Evolution of the Tharsis Region of Mars: Insights from Magnetic Field Observations

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Tharsis Region of Mars: Insights from Magnetic Field Observations Earth and Planetary Science Letters 230 (2005) 241–254 www.elsevier.com/locate/epsl Evolution of the Tharsis region of Mars: insights from magnetic field observations Catherine L. Johnsona,*, Roger J. Phillipsb aInstitute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093-0225, United States bDepartment of Earth and Planetary Sciences, Washington University, Campus Box 1169, One Brookings Drive, St. Louis, MO 63130, United States Received 15 March 2004; received in revised form 15 September 2004; accepted 13 October 2004 Available online 8 January 2005 Editor: A.N. Halliday Abstract Mars Global Surveyor (MGS) observations of crustal magnetic fields over Tharsis provide new constraints on models for the thermal and magmatic evolution of this region. We analyze the distribution of magnetic field anomalies over Tharsis surface units of Noachian, Hesperian and Amazonian age. These data suggest that early Noachian crust underlies the Tharsis province, and formed contemporaneously with the existence of a martian dynamo. This crust either pre-dates the formation of Tharsis, or formed during the earlier phases of Tharsis volcanism. The preservation of strong magnetic field anomalies over some of the earliest Noachian and topographically high units, together with the observation of magnetic field anomalies over Hesperian- and Amazonian-age surface units, indicate that a large fraction of the magnetized crust has remained cool (below the blocking temperature of the magnetic carrier) throughout the construction of Tharsis. Moreover, the distributions of magnetic anomaly amplitudes over Noachian, Hesperian, and Amazonian surface units suggest that the youngest units overlie sites of prolonged intrusion and have undergone a greater extent of thermal demagnetization. The absence of magnetic anomalies around the Tharsis Montes and Olympus Mons argues for strong, localized heating, as would be expected at volcanic centers. We show that end-member models for progressive thermal demagnetization of a Noachian magnetized crustal layer are consistent with the anomaly amplitude distributions. We integrate the magnetic field observations with constraints from tectonics, gravity, and topography, and present a revised scenario for the evolution of the Tharsis region. D 2004 Elsevier B.V. All rights reserved. Keywords: Tharsis; Mars; magnetism; volcanism; magmatism 1. Introduction * Corresponding author. Tel.: +1 858 822 4077; fax: +1 858 534 5332. The Tharsis volcanic province dominates the west- E-mail addresses: [email protected] (C.L. Johnson)8 ern hemisphere of Mars; understanding the evolution of [email protected] (R.J. Phillips). this region is critical to understanding planet-scale 0012-821X/$ - see front matter D 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.epsl.2004.10.038 242 C.L. Johnson, R.J. Phillips / Earth and Planetary Science Letters 230 (2005) 241–254 mantle dynamics, magmatism, tectonics, volatile Tharsis. Later concentric contractional deformation— inventories, and climate history. The regional top- the Hesperian ridged plains that are proposed to form a ography comprises a long-wavelength elevation rise of global circum-Tharsis system [10] for which the type several kilometers elevation (Fig. 1). Superposed on locale is Lunae Planum [11]—is of a shorter wave- this are the Tharsis Montes, Olympus Mons, and Alba length and lower amplitude than the contractional Patera. To the southeast, the Tharsis rise includes Solis, deformation in the South Tharsis ridge belt and the Syria, Sinai, and Thaumasia Planae, bounded by Valles Coprates rise. Marineris, Claritas Fossae, and the Coprates rise. The A variety of explanations for Tharsis have been region also dominates the gravity field of the western proposed that have attempted to explain the gravity, hemisphere, with typical free air anomalies of several topography, and tectonic deformation of the region. hundred milligals, reaching over 1000 mgal at Olym- Models include dynamic support of topography by a pus Mons [1]. large mantle plume [12,13], regional uplift due to Tectonic deformation is pervasive throughout the underplating of crustal material derived from the Tharsis region and provides constraints on the history northern hemisphere [14], uplift, either due solely to of uplift, loading, and volcanic construction. Several mantle anomalies—thermal and/or compositional major episodes of radial fracturing occurred from the [15]—or from crustal thickening by intrusion [7], and Noachian onwards [2–5]. Concentric contractional flexural loading from volcanic construction [4,16,17]. deformation of mid-Noachian units of the Coprates AplumeoriginforTharsishasbeenexplored rise and South Tharsis ridge belt has been reported [6]. extensively; however, several difficulties are still Observations of concentric extensional fractures in the associated with this hypothesis. Numerical models in oldest (early Noachian) units of Claritas Fossae first which single plume structures have been generated are noted by Phillips et al. [7], and supported by analyses limited by the timescale required for plume develop- [8] of more recent tectonic mapping [9] provide ment (8 Gyr [18,19]), the necessity of the spinel to additional information on the earliest history of perovskite phase transition in the lowermost mantle Fig. 1. MOLA-derived topography (Hammer-Aitoff projection) for the Tharsis region [68]. The area extends from 458S to 458N and from 1808E to 08E. Color bar gives scale in meters above mean elevation. Referenced in the text are the Tharsis Montes — Arsia (ArM), Pavonis (PM) and Ascreaues (AsM), Olympus Mons (OM), Valles Marineris (VM), Solis Syria, and Sinai Planum (SP collectively), Thaumasia Planum (TP), Claritas Fossae (CF), Tempe Fossae (TF), Ceraunius Fossae (CeF), Nectaris Fossae (NF), and Daedalia Planum (DP). Alba Patera is to the north of Ceraunius Fossae and the Coprates rise is the ridge to the east of Nectaris Fossae. C.L. Johnson, R.J. Phillips / Earth and Planetary Science Letters 230 (2005) 241–254 243 [18,19], or by the model geometry (spherical axisym- relationship to the pre-Tharsis expression of the metric) [20]. Furthermore, the required maintenance of dichotomy boundary? How have the magmatic flux a persistent plume for the 4 Gyr history of Tharsis [17] and thermal environment varied over time? Answering is challenging. Inversions of geoid and topography for these questions is crucial to constructing realistic load structure for a viscoelastic body indicate that less models for the evolution of Tharsis. Geology, gravity, than 25% of the present-day geoid can be attributed to and topography provide information on the loading an upper mantle plume [21]. An alternative proposes history of the region and on the history of extrusive that early in Tharsis’ history, the lithosphere was weak volcanics. In this paper, we show that magnetic field and thin, overlying a regionally warmer than average data provide a complimentary and rich source of upper mantle, permitting localized melting and con- information on the subsurface crustal structure and on sequent intrusion and extrusion [4].Kiefer[22] the thermal history of the region. In the following proposes a hybrid model consisting of a warm region section, we summarize previous work and outstanding of broad mantle upwelling beneath Tharsis that is host questions regarding Mars’ magnetic field, to set the to a series of core–mantle boundary plumes that feed stage for our magnetic studies of Tharsis. individual volcanic centers (and overcome the issue of long development time for a single plume structure). While viable for early Tharsis, support of the rise 2. Mars’ magnetic field history throughout its history solely by mantle thermal and compositional anomalies is not favored since it requires One of the most dramatic discoveries of the Mars the maintenance of large lateral variations in density Global Surveyor (MGS) mission was that of crustal over billions of years. Thus, the earliest history of magnetic field sources of multiple scales, strength and Tharsis is still not well understood from a dynamical geometry [29,30]. Strong magnetic fields are observed perspective. A key to the formation of Tharsis may be over the Noachian-age Terra Cimmeria southern hemi- pre-existing hemispherical differences in crustal thick- sphere region, with weaker isolated anomalies over ness—that permit either the formation of a persistent, northern hemisphere terrain and other southern hemi- localized plume [23] or regional-scale, nonplume- sphere areas. A general paucity of strong magnetic related, transient melting [24]. fields exists over the major impact basins. Present-day gravity and topography are consistent Mars’ magnetic field history, specifically the timing with flexural loading and crustal thickening at of a core dynamo implied by the crustal magnet- Tharsis [16,17,25]. Estimates for lithospheric thick- izations, is difficult to unravel from the MGS observa- ness in the region range from 70 to 150 km [26,27]. tions, whose major challenges are the spatial Crustal thickness in the region varies by almost distribution of the anomalies and their strength. 100%, and, while absolute values are unconstrained, Interpretation of the crustal magnetic field is difficult reasonable assumptions lead to estimates of 50 km to since areas lacking anomalies may reflect crustal over 90 km [25,28].Flexurallyinducedglobal formation during a period when Mars did not possess topography
Recommended publications
  • Curiosity's Candidate Field Site in Gale Crater, Mars
    Curiosity’s Candidate Field Site in Gale Crater, Mars K. S. Edgett – 27 September 2010 Simulated view from Curiosity rover in landing ellipse looking toward the field area in Gale; made using MRO CTX stereopair images; no vertical exaggeration. The mound is ~15 km away 4th MSL Landing Site Workshop, 27–29 September 2010 in this view. Note that one would see Gale’s SW wall in the distant background if this were Edgett, 1 actually taken by the Mastcams on Mars. Gale Presents Perhaps the Thickest and Most Diverse Exposed Stratigraphic Section on Mars • Gale’s Mound appears to present the thickest and most diverse exposed stratigraphic section on Mars that we can hope access in this decade. • Mound has ~5 km of stratified rock. (That’s 3 miles!) • There is no evidence that volcanism ever occurred in Gale. • Mound materials were deposited as sediment. • Diverse materials are present. • Diverse events are recorded. – Episodes of sedimentation and lithification and diagenesis. – Episodes of erosion, transport, and re-deposition of mound materials. 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 2 Gale is at ~5°S on the “north-south dichotomy boundary” in the Aeolis and Nepenthes Mensae Region base map made by MSSS for National Geographic (February 2001); from MOC wide angle images and MOLA topography 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 3 Proposed MSL Field Site In Gale Crater Landing ellipse - very low elevation (–4.5 km) - shown here as 25 x 20 km - alluvium from crater walls - drive to mound Anderson & Bell
    [Show full text]
  • Design of Low-Altitude Martian Orbits Using Frequency Analysis A
    Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noullez, K. Tsiganis To cite this version: A. Noullez, K. Tsiganis. Design of Low-Altitude Martian Orbits using Frequency Analysis. Advances in Space Research, Elsevier, 2021, 67, pp.477-495. 10.1016/j.asr.2020.10.032. hal-03007909 HAL Id: hal-03007909 https://hal.archives-ouvertes.fr/hal-03007909 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noulleza,∗, K. Tsiganisb aUniversit´eC^oted'Azur, Observatoire de la C^oted'Azur, CNRS, Laboratoire Lagrange, bd. de l'Observatoire, C.S. 34229, 06304 Nice Cedex 4, France bSection of Astrophysics Astronomy & Mechanics, Department of Physics, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece Abstract Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies | or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies | are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony's Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors.
    [Show full text]
  • A Future Mars Environment for Science and Exploration
    Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8250.pdf A FUTURE MARS ENVIRONMENT FOR SCIENCE AND EXPLORATION. J. L. Green1, J. Hol- lingsworth2, D. Brain3, V. Airapetian4, A. Glocer4, A. Pulkkinen4, C. Dong5 and R. Bamford6 (1NASA HQ, 2ARC, 3U of Colorado, 4GSFC, 5Princeton University, 6Rutherford Appleton Laboratory) Introduction: Today, Mars is an arid and cold world of existing simulation tools that reproduce the physics with a very thin atmosphere that has significant frozen of the processes that model today’s Martian climate. A and underground water resources. The thin atmosphere series of simulations can be used to assess how best to both prevents liquid water from residing permanently largely stop the solar wind stripping of the Martian on its surface and makes it difficult to land missions atmosphere and allow the atmosphere to come to a new since it is not thick enough to completely facilitate a equilibrium. soft landing. In its past, under the influence of a signif- Models hosted at the Coordinated Community icant greenhouse effect, Mars may have had a signifi- Modeling Center (CCMC) are used to simulate a mag- cant water ocean covering perhaps 30% of the northern netic shield, and an artificial magnetosphere, for Mars hemisphere. When Mars lost its protective magneto- by generating a magnetic dipole field at the Mars L1 sphere, three or more billion years ago, the solar wind Lagrange point within an average solar wind environ- was allowed to directly ravish its atmosphere.[1] The ment. The magnetic field will be increased until the lack of a magnetic field, its relatively small mass, and resulting magnetotail of the artificial magnetosphere its atmospheric photochemistry, all would have con- encompasses the entire planet as shown in Figure 1.
    [Show full text]
  • MARS DURING the PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- Boratory, University of Arizona
    Fourth Conference on Early Mars 2017 (LPI Contrib. No. 2014) 3078.pdf MARS DURING THE PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- boratory, University of Arizona, Tucson, AZ 85721, [email protected], 2Southwest Research Institute and NASA’s SSERVI-ISET team, 1050 Walnut St., Suite 300, Boulder, CO 80302. Introduction: The surface geology of Mars appar- ing the pre-Noachian was ~10% of that during the ently dates back to the beginning of the Early Noachi- LHB. Consideration of the sawtooth-shaped exponen- an, at ~4.1 Ga, leaving ~400 Myr of Mars’ earliest tially declining impact fluxes both in the aftermath of evolution effectively unconstrained [1]. However, an planet formation and during the Late Heavy Bom- enduring record of the earlier pre-Noachian conditions bardment [5] suggests that the impact flux during persists in geophysical and mineralogical data. We use much of the pre-Noachian was even lower than indi- geophysical evidence, primarily in the form of the cated above. This bombardment history is consistent preservation of the crustal dichotomy boundary, to- with a late heavy bombardment (LHB) of the inner gether with mineralogical evidence in order to infer the Solar System [6] during which HUIA formed, which prevailing surface conditions during the pre-Noachian. followed the planet formation era impacts during The emerging picture is a pre-Noachian Mars that was which the dichotomy formed. less dynamic than Noachian Mars in terms of impacts, Pre-Noachian Tectonism and Volcanism: The geodynamics, and hydrology. crust within each of the southern highlands and north- Pre-Noachian Impacts: We define the pre- ern lowlands is remarkably uniform in thickness, aside Noachian as the time period bounded by two impacts – from regions in which it has been thickened by volcan- the dichotomy-forming impact and the Hellas-forming ism (e.g., Tharsis, Elysium) or thinned by impacts impact.
    [Show full text]
  • Long-Range Rovers for Mars Exploration and Sample Return
    2001-01-2138 Long-Range Rovers for Mars Exploration and Sample Return Joe C. Parrish NASA Headquarters ABSTRACT This paper discusses long-range rovers to be flown as part of NASA’s newly reformulated Mars Exploration Program (MEP). These rovers are currently scheduled for launch first in 2007 as part of a joint science and technology mission, and then again in 2011 as part of a planned Mars Sample Return (MSR) mission. These rovers are characterized by substantially longer range capability than their predecessors in the 1997 Mars Pathfinder and 2003 Mars Exploration Rover (MER) missions. Topics addressed in this paper include the rover mission objectives, key design features, and Figure 1: Rover Size Comparison (Mars Pathfinder, Mars Exploration technologies. Rover, ’07 Smart Lander/Mobile Laboratory) INTRODUCTION NASA is leading a multinational program to explore above, below, and on the surface of Mars. A new The first of these rovers, the Smart Lander/Mobile architecture for the Mars Exploration Program has Laboratory (SLML) is scheduled for launch in 2007. The recently been announced [1], and it incorporates a current program baseline is to use this mission as a joint number of missions through the rest of this decade and science and technology mission that will contribute into the next. Among those missions are ambitious plans directly toward sample return missions planned for the to land rovers on the surface of Mars, with several turn of the decade. These sample return missions may purposes: (1) perform scientific explorations of the involve a rover of almost identical architecture to the surface; (2) demonstrate critical technologies for 2007 rover, except for the need to cache samples and collection, caching, and return of samples to Earth; (3) support their delivery into orbit for subsequent return to evaluate the suitability of the planet for potential manned Earth.
    [Show full text]
  • Discrete Element Modelling of Pit Crater Formation on Mars
    geosciences Article Discrete Element Modelling of Pit Crater Formation on Mars Stuart Hardy 1,2 1 ICREA (Institució Catalana de Recerca i Estudis Avançats), Passeig Lluís Companys 23, 08010 Barcelona, Spain; [email protected]; Tel.: +34-934-02-13-76 2 Departament de Dinàmica de la Terra i de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, C/Martí i Franqués s/n, 08028 Barcelona, Spain Abstract: Pit craters are now recognised as being an important part of the surface morphology and structure of many planetary bodies, and are particularly remarkable on Mars. They are thought to arise from the drainage or collapse of a relatively weak surficial material into an open (or widening) void in a much stronger material below. These craters have a very distinctive expression, often presenting funnel-, cone-, or bowl-shaped geometries. Analogue models of pit crater formation produce pits that typically have steep, nearly conical cross sections, but only show the surface expression of their initiation and evolution. Numerical modelling studies of pit crater formation are limited and have produced some interesting, but nonetheless puzzling, results. Presented here is a high-resolution, 2D discrete element model of weak cover (regolith) collapse into either a static or a widening underlying void. Frictional and frictional-cohesive discrete elements are used to represent a range of probable cover rheologies. Under Martian gravitational conditions, frictional-cohesive and frictional materials both produce cone- and bowl-shaped pit craters. For a given cover thickness, the specific crater shape depends on the amount of underlying void space created for drainage.
    [Show full text]
  • Aqueous Minerals from Arsia Chasmata of Arsia Mons, Tharsis Region: Implications for Aqueous Alteration Processes on Mars
    45th Lunar and Planetary Science Conference (2014) 1826.pdf AQUEOUS MINERALS FROM ARSIA CHASMATA OF ARSIA MONS, THARSIS REGION: IMPLICATIONS FOR AQUEOUS ALTERATION PROCESSES ON MARS. N. Jain*, S. Bhattacharya, P. Chauhan, Space Applications Centre (ISRO), Ahmedabad, Gujarat, India ([email protected]/ Fax: +91-079- 26915825). Introduction: The Arsia Chasmata is a complex help of high resolution data such as MGS-MOC (Mars collapsed region located at the northeastern flank of Global Surveyor-Mars Orbiter Camera), Viking orbiter Arsia Mons (figure 1 A and B) within Tharsis region [3], fresh appearing lava flows [4], graben and glaciers of planet Mars and is the most important region for the on flanks of Arsia Mons [5], young lava flows [6] study of minerals like phyllosilicate and pyroxene. The small shields at floor of caldera [7]. reflectance data of MRO-CRISM (figure 1 C D) has Present study mainly focuses on the mineralogy of confirmed above mentioned minerals in the study area. Arsia Chasmata which interestingly contains The presence of these minerals at the Arsia Chasmata absorption features of aqueous altered minerals such as on Mars provides the evidence of its past watery serpentine (phyllosilicate). This mineral is also located environment and their processes of formation. In the in Nili Fossae region which is long, narrow depression present study the absorption features of serpentine present on Mars [8]. But in the present study (phyllosilicate) are obtained at 2.32 µm, 1.94 µm and occurrence of this mineral at high altitude region raise 2.51 µm. Previous studies on Mars show that the curiosity to know about their formation processes.
    [Show full text]
  • Volcanism on Mars
    Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny.
    [Show full text]
  • Shape of the Northern Hemisphere of Mars from the Mars Orbiter Laser Altimeter (MOLA)
    GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 24, PAGES 4393-4396, DECEMBER 15, 1998 Shape of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter (MOLA) Maria T. Zuber1,2, David E. Smith2, Roger J. Phillips3, Sean C. Solomon4, W. Bruce Banerdt5,GregoryA.Neumann1,2, Oded Aharonson1 Abstract. Eighteen profiles of ∼N-S-trending topography potentially change the flattening by at most 5%. Allowing from the Mars Orbiter Laser Altimeter (MOLA) are used for the 3.1-km offset of the center of mass (COM) from the to analyze the shape of Mars’ northern hemisphere. MOLA center of figure (COF) along the polar axis [Smith and Zuber, observations show smaller northern hemisphere flattening 1996], we can expect the flattening of the full planet to be than previously thought. The hypsometric distribution is less than that of the northern hemisphere by ∼ 15%, or narrowly peaked with > 20% of the surface lying within 200 1/174 6. This is significantly less than the earlier value m of the mean elevation. Low elevation correlates with low of 1/154.4[Bills and Ferrari, 1978] and slightly less than surface roughness, but the elevation and roughness may re- the ellipsoidal value of 1/166.53 [Smith and Zuber, 1996] flect different mechanisms. Bouguer gravity indicates less that have been used in geophysical analyses. However, it variability in crustal thickness and/or lateral density struc- is larger than the flattening of 1/192 used in making maps ture than previously expected. The 3.1-km offset between [Wu, 1991]. Consideration of ice cap topography will further centers of mass and figure along the polar axis results in a decrease the value.
    [Show full text]
  • Abstract STUBBLEFIELD, RASHONDA KIAM. Extensional Tectonics at Alba Mons, Mars
    Abstract STUBBLEFIELD, RASHONDA KIAM. Extensional Tectonics at Alba Mons, Mars: A Case Study for Local versus Regional Stress Fields. (Under the direction of Dr. Paul K. Byrne). Alba Mons is a large shield volcano on Mars, the development of which appears to be responsible for tectonic landforms oriented radially and circumferentially to the shield. These landforms include those interpreted as extensional structures, such as normal faults and systems of graben. These structures, however, may also be associated with broader, regional stress field emanating from the volcano-tectonic Tharsis Rise, to the south of Alba Mons and centered on the equator. In this study, I report on structural and statistical analyses for normal faults proximal to Alba Mons (in a region spanning 95–120° W and 14–50° N) and test for systematic changes in fault properties with distance from the volcano and from Tharsis. A total of 11,767 faults were mapped for this study, and these faults were all measured for strike, length, and distance from Alba Mons and Tharsis. Additional properties were qualitatively and quantitatively analyzed within a subset of 62 faults, and model ages were obtained for two areas with crater statistics. Distinguishing traits for each structure population include fault properties such as strike, vertical displacement (i.e., throw) distribution profiles, displacement–length (Dmax/L) scaling, and spatial (i.e., cross-cutting) relationships with adjacent faults with different strikes. The only statistically significant correlation in these analyses was between study fault strike with distance from Tharsis. The lack of trends in the data suggest that one or more geological processes is obscuring the expected similarities in properties for these fault systems, such as volcanic resurfacing, mechanical restriction, or fault linkage.
    [Show full text]
  • Sinuous Ridges in Chukhung Crater, Tempe Terra, Mars: Implications for Fluvial, Glacial, and Glaciofluvial Activity
    This is a repository copy of Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/166644/ Version: Published Version Article: Butcher, F.E.G. orcid.org/0000-0002-5392-7286, Balme, M.R., Conway, S.J. et al. (6 more authors) (2021) Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity. Icarus, 357. 114131. ISSN 0019-1035 https://doi.org/10.1016/j.icarus.2020.114131 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Journal Pre-proof Sinuous ridges in Chukhung crater, Tempe Terra, Mars: Implications for fluvial, glacial, and glaciofluvial activity Frances E.G. Butcher, Matthew R. Balme, Susan J. Conway, Colman Gallagher, Neil S. Arnold, Robert D. Storrar, Stephen R. Lewis, Axel Hagermann, Joel M. Davis PII: S0019-1035(20)30473-5 DOI: https://doi.org/10.1016/j.icarus.2020.114131 Reference: YICAR 114131 To appear in: Icarus Received date: 2 June 2020 Revised date: 19 August 2020 Accepted date: 28 September 2020 Please cite this article as: F.E.G.
    [Show full text]
  • Explosive Lava‐Water Interactions in Elysium Planitia, Mars: Geologic and Thermodynamic Constraints on the Formation of the Tartarus Colles Cone Groups Christopher W
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E09006, doi:10.1029/2009JE003546, 2010 Explosive lava‐water interactions in Elysium Planitia, Mars: Geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups Christopher W. Hamilton,1 Sarah A. Fagents,1 and Lionel Wilson2 Received 16 November 2009; revised 11 May 2010; accepted 3 June 2010; published 16 September 2010. [1] Volcanic rootless constructs (VRCs) are the products of explosive lava‐water interactions. VRCs are significant because they imply the presence of active lava and an underlying aqueous phase (e.g., groundwater or ice) at the time of their formation. Combined mapping of VRC locations, age‐dating of their host lava surfaces, and thermodynamic modeling of lava‐substrate interactions can therefore constrain where and when water has been present in volcanic regions. This information is valuable for identifying fossil hydrothermal systems and determining relationships between climate, near‐surface water abundance, and the potential development of habitable niches on Mars. We examined the western Tartarus Colles region (25–27°N, 170–171°E) in northeastern Elysium Planitia, Mars, and identified 167 VRC groups with a total area of ∼2000 km2. These VRCs preferentially occur where lava is ∼60 m thick. Crater size‐frequency relationships suggest the VRCs formed during the late to middle Amazonian. Modeling results suggest that at the time of VRC formation, near‐surface substrate was partially desiccated, but that the depth to the midlatitude ice table was ]42 m. This ground ice stability zone is consistent with climate models that predict intermediate obliquity (∼35°) between 75 and 250 Ma, with obliquity excursions descending to ∼25–32°.
    [Show full text]