NON-SUPERSYMMETRIC EXTENSIONS of the STANDARD MODEL KENNETH LANE 1 Introduction the Title of My Talk Was Chosen by the Organizer

Total Page:16

File Type:pdf, Size:1020Kb

NON-SUPERSYMMETRIC EXTENSIONS of the STANDARD MODEL KENNETH LANE 1 Introduction the Title of My Talk Was Chosen by the Organizer View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server NON-SUPERSYMMETRIC EXTENSIONS OF THE STANDARD MODEL KENNETH LANE Department of Physics, Boston University, 590 Commonwealth Ave, Boston, MA 02215, USA The motivations for studying dynamical scenarios of electroweak and avor symmetry breaking are reviewed and the latest ideas, esp ecially top color-assisted technicolor, are summarized. Several technicolor signatures at the Tevatron and Large Hadron Collider are describ ed and it is emphasized that all of them are well within the reach of these colliders. 1 Intro duction troweak interactions have b een in place for almost 4 25 years. In all this time, the standard mo del has The title of my talk was chosen by the organizers withsto o d extremely stringent exp erimental tests, and, while it was not their intention, they have the latest round b eing describ ed at this conference 5 6 7 de ned my sub ject by what it is not. That leaves by Bro ck, Tipton, and Blondel. Down to dis- 16 it for me to de ne what it is. So, in this talk tances of at least 10 cm, the basic constituents 1 \non-sup ersymmetric extensions of the standard of matter are known to b e spin- quarks and lep- 2 mo del" means Dynamical Electroweak and Flavor tons. These interact via the exchange of spin-one Symmetry Breaking. To be sp eci c, I will dis- gauge b osons: the massless gluons of QCD and the 1 0 cuss asp ects of technicolor and extended techni- massless photon and massive W and Z b osons 2 ; 3 color . of electroweak interactions. There are six avors I b egin in Sec. 2 by reiterating why it is still each of quarks and leptons|identical except for imp ortant to study scenarios in which electroweak mass, charge and color|group ed into three gen- and avor symmetry are broken by strong dynam- erations. ics at mo derate, accessible energy scales. This The fact that the QCD gauge symmetry is ex- is followed in Sec. 3 by a review of technicolor act in b oth the Lagrangian and the ground state of and extended technicolor, fo cusing on the more the theory implies that quarks and gluons are con- mo dern asp ects|walking technicolor, multiscale ned at large distances into color-singlet hadrons technicolor, and top color-assisted technicolor. In and that they are almost noninteracting at small Sec. 4, I will discuss several imp ortant signatures distances. However, con nement and asymptotic of these strong dynamics that can b e soughtover freedom are not the only dynamical outcomes for the next 10-15 years at the upgraded Tevatron gauge theories. Even though gauge b osons nec- Collider and the Large Hadron Collider. For the essarily app ear in the Lagrangian without mass, most part, these signatures involve the pro duc- interactions can make them heavy. This happ ens tion of technihadrons and ! and their de- T T 0 to the W and Z b osons: electroweak gauge sym- cay into pairs of technipions, , W and T T L T metry is spontaneously broken in the ground state Z , and p ossibly dijets. I restrict myself to L T of the theory, a phenomenon known as the \Higgs these hadron colliders not only b ecause they are 8 mechanism". Finally, fermions in the standard the only new high-energy machines anywhere near mo del also must start out massless. To make a the real axis, but also b ecause they have the quarks and leptons massive, new forces beyond greatest reach of all machines under consideration the SU (3) SU (2) U (1) gauge interactions are for the unknown physics of the TeV energy scale. required. These additional interactions explicitly break the fermions' avor symmetry and commu- 2 Why Study Strong Electroweak and Fla- nicate electroweak symmetry breaking to them. vor Dynamics? Despite this great b o dy of knowledge, the in- teractions underlying electroweak and avor sym- The theoretical elements of the standard SU (3) metry breakdowns remain unknown . The most SU (2) U (1) gauge mo del of strong and elec- imp ortant element still missing from this descrip- a Some might view mysaying this as the kiss of death. tion of particle interactions is directly connected to 1 electroweak symmetry breaking. This may mani- to search for technicolor and extended technicolor fest itself as one or more elementary scalar \Higgs as well as the standard mo del Higgs b oson, its sim- b osons". This happ ens in sup ersymmetry, the ple extensions, sup ersymmetry, and so on. Hadron scenario for the physics of electroweak symme- colliders have powerful reach by virtue of their 9 try breaking that is by far the most p opular. high energy and luminosity, but extracting clear Notwithstanding its p opularity, there is no ex- signals from them can b e quite demanding. Thus, 10 ; b p erimental evidence for sup ersymmetry. We detectors should be designed to be sensitive to, do not know the origin of electroweak symmetry and exp erimenters should be prepared to search breaking. for, the signatures of dynamical electroweak and avor symmetry breaking. So far, there is little If the dynamics of the Higgs mechanism are indication of this in the large LHC detector col- unknown in detail, those of avor are completely lab orations. obscure. We don't even have a prop er name, much less a b elievable and venerable \mechanism", for avor symmetry breaking. Mo dels with elemen- 3 Summary of Technicolor and Extended tary Higgs b osons, whether sup ersymmetric or Technicolor not, o er no explanation at all for the quark-lepton content of the generations, the numb er of genera- Technicolor|the strong interaction of fermions tions, why they are identical, and why avor sym- and gauge b osons at the scale 1TeV | TC metry is broken|the bizarre pattern of quark and describ es the breakdown of electroweak symme- lepton masses. try to electromagnetism without elementary scalar Dynamical electroweak and avor symmetry 1 b osons. Technicolor has a great precedent in breaking|technicolor and extended technicolor| QCD. The chiral symmetry of massless quarks is are plausible, attractive, natural, and nontrivial sp ontaneously broken by strong QCD interactions, scenarios for this physics that involve new inter- resulting in the app earance of massless Goldstone actions at sp eci ed, exp erimentally accessible en- c b osons, , K , . In fact, if there were no Higgs 11 ergy scales. Technicolor is a strong gauge inter- b osons, this chiral symmetry breaking would itself action mo deled after QCD. Its characteristic en- cause the breakdown of electroweak SU (2) U (1) < ergy is 1TeV , so it may be sought in exp eri- to electromagnetism. Furthermore, the W and Z ments of the coming decade. Extended technicolor 2 2 2 masses would be given by M = cos M = W W Z (ETC) emb eds technicolor, color and avor into a 1 2 2 g N f , where g is the weak SU (2) coupling, F 8 larger gauge symmetry; this emb edding is neces- N the numb er of massless quark avors, and f , F sary to pro duce the nonzero \current-algebraic" the pion decay constant, is only 93 MeV. or \hard" masses of quarks and leptons. At the In its simplest form, technicolor is a scaled same time, ETC o ers a simple group-theoretic up version of QCD, with massless technifermions explanation of avor in terms of the representa- whose chiral symmetry is sp ontaneously broken at tion content of fermions. As we explain shortly, . If left and right-handed technifermions are TC the scale at which ETC symmetry is broken down assigned to weak SU (2) doublets and singlets, re- to color technicolor is O (100 TeV). Neverthe- 1 sp ectively, then M = cos M = gF , where W W Z 2 less, the e ects of this interaction are observable F = 246 GeV is the weak technipion decay con- at the TeV energy scale in terms of the masses and d stant. decay mo des of the technihadrons, and , that T T The principal signals in hadron collider ex- p opulate technicolor mo dels. p eriments of \classical" technicolor were discussed Because we are so completely ignorant of 12 ; 13 long ago. In the minimal technicolor mo del, electroweak and avor dynamics, exp eriments at with just one technifermion doublet, the only TeV energies, which for now means those planned c for the Tevatron and the LHC, must have the The hard masses of quarks explicitly break chiral sym- metry and give mass to , K , , which are then referred to greatest p ossible discovery p otential. They ought as pseudo-Goldstone b osons. d b The technipions in minimal technicolor are the linear Those who would cite the apparent uni cation of the 16 combinations of massless Goldstone b osons that b ecome, SU (3) SU (2) U (1) couplings near 10 GeV as evidence via the Higgs mechanism, the longitudinal comp onents W now have to incorp orate the scenario of sup ersymmetry L 0 and Z of the weak gauge b osons. breaking mediated by new gauge interactions. L 2 prominent collider signals are the mo dest enhance- M : ET C ments in longitudinally-p olarized weak b oson pro- 2 g duction. These are the s-channel color-singlet ET C m (M ) ' m (M ) ' hTTi ; q ET C ` ET C ET C 2 0 M technirho resonances near 1.5{2 TeV: ! ET C T 1 + 0 2 (1) W W and ! W Z .
Recommended publications
  • APS NEWS June 2011 • 3
    June 2011 Volume 20, No. 6 TM www.aps.org/publications/apsnews Still Time to Vote APS NEWS in APS Election A PublicAtion of the AmericAn PhysicAl society • www.APs.org/PublicAtions/APsnews See Page 6 New Topical Group on Climate Actively Seeks Members New APS Online Journal Issues Call for Papers At its meeting on April 29, APS “The group is going to focus on that bring the physics out in a ma- APS is now accepting physics papers added as they work their Council voted to establish the new the science of climate and climate jor way.” papers for its new online, open way through the peer-review Topical Group on the Physics of change as opposed to the politics Understanding climate change access peer-reviewed journal, process. A table of contents list- Climate. The group’s organizers or policies, which its charter says is rooted in understanding the Physical Review X. Its editors ing the accepted articles will be hope to reach out to the phys- specifically not to do,” said orga- physics behind it. Many of the have issued a general announce- emailed out quarterly at first, then ics community to draw in a wide nizing committee member Brad biggest questions facing clima- ment to all physicists and institu- more frequently as more papers swath of expertise to address cli- Marston of Brown University. tologists have to do with under- tions, calling for are accepted to the mate issues. The group is now ac- “It’s a very rich and complex area standing the physical principles submissions.
    [Show full text]
  • Chris Quigg · Physicist
    CHRIS QUIGG · PHYSICIST Theoretical Physics Department 1218 Howard Circle Fermi National Accelerator Laboratory Wheaton, Illinois 60187 P.O. Box 500, Batavia, Illinois 60510 +1 630.840.3578 +1 630.660.1370 [email protected] [email protected] lutece.fnal.gov chrisquigg.com Born 15 December 1944 in Bainbridge, Maryland, USA · United States citizen PROFESSIONAL POSITIONS Theoretical Physics Department, Fermi National Accelerator Laboratory, 1974–present; Distinguished Scientist Emeritus, 2017–present; Department Head, 1977–1987. Superconducting Super Collider Central Design Group Deputy Director for Operations, 1987–1989. Institute for Theoretical Physics, State University of New York, Stony Brook Associate Professor, 1974; Assistant Professor, 1971–4; Research Associate, 1970–1. SECONDARY AFFILIATION University of Chicago Department of Physics and Enrico Fermi Institute, Professor (part-time), 1982–1991; Professorial Lecturer, 1978–1982; Visiting Scholar, Enrico Fermi Institute, 1974–1978. EDUCATION Yale University · B.S., Physics, 1966. Magna cum laude, with honors with exceptional distinction in physics. University of California, Berkeley · Ph.D., Physics, 1970; Thesis advisor, J. D. Jackson. Two-Reggeon-Exchange Contributions to Scattering Amplitudes at High Energies. HONORS AND AWARDS Phi Beta Kappa, 1966. Sigma Xi, 1966. De Forest Pioneers Prize (Yale University), 1966. Woodrow Wilson Fellowship, 1966–1967. HONORS AND AWARDS continued University of California Science Fellowship, 1967–1970. Alfred P. Sloan Foundation Research Fellowship, 1974–1978. Fellow of the American Physical Society, 1983, for his numerous significant contributions in the theory of elementary particle physics and high energy collisions. His activities span work on multiparticle production, production and decay of intermediate bosons, and signatures of charmed mesons. One of the many notable contributions is the work on Quarkonium states, noted for lucid and seminal nonrelativistic quantum me- chanics application.
    [Show full text]
  • American Association of Physics Teachers 2008 Annual Report
    American Association of Physics Teachers 2008 report annual Executive Board President Vice Chair of Section Lila M. Adair Representatives Piedmont College Mary Mogge Monroe, GA California State Polytechnic University President-Elect Pomona, CA Alexander Dickison Seminole Community At-Large Board Members College Gordon Ramsey Sanford, FL Loyola University Chicago Frankfurt, IL Vice-President David M. Cook Dwain Desbian Lawrence University Estrella Mountain Community Appleton, WI College Buckeye, AZ Secretary Steven Iona Elizabeth B. Chesick University of Denver Baldwin School Denver, CO Haverford, PA Treasurer Ex-Officio Member Editor Paul W. Zitzewitz American Journal University of of Physics Michigan - Dearborn Jan Tobochnik Dearborn, MI Kalamazoo College Kalamazoo, MI Past President Harvey Leff Ex-Officio Member Editor California State The Physics Teacher Polytechnic University Karl C. Mamola Pomona, CA Appalachian State University Boone, NC Chair of Section Representatives Ex-Officio Member Alan Gibson Executive Officer Connect2Science Warren W. Hein Rochester Hills, MI 2008 2008 report annual 2008 in Summary Presidential Statement 2 Executive Officer Statement 3 Leadership and Service 4 Publications 5 Membership 7 Major Events 8 Programs 9 Collaborative Projects 10 High School Physics Photo Contest 13 Awards and Grants 14 Fundraising 16 Committee Contributions 18 AAPT Sections 20 Financials 22 Presidential Statement AAPT is a truly unique began for a Two-Year College New Faculty Workshop. The organization. For over thirty PTRA program began to wind down in the final stage of the NSF years, it has been my personal grants that began in 1985, and looked at ways of reconfiguring inspiration, a place to meet itself through other successful programs and began offering and share with other physics special workshops for AAPT sections.
    [Show full text]
  • R. SEKHAR CHIVUKULA Professor of Physics Associate Dean, College of Natural Science Michigan State University January 25, 2016
    R. SEKHAR CHIVUKULA Professor of Physics Associate Dean, College of Natural Science Michigan State University January 25, 2016 Address: 3236 Biomedical Physical Science Voice: (517) 884-5567 Michigan State University Fax: (517) 355-6661 East Lansing, MI 48824-2320 Cell: (517) 325-3436 Website: http://www.pa.msu.edu/∼sekhar/ e-mail: [email protected] Positions Held Professor of Physics, Michigan State University (2003{present). Associate Dean for Faculty Development, MSU College of Natural Science (2010{present). Member, Institute for Advanced Study, Princeton, NJ, Fall 2009. Professor of Physics, Boston University (2000{2003). Associate Chair for HEP Research, Physics Department, Boston University (1994{2003). Associate Professor of Physics, Boston University (1994{2000). Director of Graduate Studies, Physics Department, Boston University (1992{1994). Assistant Professor of Physics, Boston University (1989{1994). Postdoctoral Fellow, Boston University (1987{1989). Advisor: Prof. Kenneth Lane. Education Ph.D., Physics (Particle Theory), Harvard University (1987). Thesis: \Composite Technicolor Standard Models." Advisor: Prof. Howard Georgi. A.M., Physics, Harvard University (1984). B.S. with Honor, Physics and Applied Mathematics, Caltech (1983). Fellowships, Awards, and Honors Fellow, American Association for the Advancement of Science (elected 2011). CIC Academic Leadership Program (ALP) Fellow (2010). APS Outstanding Referee (2010). Distinguished Visiting Scholor, Tsinghua University, Beijing, China, 2007-8. Fellow, American Physical Society (elected in 1998) DOE Outstanding Junior Investigator Award (1992-95). NSF Presidential Young Investigator Award (1990-95). SSC National Faculty Fellow (1992-94). Alfred P. Sloan Research Fellowship (1990-92). 1 Major Research Funding NSF Grant: \Electroweak Symmetry Breaking and Physics Beyond the Standard Model." (with Elizabeth H.
    [Show full text]
  • 2007 Annual Report APS
    American Physical Society APS 2007 Annual Report APS The AMERICAN PHYSICAL SOCIETY strives to: Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity; Collaborate with national scientific societies for the advancement of science, science education, and the science community; Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration; Have an active, engaged, and diverse membership, and support the activities of its units and members. Cover photos: Top: Complementary effect in flowing grains that spontaneously separate similar and well-mixed grains into two charged streams of demixed grains (Troy Shinbrot, Keirnan LaMarche and Ben Glass). Middle: Face-on view of a simulation of Weibel turbulence from intense laser-plasma interactions. (T. Haugbolle and C. Hededal, Niels Bohr Institute). Bottom: A scanning microscope image of platinum-lace nanoballs; liposomes aggregate, providing a foamlike template for a platinum sheet to grow (DOE and Sandia National Laboratories, Albuquerque, NM). Text paper is 50% sugar cane bagasse pulp, 50% recycled fiber, including 30% post consumer fiber, elemental chlorine free. Cover paper is 50% recycled, including 15% post consumer fiber, elemental chlorine free. Annual Report Design: Leanne Poteet/APS/2008 Charts: Krystal Ferguson/APS/2008 ast year, 2007, started out as a very good year for both the American Physical Society and American physics. APS’ journals and meetings showed solidly growing impact, sales, and attendance — with a good mixture Lof US and foreign contributions. In US research, especially rapid growth was seen in biophysics, optics, as- trophysics, fundamental quantum physics and several other areas.
    [Show full text]
  • In Leon's Company, It Seemed That Anything Might Be Possible
    In Leon’s company, it seemed that anything might be possible Chris Quigg email:[email protected] Theoretical Physics Department Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 USA 5 January 2020 FERMILAB-PUB-20-001-T Memorial sessions celebrated Leon Lederman, Helen Edwards, and Burton Richter at the April 2019 Meeting of the American Physical Society in Denver. In the session entitled Honoring Leon Lederman, Sally Dawson gave an overview of Leon’s scientific career, Marge Bardeen reviewed his work in science education, and I spoke of his years as Fermilab Director. Presentation materials for all three sessions are archived at http://j.mp/31mNkHA. This essay is drawn from my lecture; my slides can be found at https://bit.ly/2QJ7Jmw. Leon Lederman in 1983. (Fermilab Creative Services) In 1978, Leon Lederman put aside a promising career in experimental physics that had spanned three decades to accept the appointment as Director of Fermilab—the Enrico Fermi National Accelerator Laboratory. Leon was tied to Fermilab even before it existed. He had discov- ered early in life that if he took himself seriously, others were likely 1 L. M. Lederman, “The Truly National to take him seriously as well. As the community pondered a new ac- Laboratory (TNL),” in Super-High- Energy Summer Study, Brookhaven celerator in the 100-GeV and above range, Leon delivered a manifesto Report No. BNL-AADD-6 (1963), pp. for what he called a Truly National Laboratory.1 8–11. He gave voice to a complaint of university users that they had not been treated justly at Berkeley and Brookhaven, where the very powerful in-house groups would—according to Leon—consume all the prime beam time for themselves, and only then distribute scraps among the sorry supplicants from Columbia University and other institutions.
    [Show full text]
  • Perspectives and Questions …
    Perspectives and Questions Meditations on the Future of Particle Physics Chris Quigg Fermilab Chicago HEP Seminar · May 13, 2019 Supplemental reading: \Dream Machines," arXiv:1808.06036 CHF200 Note (2018) many scales Lifetimes 136 21 Xeββνν : 3:2 × 10 yr 124 22 XeECECνν : 2:6×10 yr p : > 1029−33 yr Chris Quigg Perspectives and Questions . UCHEP · 05.13.2019 1 / 39 The importance of the 1-TeV scale EW theory does not predict Higgs-boson mass Thought experiment: conditional upper bound W +W −; ZZ; HH; HZ satisfy s-wave unitarity, p 1=2 provided MH . (8π 2=3GF) ≈ 1 TeV If bound is respected, perturbation theory is \everywhere" reliable If not, weak interactions among W ±; Z; H become strong on 1-TeV scale New phenomena( H or something else) are to be found around 1 TeV Chris Quigg Perspectives and Questions . UCHEP · 05.13.2019 2 / 39 Where is the next important scale? (Higher energies needed to measure HHH, verify that H regulates WLWL) Planck scale ∼ 1:2 × 1019 GeV (3 + 1-d spacetime); ∼ 1:6 × 10−35 m Unification scale ∼ 1015 −16 GeV ΛQCD ∼ scale of confinement, chiral symmetry breaking At what scale are charged-fermion masses set (Yukawa couplings)? At what scale are neutrino masses set? Will new physics appear at 1×; 10×; 100×;::: EW scale? Might new phenomena appear at macroscopic scales? Chris Quigg Perspectives and Questions . UCHEP · 05.13.2019 3 / 39 The Great Lesson of Twentieth-Century Science The human scale of space and time is not privileged for understanding Nature, and may even be disadvantaged.
    [Show full text]
  • Hep-Ph/9401324V2 30 Jan 1994 Nvriyo Ooao Boulder
    BUHEP–94–2 AN INTRODUCTION TO TECHNICOLOR† Kenneth Lane‡ Department of Physics, Boston University 590 Commonwealth Avenue, Boston, MA 02215 Abstract In these lectures we present the motivation for dynamical electroweak symmetry breaking and its most popular realization, technicolor. We introduce the basic ideas of technicolor and its companion theory of flavor, extended technicolor. We review the classical theory of technicolor, based on naive scaling from quantum chromodynamics, and discuss the classical theory’s fatal flaws. Finally, we describe the principal attempt to correct these flaws, the theory of walking technicolor. arXiv:hep-ph/9401324v2 30 Jan 1994 † Lectures given June 30–July 2, 1993 at the Theoretical Advanced Studies Institute, University of Colorado, Boulder. ‡ [email protected] 1 1. WHY TECHNICOLOR? In the first part of these lectures we describe the motivations and virtues of technicolor and extended technicolor—dynamical theories of electroweak and flavor symmetry. We then give an overview of the “classical” theory of technicolor, using arguments based on scaling from QCD. We discuss the theoretical and phenomeno- logical problems of technicolor and extended technicolor and summarize the main attempts to overcome them. 1.1 The Importance of Electroweak Symmetry Breaking The theoretical elements of the standard SU(3) SU(2) U(1) gauge model of ⊗ ⊗ strong and electroweak interactions have been in place for more than 20 years.1,2,3 In all this time, the standard model has withstood extremely stringent experimental tests.4 Down to distances of at least 10−16 cm, the basic constituents of matter 1 are known to be spin– 2 quarks and leptons.
    [Show full text]
  • Non-Supersymmetric Extensions of the Standard Model
    NON-SUPERSYMMETRIC EXTENSIONS OF THE STANDARD MODEL KENNETH LANE Department of Physics, Boston University, 590 Commonwealth Ave, Boston, MA 02215, USA The motivations for studying dynamical scenarios of electroweak and flavor symmetry breaking are reviewed and the latest ideas, especially topcolor-assisted technicolor, are summarized. Several technicolor signatures at the Tevatron and Large Hadron Collider are described and it is emphasized that all of them are well within the reach of these colliders. 1 Introduction troweak interactions have been in place for almost 25 years. 4 In all this time, the standard model has The title of my talk was chosen by the organizers withstood extremely stringent experimental tests, and, while it was not their intention, they have the latest round being described at this conference defined my subject by what it is not. That leaves by Brock, 5 Tipton, 6 and Blondel. 7 Down to dis- it for me to define what it is. So, in this talk tances of at least 10−16 cm, the basic constituents 1 “non-supersymmetric extensions of the standard of matter are known to be spin- 2 quarks and lep- model” means Dynamical Electroweak and Flavor tons. These interact via the exchange of spin-one Symmetry Breaking. To be specific, I will dis- gauge bosons: the massless gluons of QCD and the cuss aspects of technicolor 1 and extended techni- massless photon and massive W ± and Z0 bosons color 2,3. of electroweak interactions. There are six flavors I begin in Sec. 2 by reiterating why it is still each of quarks and leptons—identical except for important to study scenarios in which electroweak mass, charge and color—grouped into three gen- and flavor symmetry are broken by strong dynam- erations.
    [Show full text]
  • LHC Physics Potential Vs. Energy: Considerations for the 2011 Run Chris Quigg*
    FERMILAB{FN{0913{T Rev. February 1, 2011 LHC Physics Potential vs. Energy: Considerations for the 2011 Run Chris Quigg* Theoretical Physics Department Fermi National Accelerator Laboratory Batavia, Illinois 60510 USA and CERN, Department of Physics, Theory Unit CH1211 Geneva 23, Switzerland Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I quan- tify the advantage of increasing the beam energy from 3:5 TeV to 4 TeV. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton lumi- nosity for gg, ud¯, qq, and gq interactions over the energy range relevant to the Large Hadron Collider, along with arXiv:1101.3201v2 [hep-ph] 1 Feb 2011 example analyses for specific processes. This note ex- tends the analysis presented in Ref. [1]. Full-size figures are available as pdf files at lutece.fnal.gov/PartonLum11/. *E-mail:[email protected] 2 Chris Quigg 1 Preliminaries The 2009-2010 run of the Large Hadron Collider at CERN is complete, with the delivery of some 45 pb−1 of proton-proton collisions at 3:5 TeV per beam to the ATLAS and CMS experiments. The primary objective of the run, to commission and ensure stable operation of the accelerator complex and the experiments, has been achieved, and much has been learned about machine operation. The experiments succeeded in \rediscovering" the standard model of particle physics, and using familiar physics objects such as W ±, Z0, J= , Υ, jets, b-hadrons, and top-quark pairs to tune detector performance.
    [Show full text]
  • Learning to See at the Large Hadron Collider Arxiv:1001.2025V1 [Hep-Ph] 12 Jan 2010
    FERMILAB-FN-0849-T January 12, 2010 Learning to See at the Large Hadron Collider Chris Quigg* Theoretical Physics Department Fermi National Accelerator Laboratory Batavia, Illinois 60510 USA Physics Department, Technical University Munich D-85748 Garching, Germany Arnold Sommerfeld Center for Theoretical Physics Ludwig-Maximilians-Universit¨atM¨unchen D-80333 M¨unchen, Germany Theory Group, Physics Department, CERN CH-1211 Geneva 23, Switzerland The staged commissioning of the Large Hadron Collider presents an opportunity to map gross features of particle production over a significant energy range. I suggest a vi- sual tool|event displays in (pseudo)rapidity{transverse- momentum space|as a scenic route that may help arXiv:1001.2025v1 [hep-ph] 12 Jan 2010 sharpen intuition, identify interesting classes of events for further investigation, and test expectations about the underlying event that accompanies large-transverse- momentum phenomena. *E-mail:[email protected] 2 Chris Quigg The first proton-proton collisions have occurred in CERN's Large Hadron Collider, at energies of 450 GeV and 1:18 TeV per beam, and the experi- mental collaborations have reported their initial looks at the data [1]. Early in 2010, the LHC is projected to run at 3:5 TeV per beam, with the energy increasing later in the run to perhaps 5 TeV per beam, or beyond. The prime objective of the 2009{2010 run is to commission and ensure stable operation of the accelerator complex and the experiments. For the ex- periments, an essential task is to \rediscover" the standard model of particle physics, and to use familiar physics objects such as W ±, Z0, J= , Υ, jets, b-hadrons, and top-quark pairs to tune detector performance.
    [Show full text]
  • Theoretical Physics
    2015 ANNUAL REPORT INSTItuto DE FÍSICA CORPUSCULAR 2 3 CONTENTS BIENVENIDA – BENVINGUDA – WELCOME............................................. 4 1. STRUCTURE AND ORGANIZATION...................................................... 9 About IFIC....................................................................................... 9 Organization, scientific departments and support units............11 Personnel (31 Dec 2015)................................................................ 17 2. RESEARCH ACTIVITIES.........................................................................21 Experimental physics......................................................................21 Theoretical physics......................................................................... 40 3. PUBLICATIONS.....................................................................................55 Experimental physics......................................................................56 Theoretical physics.........................................................................70 Books .............................................................................................. 78 4. TRAINING..............................................................................................79 Teaching activities..........................................................................79 Ph.D. theses.....................................................................................79 5. CONFERENCES, SEMINARS AND COLLOQUIA...................................80 Conferences
    [Show full text]