Diversity and Ecology of Chemosynthetic Symbioses in Deep-Sea Invertebrates

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Ecology of Chemosynthetic Symbioses in Deep-Sea Invertebrates Diversity and Ecology of Chemosynthetic Symbioses in Deep-Sea Invertebrates Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften - Dr. rer. nat. - dem Fachbereich Biologie/Chemie der Universit¨at Bremen vorgelegt von Jillian M. Petersen Bremen July 2009 Die vorliegende Arbeit wurde in der Zeit von April 2006 bis Juli 2009 in der Symbiose-Gruppe am Max-Planck-Institut f¨ur marine Mikrobiologie in Bremen angefertigt. 1. Gutachterin: Dr. Nicole Dubilier 2. Gutachterin: Prof. Dr. Barbara Reinhold Tag des Promotionskolloquiums: 15. September 2009 Auf dem Deckblatt: Rimicaris exoculata Garnelen und Bathymodiolus puteoser- pentis Muscheln auf einem schwarzen Raucher, Logatchev Hydrothermalfeld, Mittel-Atlantischer R¨ucken. Copyright Woods Hole Oceanographic Institu- tion. ‘Finish each day and be done with it. You have done what you could. Some blunders and absurdities no doubt crept in, forget them as soon as you can. Tomorrow is a new day, you shall begin it well and serenely...’ - Ralph Waldo Emerson Summary The energy sources that drive biological processes at deep-sea hydrothermal vents and cold seeps include methane and reduced inorganic compounds such as sulfide and hydrogen. These compounds are unavailable to metazoan life, but can be used by chemoautotrophic or methanotrophic bacteria to fuel chemosynthetic primary production. In these habitats, symbioses between invertebrates and chemoautotrophic or methanotrophic bacteria form the basis of ecosystems that thrive in the absence of sunlight. This thesis is made up of two thematic parts. In the first part, two reviews on methane- oxidizing symbionts are presented. Methanotrophic symbiotic bacteria have so far been found in invertebrate animals at hydrothermal vents and cold seeps in the deep sea, and in a plant host in a terrestrial wetland. No methane-oxidizing symbiont has yet been cultured. Therefore, the evidence for methanotrophy in these bacteria has come from ultrastructural, enzymatic, physiological, stable isotope, and molecular biological studies of the symbiotic host tissues. Despite being found in a wide range of hosts, all marine methanotrophic symbionts for which 16S rRNA sequences are available belong to a single lineage within the Gammaproteobacteria. Methane-oxidizing symbionts in the terrestrial habitat belong to the Alphaproteobacteria. However, many of these symbionts have not yet been characterized with molecular methods, and may be more diverse than currently recognized. These reviews summarize the current knowledge of methane-based symbioses, and identify topics for future research. In the second part of this thesis, I present two studies on the ectosymbiosis of Rimicaris exoculata, an alvinocaridid shrimp from hydrothermal vents on the Mid-Atlantic Ridge (MAR). These shrimp have filamentous ectosymbionts on modified appendages and the inner surfaces of the gill chamber. The symbionts were previously assumed to be ep- silonproteobacterial sulfur oxidizers. Using the full-cycle 16S rRNA approach, I identified a second filamentous ectosymbiont that belongs to a novel symbiotic lineage within the Gammaproteobacteria. To investigate the biogeography of the symbiosis, I compared the 16S rRNA gene sequences of ectosymbionts from four MAR vent fields, Rainbow, TAG, Logatchev, and South MAR, which are separated by up to 8500 km along the MAR. Differ- ences in the 16S rRNA gene for both the gammaproteobacterial and epsilonproteobacterial symbionts were correlated with geographic distance. In contrast, the phylogeny of the free- living relatives of the epsilonproteobacterial symbiont showed no obvious geographic trend. Host-symbiont recognition could explain the observed symbiont distribution. The metabolism of the symbionts from the Rainbow vent field was investigated by ther- modynamic modelling, sequencing of key metabolic genes, and immunohistochemical la- belling of proteins in single epibiont cells. Key genes for carbon fixation by the reductive TCA and CBB cycles indicate that both symbionts can fix CO2. Key genes for hydro- gen, methane, and sulfur oxidation indicate that the epibionts have the potential to use these three energy sources. In addition, immunohistochemistry showed that particulate methane monooxygenase is expressed by the gammaproteobacterial symbiont, although it does not belong to any of the currently known methanotrophic lineages. These studies show that the phylogenetic and functional diversity of the shrimp epibiosis is greater than previously recognized. Zusammenfassung An Hydrothermalquellen und Cold-Seeps erm¨oglichen Methan und reduzierte anorganische Verbindungen wie Sulfid und Schwefelwasserstoff biologische Prozesse. Diese Verbindun- gen sind f¨ur h¨ohere Organismen nicht verf¨ugbar, koennen aber von chemoautotrophen und methanotrophen Mikroorganismen f¨ur chemosynthetische Prim¨arproduktion genutzt wer- den. In diesen Habitaten sind Symbiosen zwischen Invertebraten und chemoautotrophen und methanotrophen Bakterien die Grundlage f¨ur Licht-unabh¨angiges Leben. Diese Dissertation besteht aus zwei Teilen. Im ersten Teil werden zwei Review-Artikel ueber Methanotrophe Symbionten vorgestellt. Methanotrophe Symbionten wurden bis- lang in Invertebraten an Hydrothermalquellen und Cold-Seeps in der Tiefsee und in einer Moospflanze eines terrestrischen Habitats gefunden. Bislang wurde kein Methan- oxidierender Symbiont im Labor kultiviert. Beweise fuer die Methanotophie diesen Bak- terien stammen daher von Untersuchungen zu Ultrastruktur, Enzymatik, Physiologie, Iso- topie, und Molekular-Biologie. Trotz ihrer weiten Verbreitung in vielen Wirtsorganismen geh¨oren alle marinen methanotrophen Symbionten mit bekannter 16S rRNA Gensequenz zu einer einzigen Gruppe innerhalb der Gammaproteobakterien. Terrestrische, Methan- oxidierende Symbionten geh¨oren dagegen zu den Alphaproteobakterien. Viele dieser Sym- bionten sind jedoch noch nicht molekularbiologisch charakterisiert und sind m¨oglicherweise diverser als bislang bekannt. Diese Review-Artikel fassen den aktuellen Wissensstand Methan-basierter Symbiosen zusammen und geben Ausblick auf zuk¨unftige Forschungss- chwerpunkte. Im zweiten Teil dieser Dissertation stelle ich zwei Untersuchungen zur Ektosymbiose von Rimicaris exoculata, einer alvinocarididen Garnele von Hydrothermalquellen des Mittel- Atlantischen R¨uckens (MAR), vor. Modifizerte Gliedmaße und innere Oberfl¨achen der Kiemenh¨ohlen der Wirte sind von filament¨osen Ektosymbionten besiedelt, welche fr¨uher als schwefeloxidierende und ausschliesslich epsilonproteobakterielle Organismen beschrieben wurden. Anhand des 16S rRNA Ansatzes habe ich einen zweiten filament¨osen Ektosym- bionten identifiziert, welcher zu einer neuen Gruppe von symbiontischen Gammapro- teobakterien geh¨ort. Die Biogeographie der Ektosymbionten von den vier Hydrothermal- Feldern Rainbow, TAG, Logatchev und South MAR habe ich basierend auf 16S rRNA Gensequenzen vergleichend untersucht. Diese Untersuchungsgebiete sind bis zu 8500 km von einander entfernt. Unterschiede zwischen den 16S rRNA Gensequenzen korre- lierten mit der geographischen Verteilung sowohl der gammaproteobakteriellen als auch der epsilonproteobakteriellen Symbionten. Im Gegensatz dazu zeigten die freileben- den Verwandten der epsilonproteobakteriellen Symbionten keine eindeutige Korrelation mit der Geographie. Die spezifische Erkennung von Wirt und Symbiont k¨onnte das Verteilungsmuster erkl¨aren. Abschliessend wurden die Stoffwechsel-Kapazit¨aten der Symbionten des Rainbow Hydrothermal-Feld anhand thermodynamischer Modellierung, Sequenzierung von Genen zentraler Stoffwechselfunktionen und immunohistochemischer Markierung von Proteinen direkt in Symbionten-Zellen untersucht. Der Nachweis von Schl¨usselgenen des reduktiven TCA-Zyklus und des CBB-Zyklus deuten darauf hin, dass beide Symbionten CO2 fixieren k¨onnen. Detektierte Gene zur Oxidation von Wasserstoff, Methan und Schwefel zeigen die m¨ogliche F¨ahigkeit diese Verbindungen als Energiequelle zu nutzen. Dar¨uber hinaus wurde immunohistochemisch die Expression der partikul¨aren Methan Monooxygenase im gammaproteobakteriellen Symbionten gezeigt, wobei dieser Organismus phylogenetisch nicht zu den bislang bekannten Methanotrophen geh¨ort. Diese Untersuchungen legen nahe, dass die phylogenetische und physiologische Diversit¨at dieser Symbiosen gr¨oßer ist als bislang angenommen. TABLE OF CONTENTS Contents I Introduction 13 1 Chemosynthesis 14 1.1 Energy sources for chemosynthetic microorganisms ...... 14 1.2 Carbon sources for chemosynthetic microorganisms ...... 15 1.2.1 CO2 fixation pathways .................. 17 1.2.2 CH4 incorporation .................... 19 1.3 Chemosynthetic animals? ..................... 21 2 Diversity of habitats 22 2.1 Hydrothermal vents ........................ 23 2.1.1 The geological setting of hydrothermal vents ...... 23 2.1.2 Hydrothermal circulation and the chemical and physi- cal properties of vent fluids ............... 28 2.1.3 Heterogeneity of vent fluid composition on the Mid- Atlantic Ridge ....................... 32 2.2 Cold Seeps ............................. 33 2.2.1 The geological setting of cold seeps ........... 33 2.3 Analogous habitats ........................ 34 2.3.1 Shallow-water marine sediments ............. 34 2.3.2 Whale falls ........................ 35 2.3.3 Sunken wood and shipwrecks .............. 35 3 Diversity of hosts 36 3.1 Marine invertebrate hosts with endosymbionts ......... 42 3.2 Marine invertebrate hosts with ectosymbionts ......... 46 4 Diversity of microbes 49 4.1 Sulfur-oxidizing
Recommended publications
  • Adaptation to Deep-Sea Chemosynthetic Environments As Revealed by Mussel Genomes
    ARTICLES PUBLISHED: 3 APRIL 2017 | VOLUME: 1 | ARTICLE NUMBER: 0121 Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes Jin Sun1, 2, Yu Zhang3, Ting Xu2, Yang Zhang4, Huawei Mu2, Yanjie Zhang2, Yi Lan1, Christopher J. Fields5, Jerome Ho Lam Hui6, Weipeng Zhang1, Runsheng Li2, Wenyan Nong6, Fiona Ka Man Cheung6, Jian-Wen Qiu2* and Pei-Yuan Qian1, 7* Hydrothermal vents and methane seeps are extreme deep-sea ecosystems that support dense populations of specialized macro benthos such as mussels. But the lack of genome information hinders the understanding of the adaptation of these ani- mals to such inhospitable environments. Here we report the genomes of a deep-sea vent/seep mussel (Bathymodiolus plati- frons) and a shallow-water mussel (Modiolus philippinarum). Phylogenetic analysis shows that these mussel species diverged approximately 110.4 million years ago. Many gene families, especially those for stabilizing protein structures and removing toxic substances from cells, are highly expanded in B. platifrons, indicating adaptation to extreme environmental conditions. The innate immune system of B. platifrons is considerably more complex than that of other lophotrochozoan species, including M. philippinarum, with substantial expansion and high expression levels of gene families that are related to immune recognition, endocytosis and caspase-mediated apoptosis in the gill, revealing presumed genetic adaptation of the deep-sea mussel to the presence of its chemoautotrophic endosymbionts. A follow-up metaproteomic analysis of the gill of B. platifrons shows metha- notrophy, assimilatory sulfate reduction and ammonia metabolic pathways in the symbionts, providing energy and nutrients, which allow the host to thrive. Our study of the genomic composition allowing symbiosis in extremophile molluscs gives wider insights into the mechanisms of symbiosis in other organisms such as deep-sea tubeworms and giant clams.
    [Show full text]
  • BIOPAPUA Expedition Highlighting Deep-Sea Benthic Biodiversity of Papua New- Guinea
    Biopapua Expedition – Progress report MUSÉUM NATIONAL D'HISTOIRE NATURELLE 57 rue Cuvier 75005 PARIS‐ France BIOPAPUA Expedition Highlighting deep-sea benthic Biodiversity of Papua New- Guinea Submitted by: Muséum National d'Histoire Naturelle (MNHN) Represented by (co‐PI): Dr Sarah Samadi (Researcher, IRD) Dr Philippe Bouchet (Professor, MNHN) Dr Laure Corbari (Research associate, MNHN) 1 Biopapua Expedition – Progress report Contents Foreword 3 1‐ Our understanding of deep‐sea biodiversity of PNG 4 2 ‐ Tropical Deep‐Sea Benthos program 5 3‐ Biopapua Expedition 7 4‐ Collection management 15 5‐ Preliminary results 17 6‐ Outreach and publications 23 7‐ Appendices 26 Appendix 1 27 NRI, note n°. 302/2010 on 26th march, 2010, acceptance of Biopapua reseach programme Appendix 2 28 Biopapua cruise Report, submitted by Ralph MANA (UPNG) A Report Submitted to School of Natural and Physical Sciences, University of Papua New Guinea Appendix 3 39 Chan, T.Y (2012) A new genus of deep‐sea solenocerid shrimp (Crustacea: Decapoda: Penaeoidea) from the Papua New Guinea. Journal of Crustacean Biology, 32(3), 489‐495. Appendix 4 47 Pante E, Corbari L., Thubaut J., Chan TY, Mana R., Boisselier MC, Bouchet P., Samadi S. (In Press). Exploration of the deep‐sea fauna of Papua New Guinea. Oceanography Appendix 5 60 Richer de Forges B. & Corbari L. (2012) A new species of Oxypleurodon Miers, 1886 (Crustacea Brachyura, Majoidea) from the Bismark Sea, Papua New Guinea. Zootaxa. 3320: 56–60 Appendix 6 66 Taxonomic list: Specimens in MNHN and Taiwan collections 2 Biopapua Expedition – Progress report Foreword Biopapua cruise was a MNHN/IRD deep‐sea cruise in partnership with the School of Natural and Physical Sciences, University of Papua New Guinea.
    [Show full text]
  • Microbial Interactions with Arsenite, Hydrogen and Sulfide In
    MICROBIAL INTERACTIONS WITH ARSENITE, HYDROGEN AND SULFIDE IN AN ACID-SULFATE-CHLORIDE GEOTHERMAL SPRING by Seth D’Imperio A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana April, 2008 ©COPYRIGHT by Seth D’Imperio 2008 All Rights Reserved ii APPROVAL of a dissertation submitted by Seth D’Imperio This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. Timothy R. McDermott Approved for the Department Land Resources and Environmental Science Dr. Jon M. Wraith Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this dissertation should be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microform along with the non- exclusive right to reproduce and distribute my abstract in any format in whole or in part.” Seth D’Imperio April 2008 iv ACKNOWLEDGEMENTS Firstly, I would like to thank Dr.
    [Show full text]
  • Hydrothermal Vent Fields and Chemosynthetic Biota on the World's
    ARTICLE Received 13 Jul 2011 | Accepted 7 Dec 2011 | Published 10 Jan 2012 DOI: 10.1038/ncomms1636 Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre Douglas P. Connelly1,*, Jonathan T. Copley2,*, Bramley J. Murton1, Kate Stansfield2, Paul A. Tyler2, Christopher R. German3, Cindy L. Van Dover4, Diva Amon2, Maaten Furlong1, Nancy Grindlay5, Nicholas Hayman6, Veit Hühnerbach1, Maria Judge7, Tim Le Bas1, Stephen McPhail1, Alexandra Meier2, Ko-ichi Nakamura8, Verity Nye2, Miles Pebody1, Rolf B. Pedersen9, Sophie Plouviez4, Carla Sands1, Roger C. Searle10, Peter Stevenson1, Sarah Taws2 & Sally Wilcox11 The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on theM id-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with > 400 °C venting from the world’s deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents. 1 National Oceanography Centre, Southampton, UK.
    [Show full text]
  • 1 Crustaceans in Cold Seep Ecosystems: Fossil Record, Geographic Distribution, Taxonomic Composition, 2 and Biology 3 4 Adiël A
    1 Crustaceans in cold seep ecosystems: fossil record, geographic distribution, taxonomic composition, 2 and biology 3 4 Adiël A. Klompmaker1, Torrey Nyborg2, Jamie Brezina3 & Yusuke Ando4 5 6 1Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 7 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA. Email: [email protected] 8 9 2Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92354, USA. 10 Email: [email protected] 11 12 3South Dakota School of Mines and Technology, Rapid City, SD 57701, USA. Email: 13 [email protected] 14 15 4Mizunami Fossil Museum, 1-47, Yamanouchi, Akeyo-cho, Mizunami, Gifu, 509-6132, Japan. 16 Email: [email protected] 17 18 This preprint has been submitted for publication in the Topics in Geobiology volume “Ancient Methane 19 Seeps and Cognate Communities”. Specimen figures are excluded in this preprint because permissions 20 were only received for the peer-reviewed publication. 21 22 Introduction 23 24 Crustaceans are abundant inhabitants of today’s cold seep environments (Chevaldonné and Olu 1996; 25 Martin and Haney 2005; Karanovic and Brandão 2015), and could play an important role in structuring 26 seep ecosystems. Cold seeps fluids provide an additional source of energy for various sulfide- and 27 hydrocarbon-harvesting bacteria, often in symbiosis with invertebrates, attracting a variety of other 28 organisms including crustaceans (e.g., Levin 2005; Vanreusel et al. 2009; Vrijenhoek 2013). The 29 percentage of crustaceans of all macrofaunal specimens is highly variable locally in modern seeps, from 30 0–>50% (Dando et al. 1991; Levin et al.
    [Show full text]
  • Role of Chemolithoautotrophic Microorganisms Involved in Nitrogen and Sulfur Cycling in Coastal Marine Sediments
    Role of chemolithoautotrophic microorganisms involved in nitrogen and sulfur cycling in coastal marine sediments Yvonne Antonia Lipsewers THIS RESEARCH WAS FINANCIALLY SUPPORTED BY DARWIN CENTER FOR BIOGEOSCIENCES NIOZ – ROYAL NETHERLANDS INSTITUTE FOR SEA RESEARCH ISBN: 978-90-6266-492-4 Cover photos: S. Rampen, L. Villanueva, M. van der Meer Printed by Ipskamp Printing, The Netherlands Role of chemolithoautotrophic microorganisms involved in nitrogen and sulfur cycling in coastal marine sediments De rol van chemolithoautotrofe micro-organismen die deelnemen in de stikstof- en zwavelcyclus in mariene kustsedimenten (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 5 december 2017 des ochtends te 10.30 uur door Yvonne Antonia Lipsewers geboren op 18 juli 1977 te Salzkotten, Duitsland Promotor: Prof. dr. ir. J.S. Sinninghe Damsté Copromotor: Dr. L. Villanueva „Hinterher ist man immer schlauer…“ Für meine Familie Table of contents Chapter 1 – Introduction .....................................................................................................1 Chapter 2 – Seasonality and depth distribution of the abundance and activity of am- monia oxidizing microorganisms in marine coastal sediments (North Sea) ..........23 Chapter 3 – Lack of 13C-label incorporation suggests low turnover rates of thaumar- chaeal intact
    [Show full text]
  • New Records of Three Deep-Sea Bathymodiolus Mussels (Bivalvia: Mytilida: Mytilidae) from Hydrothermal Vent and Cold Seeps in Taiwan
    352 Journal of Marine Science and Technology, Vol. 27, No. 4, pp. 352-358 (2019) DOI: 10.6119/JMST.201908_27(4).0006 NEW RECORDS OF THREE DEEP-SEA BATHYMODIOLUS MUSSELS (BIVALVIA: MYTILIDA: MYTILIDAE) FROM HYDROTHERMAL VENT AND COLD SEEPS IN TAIWAN Meng-Ying Kuo1, Dun- Ru Kang1, Chih-Hsien Chang2, Chia-Hsien Chao1, Chau-Chang Wang3, Hsin-Hung Chen3, Chih-Chieh Su4, Hsuan-Wien Chen5, Mei-Chin Lai6, Saulwood Lin4, and Li-Lian Liu1 Key words: new record, Bathymodiolus, deep-sea, hydrothermal vent, taiwanesis (von Cosel, 2008) is the only reported species of cold seep, Taiwan. this genus from Taiwan. It was collected from hydrothermal vents near Kueishan Islet off the northeast coast of Taiwan at depths of 200-355 m. ABSTRACT Along with traditional morphological classification, mo- The deep sea mussel genus, Bathymodiolus Kenk & Wilson, lecular techniques are commonly used to study the taxonomy 1985, contains 31 species, worldwide. Of which, one endemic and phylogenetic relationships of deep sea mussels. Recently, species (Bathymodiolus taiwanesis) was reported from Taiwan the complete mitochondrial genomes have been sequenced (MolluscaBase, 2018). Herein, based on the mitochondrial COI from mussels of Bathymodiolus japonicus, B. platifrons and results, we present 3 new records of the Bathymodiolus species B. septemdierum (Ozawa et al., 2017). Even more, the whole from Taiwan, namely Bathymodiolus platifrons, Bathymodiolus genome of B. platifrons was reported with sequence length of securiformis, and Sissano Bathymodiolus sp.1 which were collected 1.64 Gb nucleotides (Sun et al., 2017). from vent or seep environments at depth ranges of 1080-1380 Since 2013, under the Phase II National energy program of m.
    [Show full text]
  • Evidence for the Role of Endosymbionts in Regional-Scale
    Evidence for the role of endosymbionts in PNAS PLUS regional-scale habitat partitioning by hydrothermal vent symbioses Roxanne A. Beinarta, Jon G. Sandersa, Baptiste Faureb,c, Sean P. Sylvad, Raymond W. Leee, Erin L. Beckerb, Amy Gartmanf, George W. Luther IIIf, Jeffrey S. Seewaldd, Charles R. Fisherb, and Peter R. Girguisa,1 aDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; bBiology Department, Pennsylvania State University, University Park, PA 16802; cInstitut de Recherche pour le Développement, Laboratoire d’Ecologie Marine, Université de la Réunion, 97715 Saint Denis de La Réunion, France; dDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; eSchool of Biological Sciences, Washington State University, Pullman, WA 99164; and fSchool of Marine Science and Policy, University of Delaware, Lewes, DE 19958 Edited* by Paul G. Falkowski, Rutgers, The State University of New Jersey, New Brunswick, NJ, and approved September 26, 2012 (received for review February 21, 2012) Deep-sea hydrothermal vents are populated by dense communities Hydrothermal vents are extremely productive environments of animals that form symbiotic associations with chemolithoauto- wherein primary production occurs via chemolithoautotrophy, trophic bacteria. To date, our understanding of which factors govern the generation of energy for carbon fixation from the oxidation the distribution of host/symbiont associations (or holobionts) in of vent-derived reduced inorganic chemicals (6). The dense nature is limited, although host physiology often is invoked. In communities of macrofauna that populate these habitats typically general, the role that symbionts play in habitat utilization by vent are dominated by invertebrates that form symbiotic associations holobionts has not been thoroughly addressed.
    [Show full text]
  • The Contrasted Evolutionary Fates of Deep-Sea
    The contrasted evolutionary fates of deep-sea chemosynthetic mussels (Bivalvia, Bathymodiolinae) Justine Thubaut, Nicolas Puillandre, Jean-Baptiste Faure, Corinne Cruaud, Sarah Samadi To cite this version: Justine Thubaut, Nicolas Puillandre, Jean-Baptiste Faure, Corinne Cruaud, Sarah Samadi. The con- trasted evolutionary fates of deep-sea chemosynthetic mussels (Bivalvia, Bathymodiolinae). Ecology and Evolution, Wiley Open Access, 2013, 3 (14), pp.4748-4766. 10.1002/ece3.749. hal-01250918 HAL Id: hal-01250918 https://hal.archives-ouvertes.fr/hal-01250918 Submitted on 11 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License The contrasted evolutionary fates of deep-sea chemosynthetic mussels (Bivalvia, Bathymodiolinae)a Justine Thubaut1, Nicolas Puillandre1, Baptiste Faure2,3, Corinne Cruaud4 & Sarah Samadi1 1Departement Systematique et Evolution, Museum National d’Histoire Naturelle, Unite Mixte de Recherche 7138 (UPMC-IRD-MNHN-CNRS), “Systematique Adaptation et Evolution”, 75005 Paris, France 2Station Biologique de Roscoff, Unite Mixte de Recherche 7127, Centre National de la Recherche Scientifique, Universite Pierre et Marie Curie, 29680 Roscoff, France 3Biotope, Service Recherche et Developpement, BP58 34140 Meze, France 4Genoscope, CP 5706, 91057 Evry, France Keywords Abstract Bathymodiolinae, chemosynthetic ecosystem, deep-sea, evolution.
    [Show full text]
  • Crustacea; Decapoda; Caridea; Alvinocarididae; Alvinocaris; New Species; Cold Seeps; Blake Ridge; Northwestern Atlantic
    Zootaxa 1019: 27–42 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1019 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) A new species of Alvinocaris (Crustacea: Decapoda: Caridea: Alvi- nocarididae) and a new record of A. muricola from methane seeps on the Blake Ridge Diapir, Northwestern Atlantic T. KOMAI1, T. M. SHANK 2 & C. L. VAN DOVER3 1 Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682 Japan; [email protected] 2 Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, U.S.A. 3 Biology Department, College of William & Mary, Williamsburg, VA 23187, U.S.A. Abstract Two species of the alvinocaridid shrimp genus Alvinocaris, A. methanophila n. sp. and A. muricola Williams, are reported from a cold seep site on the Blake Ridge Diapir, northwestern Atlantic, at a depth of 2155 m. Alvinocaris methanophila is described and illustrated on the basis of 33 adult specimens. It is most similar to the sympatrically found A. muricola Williams, but differs in the comparatively stout second segment of the antennular peduncle and smaller size at maturity in females. Available data suggest that A. muricola is rare at this site. Brief notes on habitat and distri- bution of the two species are provided. Key words: Crustacea; Decapoda; Caridea; Alvinocarididae; Alvinocaris; new species; cold seeps; Blake Ridge; northwestern Atlantic Introduction Shrimps of the genus Alvinocaris are almost exclusively associated with chemosynthetic communities influenced by hydrothermal vents or hydrocarbon seeps (Komai & Segonzac, 2005). Recently, Escobar-Briones & Villalobos-Hiriart (2003) recorded an indeterminate species of Alvinocaris from non-chemosynthetic environments on the Banco Chinchorro in the northern Caribbean at depths of 176–203 m, although no information on morphol- ogy of the voucher specimens was provided.
    [Show full text]
  • Western Australian Museum Annual Report 2003-2004
    Western Australian Museum Annual Report 2003-2004 Aboriginal Advisory Committee Member Ken Colbung performs a Smoking Ceremony in the new Collections and Research Centre, Welshpool © Western Australian Museum, 2004 Coordinated by Ann Ousey and Nick Mayman Edited by Roger Bourke Designed by Charmaine Cave Layout by Gregory Jackson Published by the Western Australian Museum Locked Bag 49, Welshpool DC, Western Australia 6986 49 Kew Street, Welshpool, Western Australia 6106 www.museum.wa.gov.au ISSN 0083-87212204-6127 2 WESTERN AUSTRALIAN MUSEUM ANNUAL REPORT 2003–2004 contents Public Access 4 Letter to the Minister 5 A Message from the Minister 6 PART 1: Introduction 7 Introducing the Western Australian Museum 8 The Museum’s Vision, Mission Functions, Strategic Aims 9 Executive Director’s Review 11 Relocation Report 13 Visitors to Western Australian Museum Sites 15 Organisational Structure 16 Trustees, Boards and Committees 17 Western Australian Museum Foundation 20 Friends of the Western Australian Museum 22 PART 2: The Year Under Review 25 Western Australian Museum–Science and Culture 26 Western Australian Maritime Museum 41 Regional Sites 54 Western Australian Museum–Albany 55 Western Australian Museum–Geraldton 57 Western Australian Museum–Kalgoorlie-Boulder 62 Visitor Services 64 Museum Services 72 Corporate Operations 77 PART 3: Compliance Requirements 85 Accounts and Financial Statements 86 Outcomes, Outputs and Performance Indicators 106 APPENDICES 112 A Sponsors, Benefactors and Granting Agencies 113 BVolunteers 115 CStaff List
    [Show full text]
  • Iligh Resolution Solid-State Sodium-23, Aluminum-27, and Silicon-29
    American Mineralogist, Volume 70, pages 106-123,I9E5 Iligh resolution solid-statesodium-23, aluminum-27, and silicon-29nuclear magnetic resonancespectroscopic reconnaissance of alkali and plagioclasefeldspars R. JeMes Ktnrpernrcr Department of Geology University of lllinois at Urbana-Champaign l30l West Green Street. Urbana. Illinois 61801 Ronnnr A. KrNsev. KeneN ANN SuIrn School of Chemical Sciences University of lllinois at Urbana-Champaign 505 South Mathews Avenue, Urbana, Illinois 61801 Donelo M. Hr,NoBnsoN Department of Geology University of lllinois at Urbana-Champaign 1301 West Green Street. Urbana. Illinois 61801 eNo Enrc OlorrBI-o School of Chemical Sciences University of Illinois at Urbana-Champaign 505 South Mathews Avenue. Urbana, Illinois 61801 Abstract We presentin this paperhigh-resolution solid-state magic-angle sample spinning sodium- 23,aluminum -27 , andsilicon-29 nuclear magnetic resonance (NMR) spectraof a varietyof plagioclaseand alkali feldsparsand feldsparglasses. The resultsshow that MASS NMR spectracontain a great deal of informationabout feldspar structures. In particular,we observethe following.(l) AUSiorder/disorder and exsolution effects in alkalifeldspars are readily observable.(2) To our presentlevel of understandingthe publishedstructure refinementsof anorthiteare not consistentwith the NMR of spectraof anorthite.(3) The spectraofthe intermediateplagioclases are interpretable in termsofe- and/-plagioclases, with much of the signalapparently coming from strainedsites between albiteJike and anorthite-likevolumes
    [Show full text]