Supporting Information

Total Page:16

File Type:pdf, Size:1020Kb

Supporting Information Supporting Information Lin et al. 10.1073/pnas.1320956111 SI Methods BRAFV600E antibody was purchased from Spring Bioscience. The Cell Lines and Culture Reagents. The HCC364 cell line was kindly anti–β-actin antibody was purchased from Sigma-Aldrich. The anti- provided by David Solit (Memorial Sloan–Kettering Cancer EGFR antibody was purchased from Bethyl Laboratories. Center, New York). H1395, H1755, CAL-12T, H1666, H2405, and H2087 cell lines were purchased from American Type Cul- Plasmids, Transfection, and Viral Infection. Various pBabe–photo- ture Collection. Cells grown in RPMI 1640 supplemented with 10% activated mCherry-tagged BRAF constructs were provided by (vol/vol) FBS, 100 IU/mL penicillin, and 100 μg/mL streptomycin Xiaolin Nan (Oregon Health Sciences University, Portland, OR). were maintained at 37 °C in a humidified atmosphere at 5% CO2. The Flag-tagged or V5-tagged BRAF constructs were cloned using The HCC364 vemurafenib-resistant sublines VR1–VR5 were the Gateway system (Invitrogen). EGFR shRNAs were purchased maintained in the above medium and 5 μmol/L of vemurafenib. from Sigma-Aldrich. All transient transfections were conducted using Fugene 6 (Promega). For retroviral infection, viruses were Compounds. Vemurarenib, dabrafenib, AZD6244, gefitinib, and produced in 293-GPG cells. For lentiviral infection, viruses were afatinib were purchased from Sellekchem. Erlotinib was pur- produced in HEK293FT cells cotransfected with packaging re- chased from LC Laboratories. agents ViraPower (Invitrogen). Whole-Exome Sequencing. DNA from each of the indicated lines siRNA-Mediated Gene Silencing. siRNAs against EGFR and c-Jun was extracted using the QIAamp DNA mini kit (Qiagen). DNA were purchased from Dharmacon. BRAF siRNAs were designed (2 μg) was applied for library preparation and capture for whole- to target p61 or full-length BRAF specifically, as previously exome sequencing using Agilent SureSelect XT2 human all exon described (4). All siRNAs transfections were carried out with ’ V5 kits (Agilent) according to the manufacturer s protocols. DharmaFECT 2 Transfection Reagent at a final siRNA con- Sequencing libraries with different indices were pooled and se- centration of ∼20–50 nM, according to the manufacturer’s in- quenced in paired-end format to a length of 100 bp using the structions. About 72 h later, cells either were counted to estimate HiSeq2000 platform at the Center for Advanced Technology at cell growth or were subjected to quantitative real-time RT-PCR the University of California, San Francisco. The depth of cov- or immunoblot analysis. erage was 67–123×. Sequencing reads were aligned against Na- tional Center for Biotechnology Information build 37 (hg19) of Immunoprecipitation. The V5-tagged BRAF and FLAG-tagged – the human genome with Burrows Wheeler alignment (BWA) BRAF constructs were cotransfected into HEK293T cells. Thirty- (1). Duplicate reads were marked, local indel realignment was six hours after transfection, cells were lysed in lysis buffer (50 mM performed, and base-quality scores were recalibrated for each Tris (pH 7.5), 1% Nonidet P-40, 150 mM NaCl, 1 mM EDTA) sample with the Picard suite (http://picard.sourceforge.net/)and supplemented with protease and phosphatase inhibitor mixture the Genome Analysis Toolkit. Point mutations were identified tablets (Roche). Immunoprecipitations were performed at 4 °C for using MuTect (2); indels were identified using Pindel (3). Somatic 2 h using anti-Flag M2 magnetic beads (Sigma-Aldrich), followed mutations in the VR1– VR5 cell lines were inferred by compar- by three washes with lysis buffer. Then binding proteins were ison against the parental HCC364 cell line. eluted by FLAG-peptide and subjected to Western blot analysis. Western Blot Analysis. Cells (200,000 per well) were seeded in six- Quantitative PCR. Total RNA was collected from cultured cells well plates 24 h before drug treatment, and whole-cell lysates were using the RNeasy kit (Qiagen). cDNA was synthesized with prepared using RIPA buffer [10 mM Tris-Cl (pH 8.0), 1 mM EDTA, 0.1% sodium deoxycholate, 0.1% SDS, 140 mM NaCl] SuperScript III reverse transcriptase using random hexamer supplemented with protease inhibitor and phosphatase inhibitor primers (Invitrogen), and RT-PCR was performed on a Quan- (Roche) and clarified by sonication and centrifugation. Equal Studio with Taqman probes (Life Technologies), using the fol- amounts of protein were separated by 4–15% SDS/PAGE and lowing program: hold at 50 °C for 2 min and polymerase acti- were transferred onto nitrocellulose membranes (Bio-Rad) for vation at 95 °C for 20 s, followed by 40 cycles of amplification GAPDH β ACTB protein blot analysis. Membranes were incubated with primary (95 °C for 1 s, 60 °C for 20 s). or -actin ( ) ex- antibody overnight and then were washed and incubated with pression was used as an internal reference to normalize input secondary antibody. Membranes were exposed using either a cDNA. Then ratios of the expression level of each gene to that of fluorescence system (LI-COR) or a chemiluminescent reagent; the reference gene were calculated. images were captured, and bands were quantified using an Im- ageQuant LAS 4000 instrument (GE Healthcare). Transformation Assay. Soft agar assays were performed according to published methods (5). Stable clones of NIH 3T3 cells infected Antibodies. Anti–phospho-MEK, anti–phospho-ERK, anti–phospho- by different BRAF constructs were plated onto DMEM soft agar EGFR, anti–phospho-AKT, anti–phospho-JNK, anti–phospho-Jun, plates at a density of 10,000 cells per well in six-well plates and anti-AKT, anti-JNK, anti-Jun, and anti-Bim antibodies were were treated with different concentrations of vemurafenib (me- purchased from Cell Signaling Technology. The anti-BRAF kinase dium was changed every 3 d). Plates were incubated for 3 wk and antibody was purchased from Santa Cruz Biotechnology. The anti- examined by microscopy to quantify colonies. 1. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler 4. Poulikakos PI, et al. (2011) RAF inhibitor resistance is mediated by dimerization of transform. Bioinformatics 26(5):589–595. aberrantly spliced BRAF(V600E). Nature 480(7377):387–390. 2. Cibulskis K, et al. (2013) Sensitive detection of somatic point mutations in impure and 5. Clark GJ, Cox AD, Graham SM, Der CJ (1995) Biological assays for Ras transformation. heterogeneous cancer samples. Nat Biotechnol 31(3):213–219. Methods Enzymol 255:395–412. 3. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z (2009) Pindel: A pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25(21):2865–2871. Lin et al. www.pnas.org/cgi/content/short/1320956111 1of10 A Vemurafenib Dabrafenib 1.5 1.5 1.0 1.0 0.5 0.5 Relative cell viability Relative cell viability 0.0 0.0 0.001 0.01 0.1 1 10 00.010.11 10 Conc (μM) Conc (μM) AZD6244 V600E HCC364 BRAF 1.5 H1755 BRAF G469A H1395 BRAF G469A L485_P490Y 1.0 H2405 BRAF G466V CAL-12T BRAF G466V 0.5 H1666 BRAF H2087 BRAF L597V Relative cell viability 0.0 0.001 0.01 0.1 1 10 Conc (μM) B Vemurafenib 2 μM -+-+-+ -+ -+ -+-+ pMEK pERK Actin HCC364 CAL12T H1666 H1395 H1755 H2405 H2087 BRAF V600E BRAFG466V BRAF G466V BRAFG469ABRAF G469A BRAF L485_P490Y BRAF L597V C HCC364 BRAFV600E 1.4 1.2 1.0 Parental VR1 0.8 VR2 0.6 VR3 VR4 0.4 VR5 Relative cell viability 0.2 0.0 0 0.01 0.1 1 10 Dabrafenib (μM) Fig. S1. Response of NSCLC cell lines harboring various BRAF mutations to the BRAF inhibitors vemurafenib and dabrafenib and the MEK inhibitor AZD6244 (see Fig. 1). (A) Dose–response curve showing the effect of vemurafenib, dabrafenib, and AZD6244 on the viability of NSCLC cell lines harboring different BRAF mutations. H2087 cells also harbor an NRAS Q61K-activating mutation. (B) Western blot analysis of each indicated protein in lysates from HCC364, CAL12T, H1666, H1395, H1755, H2405, and H2087 cells. (C) Dose–response curve showing the effect of dabrafenib on the viability of the HCC364 parental cell line and the five derived vemurafenib-resistant lines. Data shown (±SEM) are normalized to DMSO treatment (n = 3). Lin et al. www.pnas.org/cgi/content/short/1320956111 2of10 A B V600E VR1 BRAFVE 1 2 3 4 5 6 7 8 9101112131415161718 VR2 V600E VR3 p61VE VR4 VR5 C D p61 cDNA cloned from VR1 HCC364 V600E exon 3 exon 9 Parental VR1 VR2 VR3 2.3Kb FL-BRAF 1.7Kb p61 E F AR 1-5 Parental VR1 VR1 off-drug (2 months) Vemurafenib Parental -+-+ -+ 2 μM tBraf BRAF Pan- p61 BRAF BRAFVE VE- BRAF p61VE Actin pMEK HCC364 Actin G (A+V)R 1-5 Parental tBraf Actin HCC364 Fig. S2. Detection of p61VE in VR1 cells (see Fig. 2). (A) Dendrogram showing unsupervised clustering of VR1– VR 5 sublines based on transcriptome data. (B) Schematic exonic structure of the BRAFV600E full-length gene and the BRAFp61VE splicing variant. (C) PCR amplification of full-length BRAF and the BRAF p61 variant from cDNA of parental HCC364, VR1, VR2, and VR3 cells. (D) Snapshot of Sanger sequencing results of a p61VE variant from cDNA of VR1 cells showing a V600E mutation and a junction between exon 3 and exon 9. (E) Western blotting to detect full-length BRAF, p61VE, and pMEK in cell lysates from HCC364 parental cells, VR1 cells, and VR1 cells grown for 2 mo without vemurafenib in the culture medium. (F) Western blotting to detect BRAF expression in cell lysates from five distinct HCC364 subclones with acquired resistance to the MEK inhibitor AZD6244 (denoted “A”). (G) Western blotting to detect BRAF in cell lysates from five distinct HCC364 subclones with acquired resistance to the combination of the MEK inhibitor AZD6244 (denoted “A”) and vemurafenib (denoted “V”, hence “A+V”).
Recommended publications
  • Vandetanib-Eluting Beads for the Treatment of Liver Tumours
    VANDETANIB-ELUTING BEADS FOR THE TREATMENT OF LIVER TUMOURS ALICE HAGAN A thesis submitted in partial fulfilment of the requirements for the University of Brighton for the degree of Doctor of Philosophy June 2018 ABSTRACT Drug-eluting bead trans-arterial chemo-embolisation (DEB-TACE) is a minimally invasive interventional treatment for intermediate stage hepatocellular carcinoma (HCC). Drug loaded microspheres, such as DC Bead™ (Biocompatibles UK Ltd) are selectively delivered via catheterisation of the hepatic artery into tumour vasculature. The purpose of DEB-TACE is to physically embolise tumour-feeding vessels, starving the tumour of oxygen and nutrients, whilst releasing drug in a controlled manner. Due to the reduced systemic drug exposure, toxicity is greatly reduced. Embolisation-induced ischaemia is intended to cause tumour necrosis, however surviving hypoxic cells are known to activate hypoxia inducible factor (HIF-1) which leads to the upregulation of several pro-survival and pro-angiogenic pathways. This can lead to tumour revascularisation, recurrence and poor treatment outcomes, providing a rationale for combining anti-angiogenic agents with TACE treatment. Local delivery of these agents via DEBs could provide sustained targeted therapy in combination with embolisation, reducing systemic exposure and therefore toxicity associated with these drugs. This thesis describes for the first time the loading of the DEB DC Bead and the radiopaque DC Bead LUMI™ with the tyrosine kinase inhibitor vandetanib. Vandetanib selectively inhibits vascular endothelial growth factor receptor 2 (VEGFR2) and epidermal growth factor receptor (EGFR), two signalling receptors involved in angiogenesis and HCC pathogenesis. Physicochemical properties of vandetanib loaded beads such as maximum loading capacity, effect on size, radiopacity and drug distribution were evaluated using various analytical techniques.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,375.433 B2 Dilly Et Al
    US009375433B2 (12) United States Patent (10) Patent No.: US 9,375.433 B2 Dilly et al. (45) Date of Patent: *Jun. 28, 2016 (54) MODULATORS OF ANDROGENSYNTHESIS (52) U.S. Cl. CPC ............. A6 IK3I/519 (2013.01); A61 K3I/201 (71) Applicant: Tangent Reprofiling Limited, London (2013.01); A61 K3I/202 (2013.01); A61 K (GB) 31/454 (2013.01); A61K 45/06 (2013.01) (72) Inventors: Suzanne Dilly, Oxfordshire (GB); (58) Field of Classification Search Gregory Stoloff, London (GB); Paul USPC .................................. 514/258,378,379, 560 Taylor, London (GB) See application file for complete search history. (73) Assignee: Tangent Reprofiling Limited, London (56) References Cited (GB) U.S. PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this 5,364,866 A * 1 1/1994 Strupczewski.......... CO7C 45/45 patent is extended or adjusted under 35 514,254.04 U.S.C. 154(b) by 0 days. 5,494.908 A * 2/1996 O’Malley ............. CO7D 261/20 514,228.2 This patent is Subject to a terminal dis 5,776,963 A * 7/1998 Strupczewski.......... CO7C 45/45 claimer. 514,217 6,977.271 B1* 12/2005 Ip ........................... A61K 31, 20 (21) Appl. No.: 14/708,052 514,560 OTHER PUBLICATIONS (22) Filed: May 8, 2015 Calabresi and Chabner (Goodman & Gilman's The Pharmacological (65) Prior Publication Data Basis of Therapeutics, 10th ed., 2001).* US 2015/O238491 A1 Aug. 27, 2015 (Cecil's Textbook of Medicine pp. 1060-1074 published 2000).* Stedman's Medical Dictionary (21st Edition, Published 2000).* Okamoto et al (Journal of Pain and Symptom Management vol.
    [Show full text]
  • Administration of CI-1033, an Irreversible Pan-Erbb Tyrosine
    7112 Vol. 10, 7112–7120, November 1, 2004 Clinical Cancer Research Featured Article Administration of CI-1033, an Irreversible Pan-erbB Tyrosine Kinase Inhibitor, Is Feasible on a 7-Day On, 7-Day Off Schedule: A Phase I Pharmacokinetic and Food Effect Study Emiliano Calvo,1 Anthony W. Tolcher,1 sorption and elimination adequately described the pharma- Lisa A. Hammond,1 Amita Patnaik,1 cokinetic disposition. CL/F, apparent volume of distribution ؎ ؎ 1 2 (Vd/F), and ka (mean relative SD) were 280 L/hour ؎Johan S. de Bono, Irene A. Eiseman, ؎ ؊1 2 2 33%, 684 L 20%, and 0.35 hour 69%, respectively. Stephen C. Olson, Peter F. Lenehan, C values were achieved in 2 to 4 hours. Systemic CI-1033 1 3 max Heather McCreery, Patricia LoRusso, and exposure was largely unaffected by administration of a high- 1 Eric K. Rowinsky fat meal. At 250 mg, concentration values exceeded IC50 1Institute for Drug Development, Cancer Therapy and Research values required for prolonged pan-erbB tyrosine kinase in- Center, University of Texas Health Science Center at San Antonio, hibition in preclinical assays. 2 San Antonio, Texas, Pfizer Global Research and Development, Ann Conclusions: The recommended dose on this schedule is Arbor Laboratories, Ann Arbor, Michigan, 3Wayne State University, University Health Center, Detroit, Michigan 250 mg/day. Its tolerability and the biological relevance of concentrations achieved at the maximal tolerated dose war- rant consideration of disease-directed evaluations. This in- ABSTRACT termittent treatment schedule can be used without regard to Purpose: To determine the maximum tolerated dose of meals.
    [Show full text]
  • WO 2013/152252 Al 10 October 2013 (10.10.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/152252 Al 10 October 2013 (10.10.2013) P O P C T (51) International Patent Classification: STEIN, David, M.; 1 Bioscience Park Drive, Farmingdale, Λ 61Κ 38/00 (2006.01) A61K 31/517 (2006.01) NY 11735 (US). MIGLARESE, Mark, R.; 1 Bioscience A61K 39/00 (2006.01) A61K 31/713 (2006.01) Park Drive, Farmingdale, NY 11735 (US). A61K 45/06 (2006.01) A61P 35/00 (2006.01) (74) Agents: STEWART, Alexander, A. et al; 1 Bioscience A61K 31/404 (2006 ) A61P 35/04 (2006.01) Park Drive, Farmingdale, NY 11735 (US). A61K 31/4985 (2006.01) A61K 31/53 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: available): AE, AG, AL, AM, PCT/US2013/035358 kind of national protection AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 5 April 2013 (05.04.2013) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, English (25) Filing Language: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (30) Priority Data: RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 61/621,054 6 April 2012 (06.04.2012) US TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (71) Applicant: OSI PHARMACEUTICALS, LLC [US/US]; ZM, ZW.
    [Show full text]
  • A Combination of Two Receptor Tyrosine Kinase Inhibitors, Canertinib and PHA665752 Compromises Ovarian Cancer Cell Growth in 3D Cell Models
    Oncol Ther DOI 10.1007/s40487-016-0031-1 ORIGINAL RESEARCH A Combination of Two Receptor Tyrosine Kinase Inhibitors, Canertinib and PHA665752 Compromises Ovarian Cancer Cell Growth in 3D Cell Models Wafaa Hassan . Kenny Chitcholtan . Peter Sykes . Ashley Garrill Received: July 12, 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com ABSTRACT EGFR/Her-2 inhibitor (canertinib) and a c-Met inhibitor (PHA665752) in ovarian cancer cell Introduction: Advanced ovarian cancer is often lines in 3D cell aggregates. a fatal disease as chemotherapeutic drugs have Methods: OVCAR-5 and SKOV-3 ovarian cancer limited effectiveness. Better targeted therapy is cell lines were cultured on a non-adherent needed to improve the survival and quality of surface to produce 3D cell clusters and life for these women. Receptor tyrosine kinases aggregates. Cells were exposed to canertinib including EGFR, Her-2 and c-Met are associated and PHA665752, both individually and in with a poor prognosis in ovarian cancer. combination, for 48 h. The effect on growth, Therefore, the co-activation of these receptors metabolism and the expression/ may be crucial for growth promoting activity. phosphorylation of selective signaling proteins In this study, we explored the effect of associated with EGFR, Her-2 and c-Met were combining two small molecule inhibitors that investigated. target the EGFR/Her-2 and c-Met receptor Results: The single drug treatments tyrosine kinases in two ovarian cancer cell significantly decreased cell growth and altered lines. The aim of this study was to investigate the expression of signaling proteins in the combined inhibition activity of a dual OVCAR-5 and SKOV-3 cell lines.
    [Show full text]
  • Small-Molecule Inhibitors of the Receptor Tyrosine Kinases: Promising Tools for Targeted Cancer Therapies
    Int. J. Mol. Sci. 2014, 15, 13768-13801; doi:10.3390/ijms150813768 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Small-Molecule Inhibitors of the Receptor Tyrosine Kinases: Promising Tools for Targeted Cancer Therapies Mohammad Hojjat-Farsangi Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm 17176, Sweden; E-Mail: [email protected]; Tel.: +46-517-74308; Fax: +46-517-75897 Received: 3 July 2014; in revised form: 31 July 2014 / Accepted: 5 August 2014 / Published: 8 August 2014 Abstract: Chemotherapeutic and cytotoxic drugs are widely used in the treatment of cancer. In spite of the improvements in the life quality of patients, their effectiveness is compromised by several disadvantages. This represents a demand for developing new effective strategies with focusing on tumor cells and minimum side effects. Targeted cancer therapies and personalized medicine have been defined as a new type of emerging treatments. Small molecule inhibitors (SMIs) are among the most effective drugs for targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine kinases (RTKs) i.e., tyrosine kinase inhibitors (TKIs) in the clinical oncology imply the increasing attention and application of these therapeutic tools. Most of the current approved RTK–TKIs in preclinical and clinical settings are multi-targeted inhibitors with several side effects. Only a few specific/selective RTK–TKIs have been developed for the treatment of cancer patients. Specific/selective RTK–TKIs have shown less deleterious effects compared to multi-targeted inhibitors.
    [Show full text]
  • Drug-Sensitivity Screening and Genomic Characterization of 45
    Published OnlineFirst July 3, 2018; DOI: 10.1158/1535-7163.MCT-17-0733 Companion Diagnostic, Pharmacogenomic, and Cancer Biomarkers Molecular Cancer Therapeutics Drug-Sensitivity Screening and Genomic Characterization of 45 HPV-Negative Head and Neck Carcinoma Cell Lines for Novel Biomarkers of Drug Efficacy Tatiana Lepikhova1,2, Piia-Riitta Karhemo2, Riku Louhimo2, Bhagwan Yadav3, Astrid Murumagi€ 3, Evgeny Kulesskiy3, Mikko Kivento2, Harri Sihto1, Reidar Grenman 4, Stina M. Syrjanen€ 5, Olli Kallioniemi3, Tero Aittokallio3,6, Krister Wennerberg3, Heikki Joensuu1,7, and Outi Monni2 Abstract There is an unmet need for effective targeted therapies showed some association with response to MEK and/or for patients with advanced head and neck squamous cell EGFR inhibitors. MYC amplification and FAM83H over- carcinoma (HNSCC). We correlated gene expression, expression associated with sensitivity to EGFR inhibitors, gene copy numbers, and point mutations in 45 human and PTPRD deletion with poor sensitivity to MEK inhibi- papillomavirus–negative HNSCC cell lines with the sen- tors. The connection between high FAM83H expression sitivity to 220 anticancer drugs to discover predictive and responsiveness to the EGFR inhibitor erlotinib was associations to genetic alterations. The drug response pro- validated by gene silencing and from the data set at the files revealed diverse efficacy of the tested drugs across the Cancer Cell Line Encyclopedia. The data provide several cell lines. Several genomic abnormalities and gene expres- novel genomic alterations that associated to the efficacy of sion differences were associated with response to mTOR, targeted drugs in HNSCC. These findings require further MEK, and EGFR inhibitors. NOTCH1 and FAT1 were the validation in experimental models and clinical series.
    [Show full text]
  • Vera Lúcia Santos Silva
    MESTRADO CLÍNICAANALÍTICA, E FORENSE TOXICOLOGIA Newly synthetized xanthones Newly as potential and BCRP modulators at P-glycoprotein the intestinal barrier: in vitro andvivo ex studies Silva Santos Lúcia Vera M 2018 Vera Lúcia Silva. Newly synthetized xanthones as potential P-glycoprotein and BCRP modulators at the intestinal barrier: in vitro and ex vivo studies M.FFUP 2018 Newly synthetized xanthones as potential P-glycoprotein and BCRP modulators at the intestinal barrier: in vitro ex vivo studies Vera Lúcia Silva FACULDADE DE FARMÁCIA Vera Lúcia Santos Silva Newly synthetized xanthones as potential P-glycoprotein and BCRP modulators at the intestinal barrier: in vitro and ex vivo studies Dissertation of the Master’s Degree in Analytical, Clinical and Forensic Toxicology Elaborated under the supervision of: Professora Doutora Maria Carolina Rocha e Pinho Pereira Meireles de Amorim Professora Doutora Renata Sofia Araújo da Silva October 2018 IT IS NOT PERMITTED TO REPRODUCE ANY PART OF THIS DISSERTATION. DE ACORDO COM A LEGISLAÇÃO EM VIGOR, NÃO É PERMITIDA A REPRODUÇÃO DE QUALQUER PARTE DESTA DISSERTAÇÃO. iii Work developed in the Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy of University of Porto. This work received financial support from the European Union (FEDER funds POCI/01/0145/FEDER/007728) and National Funds (FCT/MEC, Fundação para a Ciência e a Tecnologia and Ministério da Educação e Ciência) under the Partnership Agreement PT2020 UID/MULTI/04378/2013. The study is a result of the project NORTE-01-0145-FEDER-000024, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement (DESignBIOtecHealth—New Technologies for three Health Challenges of Modern Societies: Diabetes, Drug Abuse and Kidney Diseases), through the European Regional Development Fund (ERDF).
    [Show full text]
  • Customs Tariff - Schedule
    CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2019 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels.
    [Show full text]
  • WO 2017/180581 Al 19 October 2017 (19.10.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/180581 Al 19 October 2017 (19.10.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, PCT/US20 17/026941 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, 11 April 2017 ( 11.04.2017) KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (25) Filing Language: English NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, (26) Publication Language: English RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (30) Priority Data: ZA, ZM, ZW. 62/323,210 15 April 2016 (15.04.2016) US (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except AL, AT, BA, kind of regional protection available): ARIPO (BW, GH, BE, BG, CH, CN, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, GR, HR, HU, IE, IN, IS, IT, LT, LU, LV, MC, MK, MT, NL, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, NO, PL, P T RO, RS, SE, SI, SK, SM, TR) : GENENTECH, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, INC.
    [Show full text]
  • Study Protocol and Statistical Analysis Plan
    7487 FRED HUTCHINSON CANCER RESEARCH CENTER UNIVERSITY OF WASHINGTON SCHOOL OF MEDICINE Previous version: 05/05/2015 Current version: 03/02/2016 Title of Protocol: The Effect of Antiangiogenic Therapy with Pazopanib Prior to Preoperative Chemotherapy for Subjects with Extremity Soft Tissue Sarcomas: A Randomized Study to Evaluate Response by Imaging Investigator List: Principal Investigator Professional Title Phone Number Darin Davidson, MD Assistant Professor of Orthopedics and Sports Medicine, (206) 543-3690 University of Washington Co-Principal Investigator Robin Jones, MD Affiliate Professor of Medicine, University of Washington (206) 288-7439 Affiliate Member, Fred Hutchinson Cancer Research Center Eve Rodler, MD Affiliate Assistant Professor of Medicine, University of (206)-288-7438 Washington Affiliate Assistant Member, Fred Hutchinson Cancer Co-Investigators Research Center Andrew Shields, MD Clinical Assistant Professor, University of Washington Elizabeth Loggers, Assistant Professor of Medicine, University of Washington (206) 288-6975 MD, PhD Assistant Member, Fred Hutchinson Cancer Research Center Lee Cranmer, MD, Associate Professor, University of Washington (206) 288-7439 PhD Associate Member, Fred Hutchinson Cancer Research Center Gabrielle Kane, MD Associate Professor, Radiation Oncology, University of (206)-598-7362 Washington Rosa Yeh, Pharm. D. Director, Pharmacokinetics Lab SCCA Affiliate Investigator, FHCRC (206)288-7396 Seth Pollack, M.D. Assistant Professor, University of Washington Assistant Member, Fred Hutchinson Cancer Research Center (206)-667-6629 Biostatistician: Brenda F. Kurland Associate Member, Fred Hutchinson Cancer Research Center (206)-667-2804 Research Staff: Phase I Program (206) 288-7551 Emergency Contact: Operator at UWMC (206) 598-6190 Version 8.0 02Mar2016 Page 1 of 71 7487 Table of Contents 1.0 INTRODUCTION .............................................................................................................................
    [Show full text]
  • Quantitative Modeling and Analysis of Drug Screening Data for Personalized Cancer Medicine
    UNIVERSITY OF HELSINKI FACULTY OF MEDICINE QUANTITATIVE MODELING AND ANALYSIS OF DRUG SCREENING DATA FOR PERSONALIZED CANCER MEDICINE Lenalidomide Momelotinib Imiquimod Tacedinaline Tofacitinib Temsirolimus Ruxolitinib Roscovitine Tofacitinib Entinostat Gefitinib RoscovitineRuxolitinib Refametinib Pimasertib Sirolimus Selumetinib Tandutinib EverolimusNilotinib PF−04691502 NVP−BEZ235 Trametinib Palbociclib Melphalan Belinostat CUDC−101 AZD8055 Erlotinib Gefitinib Momelotinib Tacedinaline Cediranib SNS−032 Levamisole PF−04691502 Motesanib Panobinostat NVP−AUY922 Palbociclib OSI−027 Erlotinib OSI−027 Axitinib BIIB021 Imatinib Alvespimycin Masitinib TemsirolimusVorinostat Ponatinib Sunitinib Dasatinib Tanespimycin Melphalan Sorafenib Masitinib Pazopanib Sirolimus NVP−SNSAUY922−032 Vatalanib Dasatinib Regorafenib Everolimus Sunitinib MGCD−265 Panobinostat Tivozanib AZD8055 Foretinib NVP−BEZ235 Regorafenib Entinostat Prednisolone Tivozanib Dexamethasone Vincristine Cediranib Belinostat Methylprednisolone Pazopanib CUDC100−101 100 Vinblastine 100 100 Refametinib −40−20 0 20 40 Vatalanib Vorinostat Pimasertib MK1775 Sorafenib MGCD−80265 80 Trametinib ABT−751 80 80 Vandetanib Logistic Selumetinib Axitinib Alvespimycin DSS Triethylenemelamine S−trityl−L−cysteine 60 function3 60 DSS / sDSS 60 AA 60 Canertinib Tanespimycin Mechlorethamine Camptothecin Crizotinib Ponatinib Mitomycin C Paclitaxel Fingolimod 40 IC50 40 Lapatinib Calculation 40 40 Afatinib Imiquimod Patupilone AddictionDrug response score 100 Slope Chlorambucil DSS Tandutinib BIIB021
    [Show full text]