United States Patent Office 2,34,151

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office 2,34,151 Patented Apr. 18, 1944 2,347,151 UNITED STATES PATENT OFFICE 2,34,151. PRODUCTION OF YPOALOUSACD SOLUTIONS Chester C. Crawford, Berkeley, and Theodore W. - Evans, Oakland, Calif., assignors to Shee velopment Company, San Francisco, Califa corporation of Delaware No Drawing. Application April 30, 1940, Serial No. 332,604 8 Claims. (C. 23-152) The present invention relates to the prepara tain excessive quantitles of organic chlorides of tion of hypohalous acids, and more particularly the type of trichlorpropane and tetrachlorpropyl pertains to a novel process of preparing hypo ether. Similarly, the reaction between ethylene chlorous acid solutions which are substantially and these chloride ions containing aqueous solu free from halide ions, such as chloride ions. tions of hypochlorous acid, instead of producing Hypochlorous acid, usually in the form of its quantitative yields of ethylene chlorhydrin, also aqueous solutions, is employed in a relatively large results in the formation of ethylene dichloride. number of chemical and industrial processes. For In fact, even when the chlorhydrination of un example, in the production of organic halohy saturated organic compounds with such aqueOuS drins, a hypochlorous acid solution is interacted O hydrochlorous acid solutions containing halide With unsaturated organic compounds, which in ions is effected under the most optimum condi clude the olefins, such as ethylene, propylene, tions, the reaction products still contain relatively butylenes, amylenes, and the like, members of the high percentages of organic halides. acetylene series as acetylene, propine, butine, and It is therefore the main object of the present their homologues, diolefins, such as allene, buta 5 invention to provide a process for the efficient diene, isoprene, alcohols as cinnamyl alcohol, al and economic production of hypochlorous acids dehydes and ketones as acrolein, coumarin and which are free from or which contain only very ketenes, halides as vinyl chloride, ally bromide, limited quantities of inorganic halides. A fur allyl chloride, methallyl chloride, acetylene di ther object is to provide a process for the pro chloride, and the like, and their homologues and 20 duction of aqueous hypochlorous acid solutions analogues. Also, hypochlorous acid is sometimes which are Substantially free from chloride ions. employed for the manufacture of bleaching pow A still further object is to produce relatively con ders, particularly when it is desired to produce centrated aqueous hypochlorous acid solutions high-grade bleaching powders which are substan Substantially free from chloride ions. tially free from various undesirable impurities. It has now been discovered that aqueous hypo One of the Common methods of synthesis of a chlorous acid solutions containing halide ions may hypohalous acid includes the reaction between be effectively treated for the recovery of aqueous water and a halogen. For instance, the produc hypochlorous acid solutions substantially free tion of hypochlorous acid by the reaction of chlo from, or containing Only small and relatively rine and Water follows the equation 3) negligible concentrations of the halide ion, by HaO--Cla->HOC1-i-HC) subjecting such halide ion-containing solutions In order to neutralize the hypochloride acid to a distillation in the presence of a halogen gas. formed as a result of the aforementioned reaction, It has been further discovered that by distilling it is customary to employ an alkali, Such as sodium the aqueous hypochlorous acid solution contain or calcium hydroxide, or the like. The addition of 3. ing the halide ions, in the presence of a halogen such alkali neutralizes the hydrochloric acid, but gas and, preferably, in the presence of steam or of simultaneously forms an inorganic halide, which, another inert gaseous or vaporous substance, it is in most cases, is Water-soluble, thus forming an possible to obtain a substantially quantitative and aqueous hypochlorous acid Solution containing a highly efficient recovery of the hypochlorous acid greater or lesser concentration of halide ions. The 40 while leaving the inorganic halides in the undis presence of this inorganic halide in the hypo tied fraction. chlorous acid is frequently highly undesirable. The distillation according to the present in This is particularly true When the hypochlorous Vention is generally effected at a temperature of acid is employed for the chlorhydrination of un about 100 C. Although atmospheric pressures saturated organic compounds of the class defined may be employed, the distillation may also be hereinabove, it being noted that the presence of made undef reduced pressures, which will natu halide ions in aqueous hypochlorous acid Solu rally vary the degree of heating necessary for the tions tends to form undesirable by-products of distillation of the hypochlorous acid. Ordinary the type of organic halides or polyhalides, when distillation, whether in the presence or absence of such hypochlorous acid solutions are-employed as SO steam, however, is undesirable because at such one of the reactants in the above-mentioned distillation temperatures the reaction favors the chorhydrination reactions. For instance, when liberation of excessive quantities of chlorine gas alyl chloride is intimately commingled With an with the concurrent formation of hypochlorites aqueous hypochlorous acid solution containing and chlorates. The latter are naturally non-dis such free chloride ions, the reaction products con- tillable and, therefore, become a total loss so far 2 2,347,15i as the yield of hypochlorous acid is concerned free from or containing only a very low chloride In order to decrease this loss by conversion of ion concentration. This solution was quite stable. some of the hypochlorous acid into the corre Thus, a sample of a distillate produced according sponding hypochlorite and chlorate salts, the to the present invention and originally having a process of the present invention provides for the 0.73 M HOCl concentration, upon standing for maintenance of a relatively high halogen gas Con three days without any protection from light, etc., centration in the vapor phase evolved during the was found to have a 0.71 M HOCl concentration. distillation operation. For this purpose, the dis In other words, only 0.02 MI of the hypochlorous tillation is effectively realized by the distillation acid decomposed. On the other hand, hypochlo of the aqueous hypochlorous acid solutions con 0 rous acid solutions containing Sodium chloride Or taining halide ions (chloride ions), with the con like halides, when allowed to stand in the light, current passage of halogen gas through the dise decompose very rapidly so that it is frequently tillation zone. In fact, in order to obtain Sub necessary to prepare such chloride ion-containing stantially quantitative yields of the hypochlorous aqueous hypochlorous acid solutions immediately acid, it is desirable, if not essential, to employ a 5 before their utilization, and not to allow them to high concentration of the free halogen in the dis stand for any appreciable length of time. tillation or stripping column. Furthermore, it is Although the above disclosure was made With desirable to maintain the aqueous hypochlorous particular reference to the use of Sodium hy acid solution subjected to the distillation in ac droxide for the neutralization of the hydrochloric cordance with the process of the present inven 20 acid formed as a by-product during the prepara tion in an acidic state, preferably in the vicinity tion of the hypochlorous acid, it is possible to use of a pH of 3 or 4. Somewhat lower and higher the hydroxides of other metals, such as the other pH values may be employed without considerable alkali metals, the alkaline earth metals, and the impairment of the yields, as this will be obvious like. Naturally, the Salts formed during Such from the examples presented hereinbelow. HOW 25 neutralization will be different. However, when ever, in order to obtain optimum yields, it is best such salts are soluble in Water, the aqueous hya operate at a pH of below about 5, and prefer pochlorous acid solution will contain the unde ably within the aforementioned pH range in the sirable free chloride ions. Therefore, the proc vicinity of 3 and 4. w ess of the present invention is applicable to the The distillation according to the present in SO treatment of aqueous hypochlorous acid Solutions vention may be effected in a batch, intermittent containing water-soluble halide (e. g. chloride) or continuous manner. For example, the halide salts, and the recovery therefrom of solutions containing aqueous hypochlorous acid solution which are substantially free from the halide ions. may be fed continuously into a heat insulated The following examples will serve to indicate distillation or stripping column countercurrent to the operation of the present invention, it being a rising stream of steam and a halogen gas, Such understood that there is no intention of being as chlorine. In a preferred embodiment, the feed limited by any details of Operation, such as tem of the halide-containing solution may be made perature, pressure, concentrations of the starting at some intermediate point of the column, while material and of final distillate, etc., the inven the steam and the halogen gas are introduced 40 tion being co-extensive in scope with the appended substantially at or near the base thereof. The claims. undistilled fraction, comprising an aqueous solu Eacomple I tion of the inorganic halide or halides (such as the chlorides) present in the starting material An aqueous hypochlorous acid Solution prepared may be withdrawn intermittently or continuously 5 by the interaction of chlorine, water and Sodium from the bottom of the tower or column. The hydroxide, and therefore containing sodium chlo overhead fraction leaving the top of the column ride in Solution, was distilled in a four-foot strip may be treated (as by cooling) to separate the ping Column filled with 10 mm, glass beads. The halogen gas which may then be recycled back into column was surrounded with a steam jacket to and through the column.
Recommended publications
  • Group 17 (Halogens)
    Sodium, Na Gallium, Ga CHEMISTRY 1000 Topic #2: The Chemical Alphabet Fall 2020 Dr. Susan Findlay See Exercises 11.1 to 11.4 Forms of Carbon The Halogens (Group 17) What is a halogen? Any element in Group 17 (the only group containing Cl2 solids, liquids and gases at room temperature) Exists as diatomic molecules ( , , , ) Melting Boiling 2State2 2 2Density Point Point (at 20 °C) (at 20 °C) Fluorine -220 °C -188 °C Gas 0.0017 g/cm3 Chlorine -101 °C -34 °C Gas 0.0032 g/cm3 Br2 Bromine -7.25 °C 58.8 °C Liquid 3.123 g/cm3 Iodine 114 °C 185 °C Solid 4.93 g/cm3 A nonmetal I2 Volatile (evaporates easily) with corrosive fumes Does not occur in nature as a pure element. Electronegative; , and are strong acids; is one of the stronger weak acids 2 The Halogens (Group 17) What is a halogen? Only forms one monoatomic anion (-1) and no free cations Has seven valence electrons (valence electron configuration . ) and a large electron affinity 2 5 A good oxidizing agent (good at gaining electrons so that other elements can be oxidized) First Ionization Electron Affinity Standard Reduction Energy (kJ/mol) Potential (kJ/mol) (V = J/C) Fluorine 1681 328.0 +2.866 Chlorine 1251 349.0 +1.358 Bromine 1140 324.6 +1.065 Iodine 1008 295.2 +0.535 3 The Halogens (Group 17) Fluorine, chlorine and bromine are strong enough oxidizing agents that they can oxidize the oxygen in water! When fluorine is bubbled through water, hydrogen fluoride and oxygen gas are produced.
    [Show full text]
  • Rate Constants for Reactions Between Iodine- and Chlorine-Containing Species: a Detailed Mechanism of the Chlorine Dioxide/Chlorite-Iodide Reaction†
    3708 J. Am. Chem. Soc. 1996, 118, 3708-3719 Rate Constants for Reactions between Iodine- and Chlorine-Containing Species: A Detailed Mechanism of the Chlorine Dioxide/Chlorite-Iodide Reaction† Istva´n Lengyel,‡ Jing Li, Kenneth Kustin,* and Irving R. Epstein Contribution from the Department of Chemistry and Center for Complex Systems, Brandeis UniVersity, Waltham, Massachusetts 02254-9110 ReceiVed NoVember 27, 1995X Abstract: The chlorite-iodide reaction is unusual because it is substrate-inhibited and autocatalytic. Because - analytically pure ClO2 ion is not easily prepared, it was generated in situ from the rapid reaction between ClO2 and I-. The resulting overall reaction is multiphasic, consisting of four separable parts. Sequentially, beginning with mixing, these parts are the (a) chlorine dioxide-iodide, (b) chlorine(III)-iodide, (c) chlorine(III)-iodine, and (d) hypoiodous and iodous acid disproportionation reactions. The overall reaction has been studied experimentally and by computer simulation by breaking it down into a set of kinetically active subsystems and three rapidly established - equilibria: protonations of chlorite and HOI and formation of I3 . The subsystems whose kinetics and stoichiometries were experimentally measured, remeasured, or which were previously experimentally measured include oxidation of - iodine(-1,0,+1,+3) by chlorine(0,+1,+3), oxidation of I by HIO2, and disproportionation of HOI and HIO2. The final mechanism and rate constants of the overall reaction and of its subsystems were determined by sensitivity analysis and parameter fitting of differential equation systems. Rate constants determined for simpler reactions were fixed in the more complex systems. A 13-step model with the three above-mentioned rapid equilibria fits the - -3 - -3 - - overall reaction and all of its subsystems over the range [I ]0 < 10 M, [ClO2 ]0 < 10 M, [I ]0/[ClO2 ]0 ) 3-5, pH ) 1-3.5, and 25 °C.
    [Show full text]
  • Periodic Trends in the Main Group Elements
    Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds.
    [Show full text]
  • Guidance for Identification and Naming of Substance Under REACH
    Guidance for identification and naming of substances under 3 REACH and CLP Version 2.1 - May 2017 GUIDANCE Guidance for identification and naming of substances under REACH and CLP May 2017 Version 2.1 2 Guidance for identification and naming of substances under REACH and CLP Version 2.1 - May 2017 LEGAL NOTICE This document aims to assist users in complying with their obligations under the REACH and CLP regulations. However, users are reminded that the text of the REACH and CLP Regulations is the only authentic legal reference and that the information in this document does not constitute legal advice. Usage of the information remains under the sole responsibility of the user. The European Chemicals Agency does not accept any liability with regard to the use that may be made of the information contained in this document. Guidance for identification and naming of substances under REACH and CLP Reference: ECHA-16-B-37.1-EN Cat. Number: ED-07-18-147-EN-N ISBN: 978-92-9495-711-5 DOI: 10.2823/538683 Publ.date: May 2017 Language: EN © European Chemicals Agency, 2017 If you have any comments in relation to this document please send them (indicating the document reference, issue date, chapter and/or page of the document to which your comment refers) using the Guidance feedback form. The feedback form can be accessed via the EVHA Guidance website or directly via the following link: https://comments.echa.europa.eu/comments_cms/FeedbackGuidance.aspx European Chemicals Agency Mailing address: P.O. Box 400, FI-00121 Helsinki, Finland Visiting address: Annankatu 18, Helsinki, Finland Guidance for identification and naming of substances under 3 REACH and CLP Version 2.1 - May 2017 PREFACE This document describes how to name and identify a substance under REACH and CLP.
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • P – Block Elements SYJC
    P – Block Elements Introduction The p-block elements are placed in groups 13 – 18 . The general electronic configuration is ns 2 np1 – 6. The groups included in the syllabus are 15, 16, 17 and 18. Group 15 Elements Nitrogen family: configuration is ns2np3. The elements of group 15 – nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb) bismuth (Bi) All Group 15 Elements tend to follow the general periodic trends: Periodic properties Trends Electronegativity:(the atom's ability of Decreases down the group attracting electrons) Ionization Enthalpy (the amount of decreases energy required to remove an electron from the atom in it's gaseous phase) Atomic Radii (the radius of the atom) increases Electron Affinity (ability of the atom to decreases accept an electron) Melting Point (amount of energy increases going down the required to break bonds to change a group solid phase substance to a liquid phase) Boiling Point (amount of energy increases going down the required to break bonds to change a group liquid phase substance to a gas) Chemical properties Action of air;(high temp arc) N2 + O2 2NO Action oxidizing agents: P4 +20HNO3 4H3PO4 + 20 NO2+4 H20 As4 + 20 HNO3 4H3AsO4 + 20 NO2+4 H20 Action of hot conc H2SO4 P4 +10 H2SO4 4H3PO4 + 10 SO2+4 H20 As4 +10 H2SO4 4H3AsO4 + 4 Sb + 6 H2SO4 Sb2(SO4)3 + 3 Hydrides All form hydrides with formula EH3 ( E = N, P, As, Sb , Bi) oxidation state = – 3 Hydrogen bonding in NH3 The stability of hydrides decrease down the group due to decrease in bond Hydrides comparison Anomalous behaviour of
    [Show full text]
  • Kinetics and Mechanism of Oxidation of Glycine and Alanine by Oxone R
    http://dx.doi.org/10.5935/0103-5053.20140139 J. Braz. Chem. Soc., Vol. 25, No. 9, 1545-1551, 2014. Printed in Brazil - ©2014 Sociedade Brasileira de Química Article 0103 - 5053 $6.00+0.00 A Kinetics and Mechanism of Oxidation of Glycine and Alanine by Oxone® Catalyzed by Bromide Ion Malharrao R. Thombare and Gavisiddappa S. Gokavi* Kinetics and Catalysis Laboratory, Department of Chemistry, Shivaji University, 416004 Kolhapur, India A oxidação da glicina e alanina por Oxone®, catalisada por íons brometo foi estudada em meio ácido. A reação é iniciada pela oxidação do brometo ao bromo, que reage com o aminoácido. A formação de bromo é comprovada pelo exame espectrofotométrico da mistura reacional. O intermediário proposto envolve a formação de um complexo entre o bromo e o ânion do aminoácido. A taxa de reação é inibida por um aumento na concentração do íon hidrogênio devido ao equilíbrio de protonação dos aminoácidos. Um mecanismo é proposto e a lei da razão derivada foi verificada graficamente. O efeito da permissividade relativa, força iônica e temperatura também foram acompanhados e esses efeitos também dão suporte ao mecanismo proposto. Oxidation of glycine and alanine by Oxone® catalysed by bromide ions has been studied in acidic medium. The reaction is initiated by the oxidation of bromide to bromine, which then reacts with the amino acid. The formation of bromine is supported by the spectrophotometric examination of the reaction mixture. The proposed intermediate involves a complex formation between bromine and the anion of the amino acid. The rate of the reaction is inhibited by an increase in the hydrogen ion concentration due to the protonation equilibria of the amino acids.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Preparation Date: 9/23/2013 Revision date 10/11/2019 Revision Number: G3 1. IDENTIFICATION Product identifier Product code: S1243 Product Name: SODIUM CHLORITE, ANHYDROUS, FLAKES Other means of identification Synonyms: Chlorous acid, sodium salt CAS #: 7758-19-2 RTECS # VZ4800000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: Bleaching agent. Water purification. Uses advised against No information available Supplier: Spectrum Chemical Mfg. Corp 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Tom Tyner (USA - West Coast) Contact Person: Ibad Tirmiz (USA - East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Considered a dangerous substance or mixture according to the Globally Harmonized System (GHS) Acute toxicity - Oral Category 3 Acute toxicity - Dermal Category 2 Acute toxicity - Inhalation (Dusts/Mists) Category 2 Skin corrosion/irritation Category 2 Serious eye damage/eye irritation Category 1 Oxidizing solids Category 2 Label elements Danger Hazard statements Fatal in contact with skin or if inhaled Toxic if swallowed Causes skin irritation Product code: S1243 Product name: SODIUM CHLORITE, Page 1 / 15 ANHYDROUS, FLAKES Causes serious eye damage May intensify fire; oxidizer Hazards not otherwise classified (HNOC) Not Applicable Other hazards Very toxic to aquatic life with long lasting effects Precautionary Statements - Prevention Wash face, hands and any exposed skin thoroughly after handling Do not eat, drink or smoke when using this product Do not get in eyes, on skin, or on clothing Do not breathe dust Use only outdoors or in a well-ventilated area Wear respiratory protection Keep away from heat/sparks/open flames/hot surfaces.
    [Show full text]
  • Risk Assessment Report Sodium Chlorite(The 3 Edition) (Food
    This is a provisional English translation of an excerpt from the original full report. Risk Assessment Report Sodium Chlorite(The 3rd edition) (Food Additive) Food Safety Commission of Japan (FSCJ) July 2009 Executive summary The Food Safety Commission of Japan (FSCJ) conducted a risk assessment of sodium chlorite (NaClO2) [CAS No. 7758-19-2], a food additive that is used as a bleaching agent and bacteriocide, using various test results. The test results used in the assessment are related to the repetitive dose toxicity, carcinogenicity, reproductive developmental toxicity, genotoxicity, etc. of sodium chlorite and other substances. When administered orally, sodium chlorite is assumed to convert to chlorous acid (HClO2) in gastric fluid. In - addition to chlorous acid (HClO2), substances such as chloride ion (Cl ), chlorine dioxide (ClO2), and chlorite - ion (ClO2 ) can also be produced by metabolism in the human body. Therefore, the toxicity of sodium chlorite was assessed mainly on the basis of safety data obtained for sodium chlorite, chlorite ion, and chlorine dioxide from various animal and human studies, with reference to findings related to hypochlorous acid solution and sodium hypochlorite (NaClO) as appropriate. According to the results of the safety studies for sodium chlorite and the like, the most commonly observed major effect of sodium chlorite intake was thought to be the damage to the red blood cells by oxidative stress. No carcinogenicity was observed. With regard to genotoxicity, a weak positive result was observed in a reverse mutation test using bacteria. Although a positive result was obtained in a chromosomal abnormality test using mammalian cell cultures, the result was negative as to a micronucleus test performed using a high dose.
    [Show full text]
  • Acidified Sodium Chlorite
    Acidified Sodium Chlorite Livestock 1 2 Identification of Petitioned Substance 3 4 Chemical Name: 11 CAS Numbers: 5 Acidified Sodium Chlorite (ASC) 13898-47-0 (Chlorous Acid) 6 7758-19-2 (Sodium Chlorite) 7 Other Names: 8 Sodium Chlorite, Acidified Other Codes: 9 Chlorous Acid 231-836-6 (EINECS) 10 12 Trade Names: 13 SANOVA®, 4XLA®, Aztec Gold® 14 15 Summary of Petitioned Use 16 The National Organic Program (NOP) final rule currently allows the use of acidified sodium chlorite (ASC) 17 solutions for antimicrobial food treatment when acidified with citric acid under 7 CFR § 205.605. The 18 petition before the National Organic Standards Board (NOSB) is to add ASC solution as an allowed 19 synthetic in organic livestock production (§ 205.603) for use as a disinfectant/sanitizer and topical 20 treatment (i.e., teat dip). 21 ASC solutions used as disinfectants and teat dip treatments in livestock production are analogous to those 22 used for secondary direct food processing and handling. However, the potential impacts to the 23 environment and human health resulting from ASC treatments of livestock necessitate consideration of the 24 aqueous chemistry of the parent substance and its breakdown products, and potential for toxic effects to 25 terrestrial organisms and humans potentially exposed to these substances. 26 Characterization of Petitioned Substance 27 28 Composition of the Substance: 29 The petitioned substance, acidified sodium chlorite (ASC) solution, is generated through the reaction of 30 any acid categorized as Generally Recognized as Safe (GRAS) by the FDA with an aqueous solution of 31 technical grade (~80% purity) sodium chlorite (NaClO2).
    [Show full text]
  • Chemistry 1000 Lecture 21: the Halogens
    Chemistry 1000 Lecture 21: The halogens Marc R. Roussel November 22, 2018 Marc R. Roussel Chemistry 1000 Lecture 21: The halogens November 22, 2018 1 / 20 The halogens The halogens Group 17 Pure elements consist of X2 molecules All form −1 anions States and colors at room temperature: F2 Cl2 Br2 I2 gas gas liquid solid yellow yellow-green dark red dark violet Volatility: tendency of a substance to vaporize Why are the compounds at the top of the group more volatile? Marc R. Roussel Chemistry 1000 Lecture 21: The halogens November 22, 2018 2 / 20 The halogens Reduction potentials range from extremely to moderately positive, i.e. these are good to excellent oxidizing agents: − − X2 + 2e ! 2X(aq) Element F2 Cl2 Br2 I2 E◦=V 2.866 1.358 1.065 0.535 In nature, always found as the anion, except iodine which is also found in some oxoanions Fluorine in particular can often oxidize elements with very high electronegativities (e.g. chlorine, oxygen). Marc R. Roussel Chemistry 1000 Lecture 21: The halogens November 22, 2018 3 / 20 The halogens Enthalpy of electronic attraction 350 340 330 -1 mol 320 /kJ EA E 310 300 290 F Cl Br I Why does F go against the trend? Marc R. Roussel Chemistry 1000 Lecture 21: The halogens November 22, 2018 4 / 20 The halogens Typical reactions of halogens React with metals to form metal halides React with nonmetals, often forming more than one binary compound with elements in period 3 or beyond Reaction of a halogen with P4 can give either PX3 or PX5 Reaction with S8 can give SX2,S2X2, SX4,S2X10, SX6 Industrial production of Cl2: by electrolysis of NaCl(aq) Industrial production of Br2 and I2: by oxidation of the anion with chlorine gas, e.g.
    [Show full text]
  • The P-Block Elements Properties and Uses of Dioxygen Are Placed in Groups 13 to 18 of the Periodic Table
    77UnitUnitUnit Objectives TheThe pp -Block-Block After studying this Unit, you will be able to ElementElementss • appreciate general trends in the chemistry of elements of groups 15,16,17 and 18; Diversity in chemistry is the hallmark of p–block elements manifested • learn the preparation, properties in their ability to react with the elements of s–, d– and f–blocks as and uses of dinitrogen and well as with their own. phosphorus and some of their important compounds; • describe the preparation, In Class XI, you have learnt that the p-block elements properties and uses of dioxygen are placed in groups 13 to 18 of the periodic table. and ozone and chemistry of some Their valence shell electronic configuration is ns2np1–6 simple oxides; (except He which has 1s2 configuration). The properties • know allotropic forms of sulphur, of p-block elements like that of others are greatly chemistry of its important influenced by atomic sizes, ionisation enthalpy, electron compounds and the structures of gain enthalpy and electronegativity. The absence of d- its oxoacids; orbitals in second period and presence of d or d and f • describe the preparation, orbitals in heavier elements (starting from third period properties and uses of chlorine onwards) have significant effects on the properties of and hydrochloric acid; elements. In addition, the presence of all the three types • know the chemistry of interhalogens and structures of of elements; metals, metalloids and non-metals bring oxoacids of halogens; diversification in chemistry of these elements. • enumerate the uses of noble Having learnt the chemistry of elements of Groups gases; 13 and 14 of the p-block of periodic table in Class XI, • appreciate the importance of you will learn the chemistry of the elements of these elements and their subsequent groups in this Unit.
    [Show full text]