Iligh Resolution Solid-State Sodium-23, Aluminum-27, and Silicon-29

Total Page:16

File Type:pdf, Size:1020Kb

Iligh Resolution Solid-State Sodium-23, Aluminum-27, and Silicon-29 American Mineralogist, Volume 70, pages 106-123,I9E5 Iligh resolution solid-statesodium-23, aluminum-27, and silicon-29nuclear magnetic resonancespectroscopic reconnaissance of alkali and plagioclasefeldspars R. JeMes Ktnrpernrcr Department of Geology University of lllinois at Urbana-Champaign l30l West Green Street. Urbana. Illinois 61801 Ronnnr A. KrNsev. KeneN ANN SuIrn School of Chemical Sciences University of lllinois at Urbana-Champaign 505 South Mathews Avenue, Urbana, Illinois 61801 Donelo M. Hr,NoBnsoN Department of Geology University of lllinois at Urbana-Champaign 1301 West Green Street. Urbana. Illinois 61801 eNo Enrc OlorrBI-o School of Chemical Sciences University of Illinois at Urbana-Champaign 505 South Mathews Avenue. Urbana, Illinois 61801 Abstract We presentin this paperhigh-resolution solid-state magic-angle sample spinning sodium- 23,aluminum -27 , andsilicon-29 nuclear magnetic resonance (NMR) spectraof a varietyof plagioclaseand alkali feldsparsand feldsparglasses. The resultsshow that MASS NMR spectracontain a great deal of informationabout feldspar structures. In particular,we observethe following.(l) AUSiorder/disorder and exsolution effects in alkalifeldspars are readily observable.(2) To our presentlevel of understandingthe publishedstructure refinementsof anorthiteare not consistentwith the NMR of spectraof anorthite.(3) The spectraofthe intermediateplagioclases are interpretable in termsofe- and/-plagioclases, with much of the signalapparently coming from strainedsites between albiteJike and anorthite-likevolumes in the e-plagioclases.(4) The nearest-neighbor atomic arrangements in albite and anorthiteglasses are very similar to thosein the correspondingcrystals, althoughthe rangeof cation-oxygendistances is largerin the glasses.(5) Thereare no aluminum-27peaks in the rangeof 0 ppm that would indicateoctahedrally coordinated aluminumin eitherglass. Introduction spectroscopicaspects of this problem' Future work will examine the mineralogical and petrological applications We present in this paper high-resolution solid-state in more detail. Both magic-anglesample spinning (MASS) sodium-23,aluminum-27, and silicon-29nuclear magnetic and variable-angle sample spinning (VASS) techniques resonance(NMR) spectroscopic results for a variety of have been used. plagioclaseand alkali feldsparsand feldspar glasses.The The samplesdiscussed here include low albite, micro- objective of this work is to explore the applicability of line perthite, cryptopenhite, sanidine, a range of plagio- high-resolutionsolid-state NMR to the examinationof the clase compositions, and albite and anorthite glasses.The structuresof complex silicate materials, such as feldspars feldspar samplesare listed in Table 1. and feldspar glasses.The emphasisin this paper is on the In this paper we briefly summarizefeldspar nomencla- m03-004)vE5/0102-0 r06$02.00 106 KIRKPATRICK ET AL.: NUCLEAR MAGNETIC RESONANCE OF FELDSPARS t07 Table l. Silicon-29 NMR chemical shifts of feldspars and spar mineralogy are given in the compendia of Smith feldspar glasses (1974) and Ribbe et al. (1983). For the benefit of those unfamiliar with the feldspars, CHEMI6L ruTERIAL LOCALIN SHTF1 COffiNTS we summarize their main features (following Smith, 1974 and Ribbe et al., 1983), state some of our assumptions, Alblte &elta, Vlrglnla l2n (Ab99) -96.: T20 and define some of our nomenclature and symbolism. -104.4 Tlo AIblte Class Synthetlc -98 l. Feldspar structures are based on a framework of corner- (Abr00) linked SiO+ and AlOa tetrahedra. The ratio of aluminum to Sanldin€ Cyonlng -97 poorly separated (or60Ab38An2) -IOI silicon rangesfrom l:3 to l:1. We use the notationQ4(nAl) to Mlcrocllne -93 Ab T2tr describe the silicon sites, where the superscript indicates the Perthlte -96.0 T2b four bridging oxygen atoms and the integer n (0 to 4) denotesthe T2o + Ab T2o -l0l,8 Tln number of aluminum (AlOo) tetrahedra to which a silicon (SiO+) -106,0 Ab Tlo tetrahedronis connected. CryptoperthlEe Ab T2E ( Spencer R) -96-o AbDo+0rT2 We assume,as is customary in dealingwith tetrahedralsilicon ( or43,4b,53,k4) Nomay) -98.0 Or Tl and aluminum occupancies,that the "aluminum avoidancerule" - 103,5 Ab TID (Loewenstein, -47 1954; Goldsmith and Laves, 1955)holds for all 01lgocla6e Bakersvllle, Shoulder (An Fak) ( An23 ) North Carollna -93.2 feldspars.That is, no aluminum tetrahedron is linked to another -97.2 - 105.3 Ab peak aluminum tetrahedron,only to four silicon tetrahedra.A// alumi- Labradotlte Sydney Ene6, -83 num sites, therefore, should be A4 (4Si). We will show, however, (Ans2 ) kbrado! -88 -91 that for our synthetic anorthite this is not completely true. - 101 -107 2. Feldsparframeworks have inherent monoclinic or pseudo- monoclinic symmetry. Because AlO4 tetrahedra are slightly Eytomlte Crystal kyl -84 Corlelatlon to (An70) Mlnnesota -89 larger than SiO4 tetrahedra, some patterns of AllSi distribution - 101 give monoclinic frameworks, whereasothers causeslight distor- tions and triclinic symmetry. The pattern of tetrahedral site Pacaye Volceno -83.0 Flrst tro peaks (h92) GuatgMla -84.6 poorly reeolved -89.2 occupancy leads to the important concept of AVSi tetrahedral site order/disorder.Other things being equal, high AVSi disorder -42.9 Synthetic Cortelatlon to promotes (Anr00) -84.8 publlshed Etructure monoclinic frameworks, whereas increasing order -89'6 reflnerentB poor promotes triclinic frameworks having increasing cell obliquity Anorthlte Glass Synrherlc -87 (indicated by the (hroo) magnitude ofthe departure ofthe B-axis from B*). The large, irregular cages in the tetrahedral framework are occupiedby potassium,sodium, or calcium ions. When occupied ture and structure and previous NMR work on feldspars, by the larger potassium ions, the cages are stretched and the framework tends review the theory of MASS NMR (especially as it per- to retain its monoclinic symmetry if it has a proper AUSi distribution. Ifthe AUSi pattern is not appropriate, tains to the study of quadrupolar nuclei), and present and the symmetry is triclinic. When occupied by the smaller, sodium discussour results. Theseresults are, we believe,only a or calcium ions, the cages crumple a little and distort the beginning of the application of MASS NMR to feldspar framework slightly so that the symmetry is triclinic, regardlessof mineralogy, and we present our conclusions with the the AVSi order/disorder (except for the highest temperature recognition that they are in someinstances tentative. It is sodium feldspar, monalbite). clear from the work we have done, however, that MASS 3. Feldsparcompositions are conveniently describedin terms NMR spectraof alkali and plagioclasefeldspars contain a of percentagesof the endmembercomponents KAlSi3Os (Ortho- great deal of information about Al/Si orderidisorder in the clase, Or), NaAlSi3Or (Albite, Ab), and CaAl2Si2Os(Anorthite, tetrahedral sites, about chemical bonding in the sodium, An). The rock-forming feldspars occur in two series, the alkali feldspars(Or-Ab) plagioclases(ALAn). aluminum and silicon sites, and also, we believe, about and 4. The principal potassic feldspars include, from low to high distortion of these sites due to exsolution. Our results temperatureforms, microcline (triclinic, Cl), orthoclase or low indicate that solid-state MASS and VASS NMR. when sanidine (macroscopicallymonoclinic; monoclinic by polarized combined with X-ray and electron difraction and trans- light microscopy but likely to be triclinic (low obliquity) by X-ray mission electron microscopy (TEM) can provide new and electron diffraction), and high sanidine (monoclinic, C2im). insights into the structures of a wide range of mineral The principal sodic feldspars are low (temperature) albite and phases. high albite, both triclinic, Cl; high albite has the lower cell obliquity. High sanidineand high albite form a continuous solid Previous work solution seriesdespite their different symmetries. 5. In the triclinic alkali feldspars(microcline, low albite, high Feldspar structure and nomenclature albite) there are four sets of similar but not identical tetrahedral sites conventionally labeled Tlo, Tlm, T2o, T2m. At high Feldsparsare the most abundantminerals in the earth's temperatures, the aluminum and silicon ions are randomly crust and have received corresponding attention from distributed over these sites. If a high temperature feldspar is mineralogistsand petrologists. Excellent reviews of feld- quenched, this disorder is retained. In the lowest temperature KIRKPATRICK ET AL,: NUCLEAR MAGNETIC RESONANCE OF FELDSPARS forms, maximum low albite and maximum microcline, AVSi type that appears to be body centered by diffraction, even at order is, ideally, complete,with all the aluminum in the Tlo sites room temperatures.It is consideredto have a composite struc- and all the silicon in the other three sites. ture made from domains of P-anorthite. Adjacent domains are 6. In the monoclinic alkali feldspars there are two sets of "out-of-step" to one another (antiphasedomains) with respectto similar but not identical tetrahedral sites conventionally labeled AVSi ordering, which, coupled with the earlier mentioned 1- Tl and T2. High sanidineideally has one-quarterof an aluminum pseudosymmetryof each domain, causessystematic difiraction and three-quaxtersof a silicon in each site on the average absences.These diffraction absencesgive an apparent1l symme- (complete Al/Si disorder). Orthoclase (low sanidine) is more try for the averagestructure. ordered, with equal numbers of aluminum and
Recommended publications
  • Behavior of Alkali Feldspars:Crystallographic Properties and Characterizutionof Compositionand Al-Si Distribution
    American Mineralogist, Volume 71, pages 869-890, 1986 Behavior of alkali feldspars:Crystallographic properties and characterizutionof compositionand Al-Si distribution Guv L. Hons Department of Geology, Iafayette College,Easton, Pennsylvania 18042 Ansrnlcr Four new alkali feldspar ion-exchange series have been synthesized, three with topo- chemically monoclinic Al-Si distributions ranging from sanidine to relatively ordered or- thoclase,the other a microcline-low albite series.Parent materials for three serieshave previously been studied by single-crystaltechniques, so Al-Si distributions are well char- acterized.Unit-cell dimensions and volumes have been measuredfor all seriesmembers and, with data for a previously reported fifth series, have been analyzed as a function of both composition and Al-Si distribution. The a unit-cell dimension, cornmonly used as a measureof composition in alkali feld- spars, is affected to a small but significant extent by Al-Si distribution and also apparenfly doesnot vary linearly with composition, as has previously been assumed.Variation of the b and c unit-cell dimensions with composition is best analyzedseparately for triclinic and monoclinic parts of the topochemically monoclinic series.Furthermore, b is not a linear function of c, an assumption that until now has been made in using these dimensions to calculate Al-Si distributions in alkali feldspars. Variation of c with mole fraction KAlSirO8 (N*) is linear in both the triclinic and the monoclinic parts of the topochemically monoclinic alkali feldspar series, as well as in the potassicregion of the low albite-microcline series.In addition, Ac/AN* slopesare virtually constant for all series.This provides an ordering parameter, c*, which for alkali feldspars with No.
    [Show full text]
  • Production, Reserves, and Processing of Feldspar and Feldspathoid Rocks in the Czech Republic from 2005 to 2019—An Overview
    minerals Article Production, Reserves, and Processing of Feldspar and Feldspathoid Rocks in the Czech Republic from 2005 to 2019—An Overview Jan Zahradník 1,2 , Jakub Jirásek 3,*, Jaromír Starý 4 and Martin Sivek 2 1 LB MINERALS, s.r.o., Tovární 431, 330 12 Horní Bˇríza, Czech Republic; [email protected] 2 Department of Geological Engineering, Faculty of Mining and Geology, Vysoká Škola Báˇnská-Technical University of Ostrava, 17. listopadu 15/2172, 708 00 Ostrava-Poruba, Czech Republic; [email protected] 3 Department of Geology, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic 4 Czech Geological Survey, Klárov 3, 118 21 Praha, Czech Republic; [email protected] * Correspondence: [email protected] Received: 5 July 2020; Accepted: 10 August 2020; Published: 17 August 2020 Abstract: This paper aims to characterize and interpret the trends in reserves, resources, and mine production of feldspar and feldspathoid rocks during 2005–2019 in the Czech Republic. With over 101 Mt of total resources and 22 Mt of reserves, feldspar belongs to the crucial industrial minerals of the Czech Republic. With annual outputs of approximately 400–450 kt of feldspars and 20–35 kt of feldspathoid rocks (nepheline syenite), the Czech Republic ranks among the top European and world feldspar producers. Most of the production comes from leucocratic granitoid rocks (key active deposit: Krásno-Vysoký Kámen), followed by sedimentary rocks (key active deposit: Halámky), and granitic pegmatites (key active deposit: Luženiˇcky).Nepheline syenite is mined at a single deposit. All deposits are extracted from open pits (quarries).
    [Show full text]
  • Open Research Online Oro.Open.Ac.Uk
    Open Research Online The Open University’s repository of research publications and other research outputs Geochemical Endmembers preserved in the fluviolacustrine sediments of Gale crater Conference or Workshop Item How to cite: Bedford, C. C.; Bridges, J. C.; Schwenzer, S. P.; Wiens, R. C.; Rampe, E. B.; Frydenvang, J. and Gasda, P. J. (2017). Geochemical Endmembers preserved in the fluviolacustrine sediments of Gale crater. In: Fourth International Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life, 2-6 Oct 2017, Flagstaff, Arizona, USA. For guidance on citations see FAQs. c [not recorded] Version: Not Set Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk GEOCHEMICAL ENDMEMBERS PRESERVED IN THE FLUVIOLACUSTRINE SEDIMENTS OF GALE CRATER. C. C. Bedford1, J. C. Bridges2, S. P. Schwenzer3, R. C. Wiens4, E. B. Rampe5, J. Frydenvang6, P. J. Gasda4. 1School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, UK (can- [email protected]), 2Leicester Institute for Space and Earth Observation, University of Leicester, UK. 3School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK. 4Los Alamos National Laboratory, Los Alamos, New Mexico, USA. 5NASA Johnson Space Centre, Houston, TX, US. 6Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark. Introduction: Gale crater possesses a diverse acquired per observation point and averaged to give the stratigraphic record consisting of conglomerate, fine to observation point compositions used in this study [9].
    [Show full text]
  • Geochemical Endmembers Preserved in the Fluviolacustrine Sediments of Gale Crater
    Fourth Conference on Early Mars 2017 (LPI Contrib. No. 2014) 3017.pdf GEOCHEMICAL ENDMEMBERS PRESERVED IN THE FLUVIOLACUSTRINE SEDIMENTS OF GALE CRATER. C. C. Bedford1, J. C. Bridges2, S. P. Schwenzer3, R. C. Wiens4, E. B. Rampe5, J. Frydenvang6, P. J. Gasda4. 1School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, UK (can- [email protected]), 2Leicester Institute for Space and Earth Observation, University of Leicester, UK. 3School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK. 4Los Alamos National Laboratory, Los Alamos, New Mexico, USA. 5NASA Johnson Space Centre, Houston, TX, US. 6Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark. Introduction: Gale crater possesses a diverse acquired per observation point and averaged to give the stratigraphic record consisting of conglomerate, fine to observation point compositions used in this study [9]. coarse sandstone and mudstone units deposited after ChemCam observation point analyses were classi- the crater’s formation (~3.8 Ga) in an ancient fluvio- fied according to sample morphology, stratigraphic lacustrine system [1–3]. Since landing in August 2012, position and grain size [11]. This study focuses on the NASA Mars Science Laboratory Curiosity rover points that have analysed in situ sedimentary outcrop in has analysed the geochemistry and mineralogy of these order to distinguish geochemical source characteristics. sedimentary units using the Chemistry and Camera Observation points identified to have hit obvious dia- (ChemCam), Alpha Particle X-ray Spectrometer genetic features (such as veins, nodules, raised ridges (APXS) and Chemistry and Mineralogy (CheMin and haloes), soil targets, float, pebbles, drill tailings XRD) onboard instrument suites.
    [Show full text]
  • Geochemistry of Hydrothermal Fluids from the PACMANUS, Northeast Pual and Vienna Woods Hydrothermal Fields, Manus Basin, Papua New Guinea Eoghan P
    Bridgewater State University Virtual Commons - Bridgewater State University Geological Sciences Faculty Publications Geological Sciences Department 2011 Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea Eoghan P. Reeves Jeffrey S. Seewald Peter Saccocia Bridgewater State University, [email protected] Wolfgang Bach Paul R. Craddock See next page for additional authors Follow this and additional works at: http://vc.bridgew.edu/geology_fac Part of the Earth Sciences Commons Virtual Commons Citation Reeves, Eoghan P.; Seewald, Jeffrey S.; Saccocia, Peter; Bach, Wolfgang; Craddock, Paul R.; Shanks, Wayne C. III; Sylva, Sean P.; Walsh, Emily; Pichler, Thomas; and Rosner, Martin (2011). Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. In Geological Sciences Faculty Publications. Paper 9. Available at: http://vc.bridgew.edu/geology_fac/9 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Authors Eoghan P. Reeves, Jeffrey S. Seewald, Peter Saccocia, Wolfgang Bach, Paul R. Craddock, Wayne C. Shanks III, Sean P. Sylva, Emily Walsh, Thomas Pichler, and Martin Rosner This article is available at Virtual Commons - Bridgewater State University: http://vc.bridgew.edu/geology_fac/9 Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 75 (2011) 1088–1123 www.elsevier.com/locate/gca Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea Eoghan P. Reeves a,b,⇑, Jeffrey S. Seewald b, Peter Saccocia c, Wolfgang Bach d, Paul R.
    [Show full text]
  • Chapter 5: Lunar Minerals
    5 LUNAR MINERALS James Papike, Lawrence Taylor, and Steven Simon The lunar rocks described in the next chapter are resources from lunar materials. For terrestrial unique to the Moon. Their special characteristics— resources, mechanical separation without further especially the complete lack of water, the common processing is rarely adequate to concentrate a presence of metallic iron, and the ratios of certain potential resource to high value (placer gold deposits trace chemical elements—make it easy to distinguish are a well-known exception). However, such them from terrestrial rocks. However, the minerals separation is an essential initial step in concentrating that make up lunar rocks are (with a few notable many economic materials and, as described later exceptions) minerals that are also found on Earth. (Chapter 11), mechanical separation could be Both lunar and terrestrial rocks are made up of important in obtaining lunar resources as well. minerals. A mineral is defined as a solid chemical A mineral may have a specific, virtually unvarying compound that (1) occurs naturally; (2) has a definite composition (e.g., quartz, SiO2), or the composition chemical composition that varies either not at all or may vary in a regular manner between two or more within a specific range; (3) has a definite ordered endmember components. Most lunar and terrestrial arrangement of atoms; and (4) can be mechanically minerals are of the latter type. An example is olivine, a separated from the other minerals in the rock. Glasses mineral whose composition varies between the are solids that may have compositions similar to compounds Mg2SiO4 and Fe2SiO4.
    [Show full text]
  • American Journal of Science,Vol
    [AMERICAN JOURNAL OF SCIENCE,VOL. 299, MARCH, 1999, P. 173–209] American Journal of Science MARCH 1999 ASSESSMENT OF FELDSPAR SOLUBILITY CONSTANTS IN WATER IN THE RANGE 0° TO 350°C AT VAPOR SATURATION PRESSURES STEFA´ N ARNO´ RSSON and ANDRI STEFA´ NSSON Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavı´k, Iceland ABSTRACT. The equilibrium constants for endmember feldspar hydrolysis for the following reactions ؉ ؉ ؊ ؉ 0 ؍ ؉ NaAlSi3O8 8H2O Na Al(OH)4 3H4SiO4 ؉ ؉ ؊ ؉ 0 ؍ ؉ KAlSi3O8 8H2O K Al(OH)4 3H4SiO4 ؉2 ؉ ؊ ؉ 0 ؍ ؉ CaAl2Si2O8 8H2O Ca 2Al(OH)4 2H4SiO4 are accurately described by ؊ ؉ 2؊ ؊ ؊6 2؉ log Klow-albite 96.267 305,542/T 3985.50/T 28.588 · 10 ·T 35.790 · log T ؊ ؉ 2؊ ؊ ؊6 2؉ log Khigh-albite 97.275 306,065/T 3313.51/T 28.622 · 10 ·T 35.851 · log T ؊ ؉ 2؊ ؊ ؊6 2؉ log Kmicrocline 78.594 311,970/T 6068.38/T 27.776 · 10 ·T 30.308 · log T ؊ ؉ 2؊ ؊ ؊6 2؉ log Ksanidine 77.837 316,431/T 5719.10/T 27.712 · 10 ·T 29.738 · log T ؊ ؉ 2؊ ؊ ؊6 2؉ log Kanorthite 88.591 326,546/T 2720.61/T 40.100 · 10 ·T 31.168 · log T where T is in K. They are valid in the range 0° to 350°C, at 1 bar below 100°C and at vapor saturation pressures (Psat) at higher temperatures. The equations for low-albite and microcline are valid for Amelia albite and for microcline with the -respectively. The same kind of log K ,(0.95 ؍ same degree of Al-Si order (Z temperature equations have also been retrieved for alkali-feldspar and plagio- clase solid solutions (tables 4 and 6).
    [Show full text]
  • LWIR Spectroscopy on Feldspars from Rock Plugs for the Detection of Permeable Zones in Geothermal Systems
    LWIR spectroscopy on feldspars from rock plugs for the detection of permeable zones in geothermal systems. DOREEN NYAHUCHO July, 2020 SUPERVISORS: Dr. C.A, Hecker Dr. H.M.A, van der Werff LWIR spectroscopy on feldspars from rock plugs for the detection of permiable zones in geothermal systems. DOREEN NYAHUCHO Enschede, The Netherlands, July, 2020 Thesis submitted to the Faculty of Geo-Information Science and Earth Observation of the University of Twente in partial fulfilment of the requirements for the degree of Master of Science in Geo- information Science and Earth Observation. Specialization: Applied Remote Sensing for Earth Sciences SUPERVISORS: Dr. Chris Hecker Dr. Harald van der Werff THESIS ASSESSMENT BOARD: Prof. Cees van Westen (Chair) Dr. Martin Schodlok, BGR Germany (External Examiner) DISCLAIMER This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the Faculty. ABSTRACT Hydrothermal minerals indicate inferred permeability in geothermal systems besides being indicative of formation temperature, fluid composition and host rock composition. Minerals, particularly hydrothermal feldspars (adularia and albite), are important minerals in permeability studies. Adularia has a direct link to highly permeable zones, whereas albite is indicative of inferred low permeability. The ability to recognize and distinguish adularia from other feldspar minerals is, therefore, crucial. Spectroscopy has been used as an alternative approach relative to convectional methods to study feldspars minerals. However, there are limited spectroscopy studies on adularia, this study explores LWIR spectroscopy on rock plugs from the Karangahake epithermal Ag-Au system to map adularia and other associated minerals.
    [Show full text]
  • Deep High-Temperature Hydrothermal Circulation in a Detachment Faulting System on the Ultra-Slow Spreading Ridge ✉ ✉ Chunhui Tao1,2 , W.E
    ARTICLE https://doi.org/10.1038/s41467-020-15062-w OPEN Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge ✉ ✉ Chunhui Tao1,2 , W.E. Seyfried Jr3 , R.P. Lowell4, Yunlong Liu 1,5, Jin Liang1, Zhikui Guo 1,6, Kang Ding7, Huatian Zhang8, Jia Liu 1, Lei Qiu1, Igor Egorov9, Shili Liao1, Minghui Zhao 10, Jianping Zhou1, Xianming Deng1, Huaiming Li1, Hanchuang Wang1, Wei Cai1, Guoyin Zhang1, Hongwei Zhou1, Jian Lin10,11 & Wei Li1 1234567890():,; Coupled magmatic and tectonic activity plays an important role in high-temperature hydrothermal circulation at mid-ocean ridges. The circulation patterns for such systems have been elucidated by microearthquakes and geochemical data over a broad spectrum of spreading rates, but such data have not been generally available for ultra-slow spreading ridges. Here we report new geophysical and fluid geochemical data for high-temperature active hydrothermal venting at Dragon Horn area (49.7°E) on the Southwest Indian Ridge. Twin detachment faults penetrating to the depth of 13 ± 2 km below the seafloor were identified based on the microearthquakes. The geochemical composition of the hydrothermal fluids suggests a long reaction path involving both mafic and ultramafic lithologies. Combined with numerical simulations, our results demonstrate that these hydrothermal fluids could circulate ~ 6 km deeper than the Moho boundary and to much greater depths than those at Trans-Atlantic Geotraverse and Logachev-1 hydrothermal fields on the Mid-Atlantic Ridge. 1 Key Laboratory of Submarine Geosciences, MNR, Second Institute of Oceanography, MNR, 310012 Hangzhou, China. 2 School of Oceanography, Shanghai Jiao Tong University, 200240 Shanghai, China.
    [Show full text]
  • Remote Raman Detection of Natural Rocks a Final
    REMOTE RAMAN DETECTION OF NATURAL ROCKS A FINAL REPORT SUBMITTED TO THE DEPARTMENT OF GEOLOGY AND GEOPHYSICS, UNIVERSITY OF HAWAI’I AT MĀNOA, IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGY AND GEOPHYSICS August 2017 By Genesis Berlanga Advisor: Dr. Anupam K. Misra Remote Raman Detection of Natural Rocks 1,2* 1 1 GENESIS BERLANGA, TAYRO E. ACOSTA-MAEDA, SHIV K. SHARMA, JOHN N. 1 1 1,2 1 PORTER, PRZEMYSLAW DERA, HANNAH SHELTON, G. JEFFREY TAYLOR, 1 ANUPAM K. MISRA 1Hawai’i Institute of Geophysics and Planetology, University of Hawai’i, POST #602, 1680 East-West Road, Honolulu, Hawaii 96822, USA 2Department of Geology and Geophysics, University of Hawai’i, POST #702, 1680 East-West Road, Honolulu, Hawaii 96822, USA *Corresponding author: [email protected] Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX We report remote Raman spectra of natural igneous, metamorphic, and sedimentary rock samples at a standoff distance of 5 m. High quality remote Raman spectra of unprepared rocks are necessary for accurate and realistic analysis of future Raman measurements on planetary surfaces such as Mars. Our results display the ability of a portable Compact Remote Raman+LIBS+Fluorescence System (CRRLFS) to effectively detect and isolate various light and dark-colored mineral phases in natural rocks. The CRRLFS easily detected plagioclase and potassium feldspar end members, quartz, and calcite in rocks with high fluorescence backgrounds. Intermediate feldspars and quartz, when found in rocks with complex mineralogies, exhibited band shifts and broadening in the 504-510 cm-1 and 600-1200 cm-1 regions.
    [Show full text]
  • 04 Schrader Short Course Chapter
    Terrestrial and Lunar Geological Terminology Christian Schrader, MSFC/BAE Systems Introduction This section is largely a compilation of defining geological terms concepts. Broader topics, such as the ramifications for simulant design and in situ resource utilization, are included as necessary for context. Mineral Definition and overview A mineral is a naturally occurring inorganic substance with characteristic chemical composition and internal order. The internal order is the arrangement of atoms that make up a mineral’s crystal structure. The summary of major lunar minerals and their properties is shown in Appendix 1. Good sources for understanding the mineralogy of the Moon are The Lunar Sourcebook (ed. by Heiken et al, 1991), New Views of the Moon (ed. by Jolliff, et al., 2006), and Lunar Mineralogy (Frondel, 1975). Standard references for mineralogy in the context of geology and physical chemistry are Deere et al. (1992) and Gaines et al. (1997). The Moon is strongly depleted in volatile elements relative to the Earth. This is + manifested by a complete lack of known H2O- and OH -bearing minerals (e.g., clays and micas) and a paucity of Na-bearing minerals on the Moon. Conversely, there are few minerals on the Moon that do not occur on Earth, and those that are restricted to the Moon are generally related to terrestrial minerals; e.g., lunar armacolite is an extension of the terrestrial pseudobrookite mineral group (Frondel, 1975). However, the chemical compositions of lunar minerals may vary from their terrestrial counterparts. In addition to the relative depletion of volatiles, the lunar environment has a significantly lower oxygen 2+ fugacity (fO2) than that of the Earth.
    [Show full text]
  • 40Ar/39Ar Results for Alkali Feldspars Containing Diffusion Domains with Differing Activation Energy
    Gmchrm,ru c, (brnvnhimrcu 4clu Vol. 55. pp. 1435-1448 0016.7037/91/$3.00 + .X? Copyright Cm 1991 Pcrgamon Press pk. Printed m U.S.A. 40Ar/39Ar results for alkali feldspars containing diffusion domains with differing activation energy T. MARK HARRISON,’ OSCAR M. LOVERA,’ and MATTHEW T. HEIZLER~ ‘Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, CA 90024, USA ‘Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 3Department of Earth and Space Sciences, University of California, Los Angeles, Los Angeles, CA 90024. USA (Received June 29, 1990; accepted in revised form Fhwary 26, 1991) Abstract-Extension of the single diffusion domain/activation energy closure model of Dodson to apply to minerals with a discrete distribution of domain sizes appears to reconcile “0Ar/39Ar age spectra of alkali feldspars with their associated Arrhenius plots. However, small remaining discrepancies, particularly apparent in log (r/ro) plots, suggest that some, and perhaps most, alkali feldspars contain diffusion domains with activation energies that may vary by as much as 8 kcal/mol. An important consequence of even relatively small variations in activation energy between domains is that the shape of an age spectrum can change dramatically by varying the laboratory heating schedule. We find that Arrhenius and log (r/rO) plots have the potential to reveal even small differences in activation energy (-2 kcal/mol) between domains, at least in cases where the domains are well separated in size. Variations in activation energy of -5 kcal/mol can result in differences in calculated closure temperature of up to 30°C from that obtained assuming equal activation energies for all domains.
    [Show full text]