Chapter 1. General Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1. General Introduction Relicts, Refugia and Reticulation: A Study of Population History, Hybrids and Phylogeny in the Long-Lived Flowering Tree Genus Tilia Prattana Phuekvilai Thesis submitted for the degree of Doctor of Philosophy School of Biology Newcastle University July 2014 Declaration I hereby certify that this thesis is the original work of my own. No part of the material has been submitted to the Newcastle University or any other University for obtaining a higher degree. All information derived from other sources has been acknowledged and indicated in the thesis. Prattana Phuekvilai July 2014 i Abstract Tilia L. (lime or basswood) is a genus of large trees that are widely distributed in the temperate regions of the Northern Hemisphere. Tilia is an under-investigated genus with unknown species relationships. Therefore, a phylogeny of the genus was reconstructed. This revealed disagreement of the phylogenetic placement of some species and also indicated extensive hybridization. To investigate this further, the most tractable and widely distributed species across Europe, T. cordata (Mill.) or small leaved lime and T. platyphyllos (Scop.) or large leaved lime, were selected for study. This study aims to increase the understanding of genetic diversity and hybridization between the two Tilia species. Also, to gain insight into postglacial recolonization in Tilia across Europe, the patterns of population genetic structure were investigated. In order to achieve the goals, 15 microsatellite markers were developed for detailed genetic analysis. These loci clearly discriminated the two Tilia species. Cross- amplification results indicated that twelve microsatellite markers amplified polymorphic loci in 24 species in the genus. A high level of polymorphism was observed in twenty- five populations of T. cordata and 15 populations of T. platyphyllos from natural woods across Europe. The level of genetic diversity in T. platyphyllos is higher than in T. cordata. Both microsatellite and morphological analysis revealed that natural hybridisation and introgression have occurred between T. cordata and T. platyphyllos in sympatric UK populations, which could be of importance for adaptation and other evolutionary processes. The partial congruence of molecular and morphological analysis suggests that molecular markers are more reliable than morphological analysis for detecting hybridization. The stronger genetic structure observed in T. platyphyllos than in T. cordata suggested that the migration and colonization in the northern areas of T. cordata occurred before those of T. platyphyllos. Microsatellite analysis suggested different possible colonization routes between the two Tilia species. However, T. cordata and T. platyphyllos seem to share the three main refugia in southern Europe (Iberia, Italy and the Balkans). In addition, T. cordata seems to have additional putative refugia in eastern areas. The haplotype network and some shared haplotypes of eight chloroplast regions indicate incomplete lineage sorting rather than recent hybridization. ii Acknowledgements Firstly, I would like to express my deep gratitude and thanks to my supervisor, Dr Kirsten Wolff for her supervision, encouragement and support throughout the completion of my study. Working with Kirsten for almost four years has been a great privilege. She has taught me how to be a population geneticist. Also, she gave me the opportunity to attend workshops and conferences, which helped me to broaden my perspective and provide me a great experience. She has supported me not only in the academic life, but also provided me opportunities to have experiences outside the University. She is an excellent supervisor who never hesitated to provide any kind of help. This project would never have been accomplished without her. I would like to thanks Prof. Donald Pigott who helped in suggestion of species relationships and provided the samples of most Tilia species used in phylogenetic study. I would also like to express my gratitude to Dr. Paul Ashton and his colleages, who helped both in collecting the samples in the UK and writing the paper. I owe a great deal of thanks to people who helped me collecting the samples across Europe, without whom this study would not have been possible. I am grateful to thanks all of the staff and friends in the School of Biology for their kindness, support and friendship. Special thanks go to Helen Martin for her help with cloning techniques and her advice. I appreciate the assistance of laboratory members, Dr. Nicholas Levsen and Samuel Logan for their useful discussion and assistance in my project. I gratefully acknowledge the Royal Thai Government for providing me with a PhD scholarship. I would also like to thank to the staff at the Office of Educational Affairs (OEA) in London for their help and support. I also wish to thanks the members of the Thai Society in Newcastle for their sincere friendships. Finally, I would like to express my deepest appreciation to my parents and sister for their love, support, understanding and encouragement. I would like to dedicate this achievement to them. iii Publications Related to the Thesis Publication: Phuekvilai P, Wolff K (2013). Characterization of microsatellite loci in Tilia platyphyllos (Malvaceae) and cross-amplification in related species. Applications in Plant Sciences 1(4): 1200386. Oral presentations: Phuekvilai P (2012). Evolution and population genetics in the genus Tilia. Ecological Genetics Group Conference, Edinburgh, UK. Phuekvilai P (2014). Population structure and phylogeography of Tilia cordata and T. phythyllos across Europe. Ecological Genetics Group Conference, Newcastle, UK. Poster presentations: Phuekvilai P, Wolff K (2011). Evolution and population genetics in the genus Tilia. Ecological Genetics Group Conference, London, UK. Phuekvilai P, Wolff K (2012). Genetic diversity in ancient lime trees. Trees Beyond the Wood Conference, Sheffield, UK. Phuekvilai P, Wolff K (2013). Genetics diversity and population structure in T. cordata and T. platyphyllos. Ecological Genetics Group Conference, Belfast, UK. iv Table of contents Declaration…………………………………………………………………….…………i Abstract………………………………………………………………………………….ii Acknowledgements……………………………………………………………………..iii Publications Related to the Thesis………………..……………………………………..iv Table of Contents……………………………………………………………...…………v List of Figures…………………………………………………………………….…......ix List of Tables……………………………………………………………………….......xii Chapter 1. General introduction ................................................................................... 1 1.1 Genetic diversity ...................................................................................................... 1 1.2 Factors influencing extent and distribution of genetic diversity ............................. 1 1.3 Tree diversity and their importance ......................................................................... 2 1.4 The genus Tilia and its distribution ......................................................................... 3 1.5 Importance and uses of Tilia ................................................................................... 6 1.5.1 Biodiversity value ............................................................................................. 6 1.5.2 Human value ..................................................................................................... 7 1.6 Approach and aims of research ............................................................................... 7 Chapter 2. Phylogenetic analysis of the genus Tilia ................................................... 10 2.1 Abstract ................................................................................................................. 10 2.2 Introduction ........................................................................................................... 10 2.2.1 Phylogenetic utility of chloroplast DNA ........................................................ 11 2.2.2 Phylogenetic utility of nuclear ribosomal DNA ............................................. 12 2.2.3 Phylogenetic utility of nuclear genes .............................................................. 13 2.2.4 Nuclear genes used in this study ..................................................................... 13 2.2.5 Taxonomic history of Tilia ............................................................................. 15 2.3 Materials and methods ........................................................................................... 18 2.3.1 Species sampling............................................................................................. 18 2.3.2 DNA extraction ............................................................................................... 20 2.3.3 Chloroplast amplification and sequencing ...................................................... 20 2.3.4 Nuclear amplification and sequencing ............................................................ 21 v 2.3.5 Nuclear gene cloning ...................................................................................... 23 2.3.6 Sequence alignment and phylogenetic analysis .............................................. 23 2.4 Results ................................................................................................................... 24 2.4.1 Characteristics of chloroplast, nuclear DNA and ITS rDNA sequences ........ 24 2.4.2 Phylogenetic analysis ...................................................................................... 27 2.5 Discussion
Recommended publications
  • Mount Pleasant Farm and Forestry (MPFF) Autumn 2012-Spring 2013
    Mount Pleasant Farm and Forestry (MPFF) Autumn 2012-Spring 2013 ( located at MOUNT PLEASANT FARM which is the old site of Mount Pleasant Trees) ROCKHAMPTON , BERKELEY, GLOS. GL13 9DU www.mountp.co.uk or www.mountpleasantfarmandforestry.co.uk Telephone: 01454 260111 Please note this phone number is only for ordering items from this pink sheet.(not from the Mount Pleasant Trees Catalogue) An appointment to visit is essential. The items in this list are in addition to those listed in the MOUNT PLEASANT TREES CATALOGUE which is a separate business, and is owned and run by our son and daughter in law. To contact MOUNT PLEASANT TREES please phone 01454 260348 or see their website www.mountpleasanttrees.com My wife and I run MPFF as a semi retirement business, so we are not always available to take phone calls. Generally you can leave a message and we will call you back, ( which could be a day or even several days later) so long as you leave a land line number (regret we cannot return calls to mobile numbers) We have a website. www.mountpleasantfarmandforestry.co.uk, or for ease just type in www.mountp.co.uk and that will take you there., The website gives more information on many items (which is easy to print out) , particularly about Snowdrops and when they will be ready for sale. The trees are available from early November until mid-late March. An appointment is essential at a mutually convenient time to collect trees and several days’ notice may be required because for the large specimens we have to hire a J.C.B.
    [Show full text]
  • Native Trees of Mexico: Diversity, Distribution, Uses and Conservation
    Native trees of Mexico: diversity, distribution, uses and conservation Oswaldo Tellez1,*, Efisio Mattana2,*, Mauricio Diazgranados2, Nicola Kühn2, Elena Castillo-Lorenzo2, Rafael Lira1, Leobardo Montes-Leyva1, Isela Rodriguez1, Cesar Mateo Flores Ortiz1, Michael Way2, Patricia Dávila1 and Tiziana Ulian2 1 Facultad de Estudios Superiores Iztacala, Av. De los Barrios 1, Los Reyes Iztacala Tlalnepantla, Universidad Nacional Autónoma de México, Estado de México, Mexico 2 Wellcome Trust Millennium Building, RH17 6TN, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom * These authors contributed equally to this work. ABSTRACT Background. Mexico is one of the most floristically rich countries in the world. Despite significant contributions made on the understanding of its unique flora, the knowledge on its diversity, geographic distribution and human uses, is still largely fragmented. Unfortunately, deforestation is heavily impacting this country and native tree species are under threat. The loss of trees has a direct impact on vital ecosystem services, affecting the natural capital of Mexico and people's livelihoods. Given the importance of trees in Mexico for many aspects of human well-being, it is critical to have a more complete understanding of their diversity, distribution, traditional uses and conservation status. We aimed to produce the most comprehensive database and catalogue on native trees of Mexico by filling those gaps, to support their in situ and ex situ conservation, promote their sustainable use, and inform reforestation and livelihoods programmes. Methods. A database with all the tree species reported for Mexico was prepared by compiling information from herbaria and reviewing the available floras. Species names were reconciled and various specialised sources were used to extract additional species information, i.e.
    [Show full text]
  • 48 European Invertebrate Survey Nederland
    issn 0169 - 2402 februari 2009 48 european invertebrate survey nieuwsbrief nederland 2 Nieuwsbrief European Invertebrate Survey – Nederland, 48 (2009) NIEUWSBRIEF van de EUROPEAN INVERTEBRATE SURVEY – NEDERLAND Nummer 48 - februari 2009 Contactorgaan voor de medewerkers van de Van de redactie werkgroepen van de European Invertebrate Survey – Nederland Deze extra nieuwsbrief, in kleur uitgegeven, is geheel gewijd aan het EIS-jubileum. De lezingen die Menno Schilthuizen en Informatie: Matthijs Schouten op de jubileumdag hebben gegeven kunt u Bureau EIS-Nederland, hier nog eens nalezen. Postbus 9517, 2300 RA Leiden tel. 071-5687670 / fax 071-5687666 Verder sluiten we de succesvolle inventarisatie van Naturalis- e-mail [email protected] terrein af. Het totaal aantal van 1569 soorten is al indrukwek- website www.naturalis.nl/eis kend, de grote hoeveelheid bijzonderheden is nog verbazing- wekkender. Het lijkt er op dat half-verwaarloosde terreinen in Wordt aan medewerkers gratis toegezonden. de stad een paradijs zijn voor schildwespen. Op deze plek wil ik alle personen bedanken die op een of andere manier hebben bijgedragen aan de soortenlijst. Tevens worden de fotografen Redactie: John T. Smit & Roy Kleukers bedankt voor het ter beschikking stellen van hun foto’s. Bij de soortenlijst worden zij met name genoemd, de beelden van de jubileumdag zijn voornamelijk van Berry van der Hoorn © copyright 2009 Stichting European Invertebrate Survey (Naturalis) en EIS-medewerkers. – Nederland, Leiden. Niets in deze uitgave mag worden vermenigvuldigd en/of openbaar Na zo’n mal jubileum van 33,3 jaar is het natuurlijk de vraag gemaakt door middel van fotokopie, microfilm of welke andere wijze wanneer het volgende feestje zal plaatsvinden.
    [Show full text]
  • Discovery of Geodorum Densiflorum (Orchidaceae) on the Ogasawara
    Bull. Natl. Mus. Nat. Sci., Ser. B, 38(3), pp. 131–137, August 22, 2012 Discovery of Geodorum densiflorum (Orchidaceae) on the Ogasawara (Bonin) Islands: A Case of Ongoing Colonisation Subsequent to Long-distance Dispersal Tomohisa Yukawa1,* Dairo Kawaguchi2, Akitsugu Mukai2 and Yoshiteru Komaki3 1 Department of Botany, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan 2 Ogasawara Branch Office, Bureau of General Affairs, Tokyo Metropolitan Government, Hahajima, Ogasawara-mura, Tokyo 100–2211, Japan 3 Botanical Gardens, University of Tokyo, 3–7–1 Hakusan, Bunkyo-ku, Tokyo 112–0001, Japan * E-mail: [email protected] (Received 31 May 2012; accepted 26 June 2012) Abstract Geodorum densiflorum (Lam.) Schltr. (Orchidaceae) is newly recorded for the Ogasawara Islands, Japan. The species was found on Mukoujima Island, Hahajima Group, where only a single population of 108 individuals occurs. This case probably represents recent long-distance dispersal. Regular monitoring in the future may allow the process of colonisation of an oceanic island to be documented. Key words : colonisation, Geodorum densiflorum, Japan, long-distance dispersal, new record, Ogasawara Islands, Orchidaceae. recorded from the Ogasawara Islands. Following Identification of a Geodorum species from the regular surveys, flowering plants were found on Ogasawara Islands 20 August 2011 (Fig. 2). The Ogasawara (Bonin) Islands are an archi- The plants are identifiable as Geodorum densi- pelago of about 30 subtropical islands, situated florum (Lam.) Schltr. (Fig. 3) but the taxonomic 1,000 km south of Tokyo (Fig. 1). They are oce- status of this entity is still not stabilized (e.g., anic islands formed around 48 million years ago.
    [Show full text]
  • Ogasawara) Islands
    Juvenile Height Growth in the Subtropical Evergreen Broad- Title Leaved Forest at Chichijima in the Bonin (Ogasawara) Islands Author(s) Shimizu, Yoshikazu Memoirs of the Faculty of Science, Kyoto University. Series of Citation biology. New series (1985), 10(1): 63-72 Issue Date 1985-03 URL http://hdl.handle.net/2433/258871 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University lrV{EMoll(s ol? Tl•IE FAcul,.Ty ol; SCrENcE, Kyorro UNIvERslTy, SERIEs oF BIoLoGy Vol. X, pp. 63-72, March 1985 Juvenile Height Growth in the Subtrepical Evergreen Broad-Leaved Forest at Chichijima in the Bonin (Ogasawara) Islands By YOSHIKA7..U SHIMIZV Laboratory for Piant Ecological Studies, Faculty of Science, Kyoto University, Kyoto 606 (Received August 25, 1984•) Abstract. Juvenile height growth of l9 species (277 individuais in total) was measured annually fi'om 1977 to 1982 in a forest, 5-6 m high, dominated by Distylium lepidotttm, at Chichljima. Juveniles ofmain canopy trees showed the rate o{' height growth, not more than 2 cmfyear, which was lower than that of the shrub and the second-layer species. The death of terminal shoots and the occurrence of new leaders were frequently observed in a}most all species. The sharp decrease in the annual height growth and the increase in the death rate occurred in 198e or l981 in many species in parallel, which was attributed to the unusual drought in the sumrner of l980. An introduced pieneer species, Pintts ltttchnensis, has been invading the forest which is thought to be in the stable climax stage of succession. The height growth rate of the pine juveniles, l9.9 cmlyear, was much higher than any other native component species.
    [Show full text]
  • Global Survey of Ex Situ Betulaceae Collections Global Survey of Ex Situ Betulaceae Collections
    Global Survey of Ex situ Betulaceae Collections Global Survey of Ex situ Betulaceae Collections By Emily Beech, Kirsty Shaw and Meirion Jones June 2015 Recommended citation: Beech, E., Shaw, K., & Jones, M. 2015. Global Survey of Ex situ Betulaceae Collections. BGCI. Acknowledgements BGCI gratefully acknowledges the many botanic gardens around the world that have contributed data to this survey (a full list of contributing gardens is provided in Annex 2). BGCI would also like to acknowledge the assistance of the following organisations in the promotion of the survey and the collection of data, including the Royal Botanic Gardens Edinburgh, Yorkshire Arboretum, University of Liverpool Ness Botanic Gardens, and Stone Lane Gardens & Arboretum (U.K.), and the Morton Arboretum (U.S.A). We would also like to thank contributors to The Red List of Betulaceae, which was a precursor to this ex situ survey. BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) BGCI is a membership organization linking botanic gardens is over 100 countries in a shared commitment to biodiversity conservation, sustainable use and environmental education. BGCI aims to mobilize botanic gardens and work with partners to secure plant diversity for the well-being of people and the planet. BGCI provides the Secretariat for the IUCN/SSC Global Tree Specialist Group. www.bgci.org FAUNA & FLORA INTERNATIONAL (FFI) FFI, founded in 1903 and the world’s oldest international conservation organization, acts to conserve threatened species and ecosystems worldwide, choosing solutions that are sustainable, based on sound science and take account of human needs. www.fauna-flora.org GLOBAL TREES CAMPAIGN (GTC) GTC is undertaken through a partnership between BGCI and FFI, working with a wide range of other organisations around the world, to save the world’s most threated trees and the habitats which they grow through the provision of information, delivery of conservation action and support for sustainable use.
    [Show full text]
  • First Phylogeny of Bitterbush Family, Picramniaceae (Picramniales)
    plants Article First Phylogeny of Bitterbush Family, Picramniaceae (Picramniales) Alexey Shipunov 1,*, Shyla Carr 1, Spencer Furniss 1, Kyle Pay 1 and José Rubens Pirani 2 1 Minot State University, Minot, ND 58707, USA; [email protected] (S.C.); [email protected] (S.F.); [email protected] (K.P.) 2 University of São Paulo, São Paulo 01000-000, Brazil; [email protected] * Correspondence: [email protected] Received: 17 December 2019; Accepted: 19 February 2020; Published: 21 February 2020 Abstract: Picramniaceae is the only member of Picramniales which is sister to the clade (Sapindales (Huerteales (Malvales, Brassicales))) in the rosidsmalvids. Not much is known about most aspects of their ecology, geography, and morphology. The family is restricted to American tropics. Picramniaceae representatives are rich in secondary metabolites; some species are known to be important for pharmaceutical purposes. Traditionally, Picramniaceae was classified as a subfamily of Simaroubaceae, but from 1995 on, it has been segregated containing two genera, Picramnia and Alvaradoa, with the recent addition of a third genus, Nothotalisia, described in 2011. Only a few species of the family have been the subject of DNA-related research, and fewer than half of the species have been included in morphological phylogenetic analyses. It is clear that Picramniaceae remains a largely under-researched plant group. Here we present the first molecular phylogenetic tree of the group, based on both chloroplast and nuclear markers, widely adopted in the plant DNA barcoding. The main findings are: The family and its genera are monophyletic and Picramnia is sister to two other genera; some clades corroborate previous assumptions of relationships made on a morphological or geographical basis, while most parts of the molecular topology suggest high levels of homoplasy in the morphological evolution of Picramnia.
    [Show full text]
  • Forest Structures, Composition, and Distribution on a Pacific Island, with Reference to Ecological Release and Speciation!
    Pacific Science (1991), vol. 45, no. 1: 28-49 © 1991 by University of Hawaii Press. All rights reserved Forest Structures, Composition, and Distribution on a Pacific Island, with Reference to Ecological Release and Speciation! YOSHIKAZU SHIMIZU2 AND HIDEO TABATA 3 ABSTRACT: Native forest and scrub of Chichijima, the largest island in the Bonins, were classified into five types based on structural features: Elaeocarpus­ Ardisia mesic forest, 13-16 m high, dominated by Elaeocarpus photiniaefolius and Ardisia sieboldii; Pinus-Schima mesic forest, 12-16 m high, consisting of Schima mertensiana and an introduced pine , Pinus lutchuensis; Rhaphiolepis­ Livistonia dry forest, 2-6 m high, mainly occupied by Rhaphiolepis indica v. integerrima; Distylium-Schima dry forest, 3-8 m high, dominated by Distylium lepidotum and Schima mertensiana; and Distylium-Pouteria dry scrub, 0.3­ 1.5 m high, mainly composed of Distylium lepidotum. A vegetation map based on this classification was developed. Species composition and structural features of each type were analyzed in terms of habitat condition and mechanisms of regeneration. A group of species such as Pouteria obovata, Syzgygium buxifo­ lium, Hibiscus glaber, Rhaphiolepis indica v. integerrima, and Pandanus boninen­ sis, all with different growth forms from large trees to stunted shrubs, was subdominant in all vegetation types. Schima mertensiana , an endemic pioneer tree, occurred in both secondary forests and climax forests as a dominant canopy species and may be an indication of "ecological release," a characteristic of oceanic islands with poor floras and little competitive pressure. Some taxonomic groups (Callicarpa, Symplocos, Pittosporum, etc.) have speciated in the under­ story of Distylium-Schima dry forest and Distylium-Pouteria dry scrub.
    [Show full text]
  • Redalyc.Tree and Tree-Like Species of Mexico: Apocynaceae, Cactaceae
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Ricker, Martin; Valencia-Avalos, Susana; Hernández, Héctor M.; Gómez-Hinostrosa, Carlos; Martínez-Salas, Esteban M.; Alvarado-Cárdenas, Leonardo O.; Wallnöfer, Bruno; Ramos, Clara H.; Mendoza, Pilar E. Tree and tree-like species of Mexico: Apocynaceae, Cactaceae, Ebenaceae, Fagaceae, and Sapotaceae Revista Mexicana de Biodiversidad, vol. 87, núm. 4, diciembre, 2016, pp. 1189-1202 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42548632003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Available online at www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 87 (2016) 1189–1202 www.ib.unam.mx/revista/ Taxonomy and systematics Tree and tree-like species of Mexico: Apocynaceae, Cactaceae, Ebenaceae, Fagaceae, and Sapotaceae Especies arbóreas y arborescentes de México: Apocynaceae, Cactaceae, Ebenaceae, Fagaceae y Sapotaceae a,∗ b a a Martin Ricker , Susana Valencia-Avalos , Héctor M. Hernández , Carlos Gómez-Hinostrosa , a b c Esteban M. Martínez-Salas , Leonardo O. Alvarado-Cárdenas , Bruno Wallnöfer , a a Clara H. Ramos , Pilar E. Mendoza a Herbario Nacional de México (MEXU), Departamento
    [Show full text]
  • Estudio Preliminar Del Género Quercus (Fagaceae) En Tamaulipas, México Preliminary Study of the Genus Quercus (Fagaceae) in Tamaulipas, Mexico
    120: 59-111 Julio 2017 Artículo de investigación Estudio preliminar del género Quercus (Fagaceae) en Tamaulipas, México Preliminary study of the genus Quercus (Fagaceae) in Tamaulipas, Mexico Erika Pérez Mojica1 , Susana Valencia-A.1,2 RESUMEN: 1 Universidad Nacional Autónoma de Antecedentes y Objetivos: El estado de Tamaulipas se ubica en el noreste de México, región consi- México, Herbario Nacional de la Fa- derada con alta riqueza de encinos, pero carente de inventarios y de herramientas para identificar las cultad de Ciencias (FCME), Circuito ex- terior s.n., Ciudad Universitaria, 04510 especies de Quercus. El objetivo de este trabajo es conocer la riqueza específica del géneroQuercus en Cd. Mx., México. Tamaulipas y proporcionar herramientas para su identificación. 2 Autor para la correspondencia: Métodos: Se revisaron los ejemplares de Quercus depositados en los herbarios CHAP, ENCB, FCME, [email protected] HUAP, INEGI, INIF y MEXU; así como los ejemplares escaneados del género Quercus de Tamaulipas de los herbarios MO y K disponibles en la página electrónica de Trópicos y los tipos de las especies en JSTOR Global Plants. Paralelamente se revisaron las publicaciones de Tamaulipas, particularmente las Citar como: listas florísticas que incluyen el géneroQuercus , resultando en una lista preliminar de especies colectadas Pérez Mojica, E. y S. Valencia-A. 2017. Es- tudio preliminar del género Quercus (Fa- y reportadas. La revisión de ejemplares y el reconocimiento de los sinónimos permitió depurar la lista de gaceae) en Tamaulipas, México. Acta Bo- especies. Con base en la información anterior, se prepararon las descripciones de las especies de encinos. tanica Mexicana 120: 59-111.
    [Show full text]
  • Download Download
    ENRIQUE PASCUAL-ALVARADO1, JOSÉ LUIS NIEVES-ALDREY3, DOUHGLAS ELISEO CASTILLEJOS-LEMUS1, PABLO CUEVAS-REYES2 AND KEN OYAMA1, * Botanical Sciences 95 (3): 461-472, 2017 Abstract Background: Gall-inducing insects make up a guild of highly specialized endophagous herbivores. The DOI: 10.17129/botsci.1215 cynipids (Hymenoptera: Cynipidae: Cynipini) are highly diversifed gall-inducing wasps that are largely Copyright: © 2017 Pascual-Alvara- associated with oaks (Fagaceae: Quercus). Mexico is one of the centers of diversifcation for the Quercus do et al. This is an open access ar- genus with 161 described species, of which 109 are endemic. ticle distributed under the terms of Questions / hypothesis: The present study aims to identify the gall richness, gall morphological variation the Creative Commons Attribution and degree of specifcity to oaks in Mexico. License, which permits unrestricted use, distribution, and reproduction Methods: An intensive collection was conducted from March to September each year from 2008 to 2012 in any medium, provided the original for a total of 80 oak species in 120 localities in Mexico. author and source are credited. Results: A total of 224 morphologically distinct galls associated with 73 of the 80 oak species were found. The largest number of morphotypes was found in leaves (125), followed by branches (37), buds (31), peti- oles (20), catkins (5), acorns (3) and roots (3). The degree of specifcity between the gall-inducing wasps and their hosts was highly variable; between one to 20 distinct gall morphotypes were found in each spe- cies. Only 23 oak species had a single gall morphotype associated. Conclusions: This study demonstrates the important interaction between oaks and gall-inducing wasps, which is a very complex co-evolutionary process.
    [Show full text]
  • Desirable Plant List
    Carpinteria-Summerland Fire Protection District High Fire Hazard Area Desirable Plant List Desirable Qualities for Landscape Plants within Carpinteria/Summerland High Fire Hazard areas • Ability to store water in leaves or • Ability to withstand drought. stems. • Prostrate or prone in form. • Produces limited dead and fine • Ability to withstand severe pruning. material. • Low levels of volatile oils or resins. • Extensive root systems for controlling erosion. • Ability to resprout after a fire. • High levels of salt or other compounds within its issues that can contribute to fire resistance. PLANT LIST LEGEND Geographical Area ......... ............. Water Needs..... ............. Evergreen/Deciduous C-Coastal ............. ............. H-High . ............. ............. E-Evergreen IV-Interior Valley ............. ............. M-Moderate....... ............. D-Deciduous D-Deserts ............. ............. L-Low... ............. ............. E/D-Partly or ............. ............. VL -Very Low .... ............. Summer Deciduous Comment Code 1 Not for use in coastal areas......... ............ 13 ........ Tends to be short lived. 2 Should not be used on steep slopes........ 14 ........ High fire resistance. 3 May be damaged by frost. .......... ............ 15 ........ Dead fronds or leaves need to be 4 Should be thinned bi-annually to ............ ............. removed to maintain fire safety. remove dead or unwanted growth. .......... 16 ........ Tolerant of heavy pruning. 5 Good for erosion control. ............. ...........
    [Show full text]