How Was the Earth Formed?

Total Page:16

File Type:pdf, Size:1020Kb

How Was the Earth Formed? How was the Earth Formed? When the Universe was created, the matter in the Universe coalesced into stars and galaxies. The galaxies grouped together into clusters, which grouped further together into a network of galactic superclusters. This network of galaxy superclusters forms the large scale structure of the Universe. And this large scale structure was configured such that one of these superclusters, Laniakea, could be formed in a very special way (Supercluster Design – Part 1). The Laniakea Supercluster contains about 100,000 galaxies in about 300-500 galaxy clusters. The structure of Laniakea is much different from other superclusters. Instead of having enormous dense clumps of huge galaxy clusters, Laniakea has smaller galaxy clusters distributed along long arms. It is this structure that permits smaller clusters to exist in Laniakea with the necessary features to support the existence of advanced life (Supercluster Design – Part 2). One of these smaller clusters is the Local Group. The Local Group is composed of about 100 galaxies that are situated close to the center of the Laniakea supercluster. The long arms of Laniakea are configured such that the Local Group itself could be formed in a very special way. In the first place, the Local Group was formed with no giant galaxies, and with only two large galaxies and some medium galaxies that are far enough apart from each other that they do not disturb each other’s structure. Secondly, the Local Group is isolated from other galaxy clusters. This means that none of these other clusters are close enough at the present time to gravitationally disturb the structure of the Local Group or any of its individual galaxies. Also there are no nearby clusters with supergiant galaxies harboring supermassive black holes that would bombard the Local Group with deadly radiation. Thirdly, the Local Group is configured such that our Milky Way Galaxy could be formed in a very special way. In the Local Group, two medium galaxies, the Large and Small Magellanic Clouds (LMC and SMC), are in the perfect position to feed a steady stream of their gas, plus a steady stream of tiny dwarf galaxies, into the core of the Milky Way. While they are doing this, the LMC and SMC remain far enough away from the Milky Way to avoid disturbing its symmetric spiral structure. The Milky Way Galaxy is unique among all known galaxies. It is the only galaxy that absorbs tiny dwarf galaxies at a steady rate that preserves a symmetric galactic spiral structure with only a few spurs and feathers between its arms. This feature allows the Milky Way to be the only known galaxy that is capable of maintaining a Galactic Habitable Zone for an astronomically significant amount of time. In addition, the location of the Milky Way within the Local Group, and within the Laniakea Supercluster, ensures that the Milky Way itself will remain within a Supergalactic Habitable Zone for a significant amount of time. Other features that make the Milky Way uniquely life-friendly are (1) it is a pure- disk galaxy with low star formation rates in its central bulge that would produce deadly amounts of radiation; (2) the supermassive black hole at its center is smaller than other galaxies, which again reduces the amount of radiation; (3) it is an exceptionally quiet galaxy with no recent significant mergers; and (4) the lack of interactions with other large galaxies allows our solar system to maintain a steady orbit within the GHZ. In addition to being generally life-friendly, the Milky Way was configured such that our Solar System could be formed in a very special way. Our Sun was formed in a region of the Milky Way that had been seeded with heavy elements necessary for life. But this type of region contains many massive stellar objects that produce deadly radiation. So, at just the right time, interactions between our Sun and other stars caused our Sun to be ejected from this region at just the right speed and trajectory for the Sun to be placed into a stable orbit within the Milky Way’s GHZ. This orbit was further fine-tuned with a small oscillating motion above and below the galactic disk. This motion provides systematic interactions with other stellar systems that have periodically adjusted the conditions of the solar system to favor advanced life forms. When our Sun was created, it was formed with just the right characteristics to support advanced life. As a special G-type dwarf star, the Sun is the only star known that possesses the characteristics for the simultaneous and overlapping existence of at least 13 required Habitable Zones (HZ 1-11, HZ 12-13). And the Sun’s stellar disk was configured such that its planetary system would evolve to place the Earth in a stable orbit within all 13 HZ’s. (No other planetary system has been observed that has a planet in more than 2 HZ’s.) In addition, the migratory motions of the Sun’s planets (i.e. the “Grand Tack”), along with the Sun’s oscillating orbit in the Milky Way (mentioned above), have caused comets and asteroids to bring just the right amount of water, and thousands of other life- sustaining elements and minerals, to the Earth. These motions also caused the astronomically improbable Earth-Moon encounter, which itself was fine-tuned to produce hundreds of specialized conditions on Earth that are necessary for advanced life. When the Earth was formed, it was configured with thousands of fine-tuned conditions required for advanced life forms. These are documented in detail in books like Rare Earth and Improbable Planet. In addition, the Earth’s climate has been extremely precisely fine-tuned to be stable and life-friendly over an extended period of time. When one considers the jaw-dropping number of factors that had to be designed and manipulated to manufacture these conditions, it becomes clear that a hyper-powerful and hyper-intelligent agent was in control of it. And so far no one has observed any “mid-course corrections” in the evolution of the Universe/Laniakea/Milky Way/Sun/Earth that violate the laws of nature. So it appears that all of the conditions for this incredible construction were configured as initial conditions at the start of the Universe. And given the number of dimensions and degrees of freedom that were configured, it becomes apparent that the entire Universe was involved in the formation of the Earth. What about the possibility of other Earth-like planets in other parts of the Universe? Perhaps the Creator set up the initial conditions for other Earth-like planets to exist also? Well, we know for certain that no other such planets exist within our solar system. And from recent astronomical observations, we know that no solar systems like ours exist near us within the Milky Way’s GHZ. And there is no evidence that any other structural cosmic conditions exist anywhere within the Universe that match those of the Universe/Laniakea/Milky Way/Sun/Earth conformation. So the overwhelming likelihood is that we are alone in the Universe., and that there are no other worlds in the entire Universe that are capable of supporting advanced life. This means that as long as we are alive here on Earth, that our future, our purpose and our meaning belong here. .
Recommended publications
  • David Michael Karl the MAN BEHIND the SCIENCE
    Noelo DELVE SEEK OUT VERIFY David Michael Karl THE MAN BEHIND THE SCIENCE RESEARCH AND INNOVATI ON AT THE UNIVERSITY OF HAWAI‘I - 2020 Delve. Delve. Verify. Seek. MESSAGE FROM THE VICE PRESIDENT University of Throughout history, the world has faced numerous Hawai‘i System health crises that have tested the mettle and resolve of its citizens — the Spanish flu, measles, polio, HIV/AIDS, David Lassner, PhD SARS and Ebola. Today, our world is confronted by the President COVID-19 pandemic, an unprecedented health crisis Vassilis L. Syrmos, PhD Vice President for that has rapidly spread across continents, overwhelmed Research and Innovation modern health care systems and caused widespread disruption of the global economy. NOELO, WHICH MEANS “to delVE, SEEK OUT OR verify” IN HAWAIIAN, IS Hawai‘i with its heavy dependency on tourism, is now at an economic crossroad. with high hotel THE RESEARCH MAGAZINE vacancies, idled tour operations and restricted air travel, other businesses such as restaurants and OF THE UNIVERSITY OF retail stores are also suffering from almost non-existent visitor counts. even after a vaccine for HAWai‘i SYSTEM PUBLISHED ANNUALLY BY THE OFFICE COVId-19 is developed or the effects of the disease are mitigated, the “new normal” may suggest OF THE VICE PRESIDENT FOR that changes to the travel industry and in visitor habits could result in smaller or diminishing RESEARCH AND INNOVATION. returns from the state’s primary industry. economic diversification is not only key to Hawai‘i’s economic recovery from the pandemic, PROJECT MANAGER it is also vital to its long-term economic stability and health.
    [Show full text]
  • An Astronomy Ubd for 8Th Grade Miguel Angel Webber [email protected]
    Trinity University Digital Commons @ Trinity Understanding by Design: Complete Collection Understanding by Design 6-2019 Looking Up! What is our place in the universe? - An Astronomy UbD for 8th Grade Miguel Angel Webber [email protected] Follow this and additional works at: https://digitalcommons.trinity.edu/educ_understandings Repository Citation Webber, Miguel Angel, "Looking Up! What is our place in the universe? - An Astronomy UbD for 8th Grade" (2019). Understanding by Design: Complete Collection. 445. https://digitalcommons.trinity.edu/educ_understandings/445 This Instructional Material is brought to you for free and open access by the Understanding by Design at Digital Commons @ Trinity. For more information about this unie, please contact the author(s): [email protected]. For information about the series, including permissions, please contact the administrator: [email protected]. v 8GrSci Looking Up - What is our place in the universe? Unit Title Looking Up - What is our place in the universe? Course(s) 8th Grade Science Designed by Miguel Angel Webber Martinez Time Frame 17 Class Days: W1​ August 26 - 30 (5) W2​ September 3 - 6 (4) W3​ September 9 - 13 (5) W4​ September 16 - 18 (3) Stage 1- Desired Results Establish Goals 8th Grade Science TEKS ● 8.8A​ Describe components of the universe, including stars, nebulae, and galaxies. Use models such as the Hertzsprung-Russell diagram for classification. ● 8.8B Recognize that the Sun is a medium-sized star located in a spiral arm of the Milky Way galaxy, and that the Sun is many thousands of times closer to Earth than any other star. ● 8.8C Identify how different wavelengths of the electromagnetic spectrum, such as visible light and radio waves, are used to gain information about components in the universe.
    [Show full text]
  • Astronomers Map Massive Structure Beyond Laniakea Supercluster 13 July 2020
    Astronomers map massive structure beyond Laniakea Supercluster 13 July 2020 the Milky Way. Along the arm, galaxies are slowly moving toward the South Pole, and from there, across a part of the sky obscured from Earth by the Milky Way toward the dominant structure in the nearby universe, the Shapley connection. "We wonder if the South Pole Wall is much bigger than what we see. What we have mapped stretches across the full domain of the region we have surveyed. We are early explorers of the cosmos, extending our maps into unknown territory," described Tully. The team's research was published in Astrophysical Journal. Throughout the last 40 years, there has been a growing appreciation of patterns in the distribution of galaxies in the Universe, reminiscent of geographic features like mountain ranges and island archipelagos. The Milky Way galaxy, with its South Pole Wall. Credit: University of Hawaii at Manoa 100 billion stars, is part of the small Local Group of galaxies, which in turn is a suburb of the Virgo cluster with thousands of galaxies. The Virgo cluster in turn is an outer component of an even For the past decade, an international team of larger conglomeration of many rich clusters of astronomers, led in part by Brent Tully at the galaxies, collectively called the "Great Attractor" University of Hawai?i Institute for Astronomy, has because of its immense gravitational pull. In 2014, been mapping the distribution of galaxies around the team mapped out the Laniakea Supercluster, the Milky Way. They have discovered an immense the bundling of a hundred thousand galaxies over structure beyond Laniakea, an immense an even larger region, spanning 500 million light supercluster of galaxies, including our own.
    [Show full text]
  • Astronomy Tour of the Known Universe
    Astronomy Tour of the known universe Astronomy - the study of the objects that lie beyond our planet Earth – the only planet known to host life as we know it. About Earth and the processes by which these objects interact with one 406,000 km from earth is the only earth’s natural satellite – the another. moon. Universe - the name that we use to refer to the collection of all Earth the things that exist in space. Tour of the known universe Moon Astronomers try group objects in the universe using relationships that may connect objects together such as gravitational attraction and relative velocities as a way of systematic organization and presentation. Planet Solar System The solar system – the sun, planets, dwarf planets, asteroids, Interstellar Neighborhood meteors, comets and space of about 143.73 billion km from the sun. Milky Way Galaxy Solar System Local Galactic Group Virgo Supercluster Local Supercluster - Laniakea The Observable Universe Astronomy Tour of the known universe Interstellar neighborhood – the region within about 32.6 The milky way galaxy - gravitationally bound system of about lightyears around the sun, it contains the alpha centauri which is 200 billion stars, stellar remnants, interstellar gas, dust, and dark the nearest star on earth apart from the sun as well as sirius A matter and the space of about 50, 000 lightyears from its center which is the brightest star seen on earth sky. Interstellar Neighborhood Milky Way Galaxy Astronomy Tour of the known universe The local galactic group – gravitationally bound clusters of The Virgo supercluster – gravitationally bound clusters of about galaxies of about 5 million lightyears that includes the Milky Way 47 000 galaxies and has a radius of about 55 million lightyears, it galaxy.
    [Show full text]
  • Active Galactic Nuclei
    Active Galaxies and Galactic Structure Lecture 22 April 18th • FINAL Wednesday 5/9/2018 6-8 pm • 100 questions, with ~20-30% based on material covered since test 3. • Do not miss the final! Extra Credit: Thursday April 19th 2:00 PM Room 190 Physics and Astronomy The Nature And Demographics of Small Exoplanets Dr. Diana Dragomir (MIT) Abstract: One of the most significant recent discoveries in the exoplanet field is that planets smaller than Neptune are more common than larger ones in our galaxy. These planets can theoretically have a wide range of compositions which we are just beginning to explore observationally. Meaningful constraints on their atmospheres, masses and radii - and thus their density and composition - are generally feasible only for those planets that transit bright, nearby stars. I will present the small ensemble of known sub-Neptune exoplanets that are amenable to mass measurements and atmospheric characterization. I will discuss what we have learned about these systems until now, and how they inform our understanding of this population of exoplanets. I will conclude by describing how the Transiting Exoplanet Survey Satellite (TESS), due to launch this month, will revolutionize this understanding by significantly increasing the number of known small exoplanets orbiting nearby stars. This new ensemble of well-characterized small exoplanets can then be statistically leveraged to uncover new trends and gain deeper insights into their composition, and ultimately their formation. Hubble’s Law Expanding Universe • All galaxies are in motion away from us, with more distant galaxies moving faster. • Newton’s second law -> changing velocity implies an force.
    [Show full text]
  • Saraswati - a Supercluster Galaxy
    Saraswati - A Supercluster Galaxy Why in news? \n\n Indian astronomers discovered Supermega River of galaxies. \n\n What is it? \n\n \n A team of Indian astronomers has identified a cosmic behemoth – a supercluster of galaxies – about 4 billion light- years away from us \n The new discovery has been named saraswati. \n The supercluster spans over 650 million light years in its expanse, containing over 10,000 galaxies in 42 clusters. \n \n\n \n\n Why is it important? \n\n \n The discovery is forcing astronomers to rethink about early stages of the evolution of the universe. \n It also provides vital clues about the mysterious dark matter and dark energy. \n The saraswati supercluster clearly stands out in the sky as an especially rare, and possibly among the mega superclusters exceeding 500 million light years in size. \n A large scale structure this massive evolves very slowly. \n Therefore it may reflect the whole history of galaxy formation and the primordial initial conditions that have seeded it. \n \n\n How it challenges current model? \n\n \n The long-popular “cold dark matter” model of evolution of universe predicts that small structures like galaxies form first, which congregate into larger structures. \n The existence of large structures such as the “Saraswati Supercluster” that evolved as early as 10 billion years since the big bang is a challenge to this model. \n Thus forces astronomers into re-thinking popular theories of how the universe got its current form. \n Our work will help to shed light on the perplexing question how such extreme large scale, prominent matter-density enhancements had formed billions of years in the past when the mysterious Dark Energy had just started to dominated structure formation.
    [Show full text]
  • Digital Universe Atlas 1
    Digital Universe Atlas 1. The Grand Tour Brian Patrick Abbott Hayden Planetarium American Museum of Natural History i Contents iii About This Guide iv About the Digital Universe Atlas iv Available Viewers 1 Earth & Moon 3 Solar System 4 Constellations & Stars 6 Exoplanets 8 Milky Way Galaxy 11 Local Group 12 Nearby Universe 15 Extended Galaxy Surveys 16 Quasars 18 Cosmic Microwave Background 20 A Cosmic Perspective Copyright © 2019 American Museum of Natural History The Digital Universe is developed by the Hayden Planetarium at the American Museum of Natural History. Use of the Digital Universe is subject to the terms of its license. See the Digital Universe website for more information. Image credits: Rocket: Mozilla; Figs pp. 1–7: OpenSpace; Figs pp. 8–20: Uniview ii About This Guide These guides are designed to explain the Digital Universe Atlas. They will take you though these data sets in a logical progression, and with navigation instructions and cues for turning data sets on and off. They are software-independent, so be sure to know the ba- sics of the program you’re using before reading this guide. While the information here can never be completely comprehen- sive, we aim to offer a broad view of the universe in these guides, but with compelling detail when appropriate. The Grand Tour The Grand Tour is designed to be an overview of the entire universe and is modeled after the tours we give in the Hayden Planetarium. Its aim is to give one a sense of the overall landscape, from Earth to the farthest reaches of the observable universe.
    [Show full text]
  • Prime Focus (05-18)
    Highlights of the May Sky - - - 2nd - - - DUSK: Aldebaran and Venus, separated by about 6°, set together in the west-northwest. - - - 4th - - - AM: A waning gibbous Moon, Saturn, and Lambda Sagittarii (top star of the Teapot asterism in Sagittarius) form a triangle. - - - 7th - - - KAS Last Quarter Moon 10:09 pm EDT General Meeting: Friday, May 4 @ 7:00 pm - - - 8th - - - Jupiter is at opposition. Kalamazoo Area Math & Science Center - See Page 4 for Details - - - 15th - - - New Moon Observing Session: Saturday, May 5 @ 9:00 pm 7:48 am EDT Venus, Jupiter & Spring Galaxies - Kalamazoo Nature Center - - - 17th - - - DUSK: Only 6° separate a thin Observing Session: Saturday, May 19 @ 9:00 pm crescent Moon and Venus. Moon, Venus & Jupiter - Kalamazoo Nature Center - - - 19th - - - PM: The Moon is 6° below the Board Meeting: Sunday, May 20 @ 5:00 pm Beehive Cluster (M44). Sunnyside Church - 2800 Gull Road - All Members Welcome - - - 20th - - - DUSK: Venus is less than 1° right of the open cluster M35 in Gemini. - - - 21st - - - Inside the Newsletter. PM: The Moon and Regulus are less than 1° apart. April Meeng Minutes....................... p. 2 First Quarter Moon 11:49 pm EDT Board Meeng Minutes..................... p. 2 - - - 25th - - - Observaons...................................... p. 3 PM: Spica, in Virgo, and a waxing gibbous Moon are only NASA Space Place.............................. p. 3 6° apart. General Meeng Preview.................. p. 4 - - - 26th - - - PM: The Moon, Jupiter, and Counng Stars.................................... p. 5 Spica form a long triangle. The King of Spring.............................. p. 6 - - - 29th - - - May Night Sky.................................... p. 12 Full Moon 10:20 am EDT KAS Board & Announcements............ p. 13 - - - 31st - - - Miller Planisphere.............................
    [Show full text]
  • On the Definition of Superclusters
    A&A 575, L14 (2015) Astronomy DOI: 10.1051/0004-6361/201425591 & c ESO 2015 Astrophysics Letter to the Editor On the definition of superclusters Gayoung Chon1, Hans Böhringer1, and Saleem Zaroubi2 1 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany e-mail: [email protected] 2 Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands Received 27 December 2014 / Accepted 6 February 2015 ABSTRACT To obtain a physically well-motivated definition of superclusters, we proposed in our previous work to select superclusters with an overdensity criterion that selects only those objects that will collapse in the future, including those that are at a turn-around in the present epoch. In this paper we present numerical values for these criteria for a range of standard cosmological models. We express these criteria in terms of a density ratio or, alternatively, as an infall velocity and show that these two criteria give almost identical results. To better illustrate the implications of this definition, we applied our criteria to some prominent structures in the local Universe, the Local supercluster, Shapley supercluster, and the recently reported Laniakea supercluster to understand their future evolution. We find that for the Local and Shapley superclusters, only the central regions will collapse in the future, while Laniakea does not constitute a significant overdensity and will disperse in the future. Finally, we suggest that those superclusters that will survive the accelerating cosmic expansion and collapse in the future be called “superstes-clusters”, where “superstes” means survivor in Latin, to distinguish them from traditional superclusters.
    [Show full text]
  • Meet the Laniakea Supercluster
    NEWS & VIEWS RESEARCH To determine which changes are beneficial us who we are. The authors’ work provides an 3. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. to the cell and which detrimental, Findlay excellent case in point to support the words & Gregory, P. D. Nature Rev. Genet. 11, 636–646 11 (2010). and colleagues used deep sequencing, which of geneticist Sydney Brenner : “Progress 4. Joung, J. K. & Sander, J. D. Nature Rev. Mol. Cell Biol. reads every copy of every gene in every cell in science results from new technologies, 14, 49–55 (2013). 5. Ran, F. A. et al. Nature Protocols 8, 2281–2308 of a population. Immediately after editing, new discoveries and new ideas, probably in (2013). the cells are a kaleidoscope of genetic diver- that order.” ■ 6. Urnov, F. D. et al. Nature 435, 646–651 (2005). sity. Edited cells account for only 1–3% of the 7. Goldberg, A. D. et al. Cell 140, 678–691 (2010). total cell population (lower than seen in other Fyodor D. Urnov is at Sangamo BioSciences 8. Doyon, J. B. et al. Nature Cell Biol. 13, 331–337 2 (2011). studies ), but this is not a real problem because Inc., Richmond, California 94804, USA. 9. Sexton, A. et al. Genes Dev. http://dx.doi. deep sequencing can identify even very rare e-mail: [email protected] org/10.1101/gad.246819.114 (2014). DNA sequences. 10. Braberg, H. et al. Cell 154, 775–788 (2013). 1. Findlay, G. M., Boyle, E. A., Hause, R. J., Klein, J.
    [Show full text]
  • Discovery of a Massive Supercluster System at Z ∼ 0.47
    A&A 588, L4 (2016) Astronomy DOI: 10.1051/0004-6361/201628261 & c ESO 2016 Astrophysics Letter to the Editor Discovery of a massive supercluster system at z ∼ 0.47 H. Lietzen1;2, E. Tempel3, L. J. Liivamägi3, A. Montero-Dorta4, M. Einasto3, A. Streblyanska1;2, C. Maraston5, J. A. Rubiño-Martín1;2, and E. Saar3 1 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain e-mail: [email protected] 2 Universidad de La Laguna, Dept. Astrofísica, 38206 La Laguna, Tenerife, Spain 3 Tartu Observatory, Observatooriumi 1, 61602 Tõravere, Estonia 4 Department of Physics and Astronomy, The University of Utah, 115 South 1400 East, Salt Lake City, UT 84112, USA 5 ICG-University of Portsmouth, Dennis Sciama Building, Burnaby Road, PO1 3FX, Portsmouth, UK Received 5 February 2016 / Accepted 24 February 2016 ABSTRACT Aims. Superclusters are the largest relatively isolated systems in the cosmic web. Using the SDSS BOSS survey, we search for the largest superclusters in the redshift range 0:43 < z < 0:71. Methods. We generate a luminosity-density field smoothed over 8 h−1Mpc to detect the large-scale over-density regions. Each indi- vidual over-density region is defined as single supercluster in the survey. We define the superclusters so that they are comparable to the superclusters found in the SDSS main survey. Results. We find a system that we call the BOSS Great Wall (BGW), which consists of two walls with diameters 186 and 173 h−1 Mpc and two other major superclusters with diameters of 64 and 91 h−1 Mpc.
    [Show full text]
  • 0:01 Is There a Border We Will Never Cross? 0:04 Are There Places We Will Never Reach, No Matter How Hard We Try? 0:08 Turns out There Are
    22/08/2016 How Far Can We Go? Limits of Humanity. ­ YouTube 0:01 Is there a border we will never cross? 0:04 Are there places we will never reach, no matter how hard we try? 0:08 Turns out there are. 0:10 Even with science fiction technology, we are trapped in our pocket of the Universe. 0:16 How can that be? And, how far can we go? 0:29 We live in a quiet arm of the Milky Way; A spiral galaxy of average size, 0:34 – about 100,000 light years across – 0:36 consisting of billions of stars, gas clouds, dark matter, black holes, neutron stars, 0:42 and planets, with a supermassive black hole in the galactic centre. 0:47 >From afar, our galaxy seems dense, but in reality, it consists, mostly, of empty space. 0:55 With our current technology, sending a human to the closest star, would take thousands of years. 1:01 So, our galaxy is pretty big. 1:04 The Milky Way is not alone, though. 1:07 Along with the Andromeda galaxy, and more than fifty dwarf galaxies, 1:11 it's a part of "The Local Group"; 1:13 a region of space about ten million light years in diameter. 1:16 It is one of the hundreds of galaxy groups in the "Laniakea Supercluster", 1:21 which, itself is only one of millions of superclusters, 1:25 that make up the observable universe. 1:27 Now, let's assume, for a moment, that we have a glorious future; 1:31 humanity becomes a type three civilisation, 1:34 does not get wiped out by aliens, 1:36 and develops interstellar travel based on our current understanding of physics.
    [Show full text]