Digital Equipment Corporation PDT-11 Terminal Family
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pdp11-40.Pdf
processor handbook digital equipment corporation Copyright© 1972, by Digital Equipment Corporation DEC, PDP, UNIBUS are registered trademarks of Digital Equipment Corporation. ii TABLE OF CONTENTS CHAPTER 1 INTRODUCTION 1·1 1.1 GENERAL ............................................. 1·1 1.2 GENERAL CHARACTERISTICS . 1·2 1.2.1 The UNIBUS ..... 1·2 1.2.2 Central Processor 1·3 1.2.3 Memories ........... 1·5 1.2.4 Floating Point ... 1·5 1.2.5 Memory Management .............................. .. 1·5 1.3 PERIPHERALS/OPTIONS ......................................... 1·5 1.3.1 1/0 Devices .......... .................................. 1·6 1.3.2 Storage Devices ...................................... .. 1·6 1.3.3 Bus Options .............................................. 1·6 1.4 SOFTWARE ..... .... ........................................... ............. 1·6 1.4.1 Paper Tape Software .......................................... 1·7 1.4.2 Disk Operating System Software ........................ 1·7 1.4.3 Higher Level Languages ................................... .. 1·7 1.5 NUMBER SYSTEMS ..................................... 1-7 CHAPTER 2 SYSTEM ARCHITECTURE. 2-1 2.1 SYSTEM DEFINITION .............. 2·1 2.2 UNIBUS ......................................... 2-1 2.2.1 Bidirectional Lines ...... 2-1 2.2.2 Master-Slave Relation .. 2-2 2.2.3 Interlocked Communication 2-2 2.3 CENTRAL PROCESSOR .......... 2-2 2.3.1 General Registers ... 2-3 2.3.2 Processor Status Word ....... 2-4 2.3.3 Stack Limit Register 2-5 2.4 EXTENDED INSTRUCTION SET & FLOATING POINT .. 2-5 2.5 CORE MEMORY . .... 2-6 2.6 AUTOMATIC PRIORITY INTERRUPTS .... 2-7 2.6.1 Using the Interrupts . 2-9 2.6.2 Interrupt Procedure 2-9 2.6.3 Interrupt Servicing ............ .. 2-10 2.7 PROCESSOR TRAPS ............ 2-10 2.7.1 Power Failure .............. -
PDP-8 Simulator Manual
PDP-8 Simulator Usage 30-Apr-2020 COPYRIGHT NOTICE The following copyright notice applies to the SIMH source, binary, and documentation: Original code published in 1993-2016, written by Robert M Supnik Copyright (c) 1993-2016, Robert M Supnik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. 1 Simulator Files.............................................................................................................................3 -
Dec Pdp-11, 1970
resource sharing: timesharing use of high-speed input/outp RSTSll terminal users may have Examples of the value of the Resource another terminal exclusive use of any peripheral 09 a Sharing concept are: one user may use the punched-card file whi8 timesharing system (except the disk, line printer, card reader, tape and BASIC program he ha% which is a shared device). They may use disk files for performing a "batch" off-line card punch. - it as long as needed, and then return it adrmnistrative data processing task; for assignment to another user. The another terminal user may use a ability to enter, store, and retrieve DECtape unit for retrieving or creating a programs and data files using high-speed tape file intended for off-line storage; peripheral devices makes RSTS-11 a true and when thecard reader is free, yet general-purpose problem-solving system. RSTS for business and administrative problem solving One of the most difficult problems facing Potential On-Line Administrative business today is increasing the Applications include: productivity of costly, hard-to-find clerks and secretaries. RSTS-11's power and Order Entry/Accounts Receivable/ flexibility offer the benefits of reduced Sales Analysis costs, increased customer satisfaction, Inventory Control/Accounts Payable and increased job satisfaction for clerical Data Entry with automatic error workers. checking, editing, and verification Inquiry-Response for "instant" access How RSTSll Benefits Administrative to records. Applications Journals, general ledger, and other account records are stored on-line for RSTSll can be dedicated in quick access from high-speed disk administrative application systems. The storage, thus reducing paper handling. -
A New Architecture for Mini-Computers -- the DEC PDP-11
Reprinted from - AFIPS - Conference Proceedings, Volume 36 Copyright @ by AFlPS Press Montvale, New Jersey 07645 A new architecture for mini-computers- The DEC PDP-11 by G. BELL,* R. CADY, H. McFARLAND, B. DELAGI, J. O’LAUGHLINandR. NOONAN l?i&l Equipment Corporation Maynard, Massachusetts and W. WULF Carnegit+Mellon University Pittsburgh, Fcriiisylvnnia INTRODUCTION tion is not surprising since the basic architectural concepts for current mini-computers were formed in The mini-computer** has a wide variety of uses: com- the early 1960’s. First, the design was constrained by munications controller; instrument controller; large- cost, resulting in rather simple processor logic and system pre-processor ; real-time data acquisition register configurations. Second, application experience systems . .; desk calculator. Historically, Digital was not available. For example, the early constraints Equipment Corporation’s PDP-8 Family, with 6,000 often created computing designs with what we now installations has been the archetype of these mini- consider weaknesses : computers. In some applications current mini-computers have 1. limited addressing capability, particularly of limitations. These limitations show up when the scope larger core sizes of their initial task is increased (e.g., using a higher 2. few registers, general registers, accumulators, level language, or processing more variables). Increasing index registers, base registers the scope of the task generally requires the use of 3. no hardware stack facilities more comprehensive executives and system control 4. limited priority interrupt structures, and thus programs, hence larger memories and more processing. slow context switching among multiple programs This larger system tends to be at the limit of current (tasks) mini-computer capability, thus the user receives 5. -
The DEC PDP-8 Vectors
The ISP of the PDP-8 Pc is about the most trivial in the book. Chapter 5 — It has only a few data operators, namely, <—,+, (negate), -j, It on A, / 2, X 2, (optional) X, /, and normalize. operates words, The DEC PDP-8 vectors. there are microcoded integers, and boolean However, instructions, which allow compound instructions to be formed in Introduction 1 a single instruction. is the levels dis- The PDP-8 is a single-address, 12-bit-word computer of the second The computer straightforward and illustrates 1. look at it from the down." generation. It is designed for task environments with minimum cussed in Chap. We can easily "top arithmetic computing and small Mp requirements. For example, The C in PMS notation is it can be used to control laboratory devices, such as gas chromoto- 12 graphs or sampling oscilloscopes. Together with special T's, it is C('PDP-8; technology:transistors; b/w; programmed to be a laboratory instrument, such as a pulse height descendants:'PDP-8/S, 'PDP-8/I, 'PDP-8/L; antecedents: 'PDP-5; analyzer or a spectrum analyzer. These applications are typical Mp(core; #0:7; 4096 w; tc:1.5 /is/w); of the laboratory and process control requirements for which the ~ 4 it Pc(Mps(2 w); machine was designed. As another example, can serve as a instruction length:l|2 w message concentrator by controlling telephone lines to which : 1 address/instruction ; occasion- typewriters and Teletypes are attached. The computer operations on data/od:(<— , +, —\, A, —(negate), X 2, stands alone as a small-scale general-purpose computer. -
Decwriter IV SERIES TECHNICAL MANUAL
DECwriter IV SERIES TECHNICAL MANUAL EK-LA34S-TM-001 DECwriter IV SERIES TECHNICAL MANUAL digital equipment corporation • maynard, massachusetts 1 st Edition, October 1981 Copyright CD 1981 by Digital Equipment Corporation All Rights Reserved The reproduction of this material, in part or whole, is strictly prohibited. For copy information, contact the Educational Services Department, Digital Equipment Corporation, Maynard, Massachusetts 01754. The information in this document is subject to change without notice. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document. Printed in U. S.A. The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts. DEC DECnet OMNIBUS DECUS DECsystem-l0 OS/8 DIGITAL DECSYSTEM-20 PDT Digital Logo DECwriter RSTS PDP DIBOL RSX UNIBUS EduSystem VMS sVAX lAS VT MASSBUS 3/82-15 CONTENTS CHAPTER 1 GENERAL DESCRIPTION 1.1 General ............................................................. I-I 1.2 Physical Description ................................................... 1-2 1.3 Functional Description ................................................. 1-2 1.4 Related Documents ................................................... 1-4 CHAPTER 2 INSTALLATION 2.1 General ............................................................. 2-1 2.2 Site Considerations .................................................... 2-1 2.3 Unpacking and Inspection .............................................. 2-2 2.4 Repacking Procedures ................................................ -
The Computer History Simulation Project
The Computer History Simulation Project The Computer History Simulation Project The Computer History Simulation Project is a loose Internet-based collective of people interested in restoring historically significant computer hardware and software systems by simulation. The goal of the project is to create highly portable system simulators and to publish them as freeware on the Internet, with freely available copies of significant or representative software. Simulators SIMH is a highly portable, multi-system simulator. ● Download the latest sources for SIMH (V3.5-1 updated 15-Oct-2005 - see change log). ● Download a zip file containing Windows executables for all the SIMH simulators. The VAX and PDP-11 are compiled without Ethernet support. Versions with Ethernet support are available here. If you download the executables, you should download the source archive as well, as it contains the documentation and other supporting files. ● If your host system is Alpha/VMS, and you want Ethernet support, you need to download the VMS Pcap library and execlet here. SIMH implements simulators for: ● Data General Nova, Eclipse ● Digital Equipment Corporation PDP-1, PDP-4, PDP-7, PDP-8, PDP-9, PDP-10, PDP-11, PDP- 15, VAX ● GRI Corporation GRI-909 ● IBM 1401, 1620, 1130, System 3 ● Interdata (Perkin-Elmer) 16b and 32b systems ● Hewlett-Packard 2116, 2100, 21MX ● Honeywell H316/H516 ● MITS Altair 8800, with both 8080 and Z80 ● Royal-Mcbee LGP-30, LGP-21 ● Scientific Data Systems SDS 940 Also available is a collection of tools for manipulating simulator file formats and for cross- assembling code for the PDP-1, PDP-7, PDP-8, and PDP-11. -
System Generation Notes
08/8 System Generation Notes Order No. AA-H606A-TA 08/8 System Generation Notes Order No. AA-H606A-TA March 1979 ABSTRACT This document describes the procedures for getting on line with 05/8. SUPERSESSION/UPDATE INFORMATION: This manual supersedes and updates information in the 05/8 Handbook (DEC-S8-0SHBA-A-D) and the 05/8 Handbook Update (DEC·S8·0SHBA·A·DN4). OPERATING SYSTEM AND VERSION: 05/8 V3D. To order additional copies of this document, contact the Software Distribution Center, Digital Equipment Corporation, Maynard, Massachusetts 01754 digital equipment corporation • maynard. massachusetts First Printing, March 1979 The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document. The software described in this document is furnished under a license and may only be used or copied in accordance with the terms of such license. No responsibility is assumed for the use or reliability of software on equipment that is not supplied by DIGITAL or its affiliated companies. Copyright © 1979 by Digital Equipment Corporation The postage-prepaid READER'S COMMENTS form on the last page of this document requests the user's critical evaluation to assist us in pre paring future documentation. The following are trademarks of Digital Equipment Corporation: DIGITAL DECsystem-10 MASSBUS DEC DEC tape OMNIBUS POP DIBOL OS/8 DECUS EDUSYSTEM PHA UNIBUS FLIP CHIP RSTS COMPUTER -
Timeline of Computer History
Timeline of Computer History By Year By Category Search AI & Robotics (55) Computers (145) Graphics & Games (48) Memory & Storage (61)(61) Networking & The Popular Culture (50) Software & Languages (60) Manchester Mark I Williams- 1947 Kilburn tube EDSAC 1949 Manchester Mark I Williams-Kilburn tube At Manchester University, Freddie Williams and Tom Kilburn develop the Williams-Kilburn tube. The tube, tested in 1947, was the first high-speed, entirely electronic memory. It used a cathode ray tube (similar to an analog TV picture tube) to store bits as dots on the screen’s surface. Each dot lasted a fraction of a second before fading so the information was constantly refreshed. Information was read by a metal pickup plate that would detect a change in electrical charge. Maurice Wilkes with EDSAC Maurice Wilkes and his team at the University of Cambrid construct the Electronic Delay Storage Automatic Calcula (EDSAC). EDSAC, a stored program computer, used me delay line memory. Wilkes had attended the University of Pennsylvania's Moore School of Engineering summer sessions about the ENIAC in 1946 and shortly thereafter Magnetic drum memory began work on the EDSAC. 1950 MIT - Magnetic core memory ERA founders with various magnetic drum memories Eager to enhance America’s codebreaking capabilities, the US Navy contracts with Engineering Research Associates (ERA) for a stored program computer. The result was Atlas, completed in 1950. Atlas used magnetic drum memory, which stored information on the outside of a rotating cylinder coated with ferromagnetic material and circled by read/write heads in Jay Forrester holding early core memory plane fixed positions. -
TU58 Dectape II User's Guide
EK-OTU58-UG-001 TU58 DECtape II User's Guide digital equipment corporation • maynard, massachusetts 1st Editi on, October 1978 The drawings and specifications herein are the property of Digital Equipment Corporation and shall not be reproduced or copied or used in whole or in part as the basis for the manufacture or sale of equipment described herein without written permission. Copyright © 1978 by Digital Equipment Corporation The material in this manual is for informational purposes and is subject to change without notice. Digital Equipment Corporation assumes no re sponsibility for any errors which may appear in this man ual. Printed in U.S.A. This document was set on DIGITAL's DECset-SOOO computerized typesetting system. The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts: DIGITAL DECsystem-lO MASSBUS DEC DECSYSTEM-20 OMNIBUS PDP DIBOL OS/8 DECUS EDUSYSTEM RSTS UNIBUS VAX RSX VMS lAS CONTENTS CHAPTER 1 INTRODUCTION l.1 SCOPE ................................................................................................................ 1-1 l.2 GENERAL DESCRIPTION ............................................................................... 1-1 l.3 BLOCK DIAGRAM ........................................................................................... 1-3 l.3.1 Drive Control ............................................................................................... 1-4 1.3.2 Processor ...................................................................................................... 1-4 1.4 -
Chad Is Our Most Important Product
CHAD IS OUR MOST IMPORTANT PRODUCT An Engineer’s Memoir of Teletype Corporation Jim Haynes The author operating W5YM in 1957 1 I. How it all started When I was growing up in a small town I thought it was an awfully boring place. Now I realize that I had some opportunities that probably would not have been available in a larger city. For one thing, it was possible for a kid to hang out at the newspaper office, telephone office, telegraph office, or radio station and watch a Teletype machine in operation. Things were slow enough that the people who worked there usually had time to answer questions. When I wanted to understand how a Teletype machine worked the wire chief at the telephone office let me borrow the “green book”1. After reading all about selector cams and swords and code bars and pull bars I could drop in to the Western Union office where the manager, a friend of the family, let me play with a little-used printer and see in action all the parts I had read about. Another advantage to living out in the sticks was that television arrived very late. This allowed a pretty good news stand to remain in full operation through most of my teen years. Jack’s News Stand carried several magazines of interest: Radio-Electronics, Radio & Television News, and the amateur radio magazines QST and CQ. Hugo Gernsback’s Radio-Electronics ran a series of articles by Ed- mund C. Berkeley about digital computers, which gave me an early introduction to binary arithmetic, Boolean algebra, and logic circuits. -
LG31 Printer User's Guide
LG31 Printer User’s Guide Order Number EK-LG31E-UG-002 Digital Equipment Corporation 1st Edition, November, 1987 2nd Edition, June, 1989 The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document. The software described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license. No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital Equipment Corporation or its affiliated companies. © Digital Equipment Corporation. 1987. All rights reserved. Printed in U.S.A. The READER’S COMMENTS form on the last page of this document requests the user’s critical evaluation to assist in preparing future documentation. The following are trademarks of Digital Equipment Corporation: DEC DIBOL UNIBUS DEC/CMS EduSystem VAX DEC/MMS IAS VAXcluster DECnet MASSBUS VMS DECsystem–10 PDP VT DECSYSTEM–20 PDT DECUS RSTS DECwriter RSX dt This document was prepared using VAX DOCUMENT, Version 1.1 Contents Preface xiii Chapter 1 LG31 FEATURES 1.1 Overview ............................................1–1 1.2 General Description ....................................1–1 1.3 Theory of Operation ....................................1–3 1.3.1 Serial Interface . ..............................1–3 1.3.2 Control Panel ..................................1–4 1.3.3 Printer Mechanism .............................1–4 1.3.4 Control Electronics ..............................1–4 1.3.5 Power Supply ..................................1–4 1.4 Specifications . ......................................1–5 1.4.1 LG31 Printer Specifications .