435 Moscow, Russia; E-mail:
[email protected] 2Pirogov Russian National Research Medical University, Ostrovityanova str. 1, 117997 Moscow, Russia 3Department of Biophysics, Belarusian State University, Nezavisimosti Avenue 4, 220050 Minsk, Belarus 4Institute of Experimental Medicine, North West Branch of the Russian Academy of Medical Sciences, Akademika Pavlova str. 12, 197376 St. Petersburg, Russia Received December 12, 2012 Revision received June 19, 2013 Abstract—Hypochlorous acid (HOCl) is produced in the human body by the family of mammalian heme peroxidases, main- ly by myeloperoxidase, which is secreted by neutrophils and monocytes at sites of inflammation. This review discusses the reactions that occur between HOCl and the major classes of biologically important molecules (amino acids, proteins, nucleotides, nucleic acids, carbohydrates, lipids, and inorganic substances) to form free radicals. The generation of such free radical intermediates by HOCl and other reactive halogen species is accompanied by the development of halogenative stress, which causes a number of socially important diseases, such as cardiovascular, neurodegenerative, infectious, and other dis- eases usually associated with inflammatory response and characterized by the appearance of biomarkers of myeloperoxidase and halogenative stress. Investigations aimed at elucidating the mechanisms regulating the activity of enzyme systems that are responsible for the production of reactive halogen species are a crucial step in opening possibilities for control of the development of the body’s inflammatory response.