SCOR Proceedings Volume 52 Sopot, Poland September 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seventy-Ninth Annual Pulaski Day Parade Sunday, October 2, 2016 Fifth Avenue, New York City
Preliminary LONG version As of 10/1/16 SEVENTY-NINTH ANNUAL PULASKI DAY PARADE SUNDAY, OCTOBER 2, 2016 FIFTH AVENUE, NEW YORK CITY MARCH 4, OCTOBER 11, 1745 1779 2016 PULASKI PARADE GRAND MARSHAL HON. DR. DONNA KOCH-KAPTURSKI Specializes in Family Medicine and Internal Medicine in Garfield, NJ. HONORARY MARSHALS ANNA MARIA ANDERS DAUGHTER OF GENERAL WLADYSLAW ANDERS POLISH SENATOR AND PROCURATOR OF THE SECRETARY OF STATE OF THE COUNCIL OF MINISTERS FOR INTERNATIONAL DIALOGUE STANISLAW KARCZEWSKI MARSHAL OF THE SENATE OF THE REPUBLIC OF POLAND BILL SHIBILSKI RADIO HOST, BROADCASTER AND PAST MC OF THE PULASKI DAY PARADE PRESIDENT RICHARD ZAWISNY GENERAL PULASKI MEMORIAL PARADE COMMITTEE, INC. Page 1 of 57 Preliminary LONG version As of 10/1/16 ASSEMBLY STREETS 39A 6TH 5TH AVE. AVE. M A 38 FLOATS 21-30 38C FLOATS 11-20 38B 38A FLOATS 1 - 10 D I S O N 37 37C 37B 37A A V E 36 36C 36B 36A 6TH 5TH AVE. AVE. Page 2 of 57 Preliminary LONG version As of 10/1/16 PRESIDENT’S MESSAGE THE 79TH ANNUAL PULASKI DAY PARADE COMMEMORATING THE SACRIFICE OF OUR HERO, GENERAL CASIMIR PULASKI, FATHER OF THE AMERICAN CAVALRY, IN THE WAR OF AMERICAN INDEPENDENCE BEGINS ON FIFTH AVENUE AT 12:30 PM ON SUNDAY, OCTOBER 2, 2016. THIS YEAR WE ARE CELEBRATING “POLISH- AMERICAN YOUTH, IN HONOR OF WORLD YOUTH DAY, KRAKOW, POLAND” IN 2016. THE ‘GREATEST MANIFESTATION OF POLISH PRIDE IN AMERICA’ THE PULASKI PARADE, WILL BE LED BY THE HONORABLE DR. DONNA KOCH- KAPTURSKI, A PROMINENT PHYSICIAN FROM THE STATE OF NEW JERSEY. -
SPACE RESEARCH in POLAND Report to COMMITTEE
SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report -
2021 Tese Rmfranca.Pdf
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA HIDRÁULICA E AMBIENTAL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL RAIMUNDA MOREIRA DA FRANCA ESTRUTURA FITOPLANCTÔNICA EM RESERVATÓRIOS CEARENSES - ASSOCIAÇÃO HIDROCLIMÁTICA E ESTADO TRÓFICO FORTALEZA-CE 2021 RAIMUNDA MOREIRA DA FRANCA ESTRUTURA FITOPLANCTÔNICA EM RESERVATÓRIOS CEARENSES – ASSOCIAÇÃO HIDROCLIMÁTICA E ESTADO TRÓFICO Tese de doutorado apresentada ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Ceará como parte dos requisitos à obtenção do título de doutora em Engenharia Civil (Recursos Hídricos). Área de concentração: Saneamento Ambiental. Orientador: Profº. Dr. Fernando José Araújo da Silva. FORTALEZA-CE 2021 RAIMUNDA MOREIRA DA FRANCA ESTRUTURA FITOPLANCTÔNICA EM RESERVATÓRIOS CEARENSES - ASSOCIAÇÃO HIDROCLIMÁTICA E ESTADO TRÓFICO Tese de doutorado apresentada ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Ceará como parte dos requisitos à obtenção do título de doutora em Engenharia Civil (Recursos Hídricos). Área de concentração: Saneamento Ambiental. Aprovada em: 04/05/2021 BANCA EXAMINADORA ______________________________________________________ Prof. Dr. Fernando José Araújo da Silva (Orientador) Universidade Federal do Ceará (UFC) ________________________________________________________ Prof.ª. Dra. Marisete Dantas de Aquino (Examinadora Interna) Universidade Federal do Ceará (UFC) ________________________________________________________ Prof. Dr. Iran Eduardo Lima Neto (Examinador -
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
Genome of Phaeocystis Globosa Virus Pgv-16T Highlights the Common Ancestry of the Largest Known DNA Viruses Infecting Eukaryotes
Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes Sebastien Santinia, Sandra Jeudya, Julia Bartolia, Olivier Poirota, Magali Lescota, Chantal Abergela, Valérie Barbeb, K. Eric Wommackc, Anna A. M. Noordeloosd, Corina P. D. Brussaardd,e,1, and Jean-Michel Claveriea,f,1 aStructural and Genomic Information Laboratory, Unité Mixte de Recherche 7256, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13288 Marseille Cedex 9, France; bCommissariat à l’Energie Atomique–Institut de Génomique, 91057 Evry Cedex, France; cDepartment of Plant and Soil Sciences, University of Delaware, Newark, DE 19711; dDepartment of Biological Oceanography, Royal Netherlands Institute for Sea Research, NL-1790 AB Den Burg (Texel), The Netherlands; eAquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; and fService de Santé Publique et d’Information Médicale, Hôpital de la Timone, Assistance Publique–Hôpitaux de Marseille, FR-13385 Marseille, France Edited by James L. Van Etten, University of Nebraska, Lincoln, NE, and approved May 1, 2013 (received for review February 22, 2013) Large dsDNA viruses are involved in the population control of many viruses: 730 kb and 1.28 Mb for CroV and Megavirus chilensis, globally distributed species of eukaryotic phytoplankton and have respectively. Other studies, targeting virus-specific genes [e.g., a prominent role in bloom termination. The genus Phaeocystis (Hap- DNA polymerase B (8) or capsid proteins (9)] have suggested tophyta, Prymnesiophyceae) includes several high-biomass-forming a close phylogenetic relationship between Mimivirus and several phytoplankton species, such as Phaeocystis globosa, the blooms of giant dsDNA viruses infecting various unicellular algae such as which occur mostly in the coastal zone of the North Atlantic and the Pyramimonas orientalis (Chlorophyta, Prasinophyceae), Phaeocys- North Sea. -
The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK. -
Resilience of Microbial Communities After Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms
microorganisms Article Resilience of Microbial Communities after Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms Tim Piel 1,†, Giovanni Sandrini 1,†,‡, Gerard Muyzer 1 , Corina P. D. Brussaard 1,2 , Pieter C. Slot 1, Maria J. van Herk 1, Jef Huisman 1 and Petra M. Visser 1,* 1 Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; [email protected] (T.P.); [email protected] (G.S.); [email protected] (G.M.); [email protected] (C.P.D.B.); [email protected] (P.C.S.); [email protected] (M.J.v.H.); [email protected] (J.H.) 2 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherland Institute for Sea Research, 1790 AB Den Burg, The Netherlands * Correspondence: [email protected]; Tel.: +31-20-5257073 † These authors have contributed equally to this work. ‡ Current address: Department of Technology & Sources, Evides Water Company, 3006 AL Rotterdam, The Netherlands. Abstract: Applying low concentrations of hydrogen peroxide (H2O2) to lakes is an emerging method to mitigate harmful cyanobacterial blooms. While cyanobacteria are very sensitive to H2O2, little Citation: Piel, T.; Sandrini, G.; is known about the impacts of these H2O2 treatments on other members of the microbial com- Muyzer, G.; Brussaard, C.P.D.; Slot, munity. In this study, we investigated changes in microbial community composition during two P.C.; van Herk, M.J.; Huisman, J.; −1 lake treatments with low H2O2 concentrations (target: 2.5 mg L ) and in two series of controlled Visser, P.M. -
Fig.S1. the Pairwise Aligments of High Scoring Pairs of Recognizable Pseudogenes
LysR transcriptional regulator Identities = 57/164 (35%), Positives = 82/164 (50%), Gaps = 13/164 (8%) 70530- SNQAIKTYLMPK*LRLLRQK*SPVEFQLQVHLIKKIRLNIVIRDINLTIIEN-TPVKLKI -70354 ++Q TYLMP+ + L RQK V QLQVH ++I ++ INL II P++LK 86251- ASQTTGTYLMPRLIGLFRQKYPQVAVQLQVHSTRRIAWSVANGHINLAIIGGEVPIELKN -86072 70353- FYTLLRMKERI*H*YCLGFL------FQFLIAYKKKNLYGLRLIKVDIPFPIRGIMNNP* -70192 + E L + F L + +K++LY LR I +D IR +++ 86071- MLQVTSYAED-----ELALILPKSHPFSMLRSIQKEDLYRLRFIALDRQSTIRKVIDKVL -85907 70191- IKTELIPRNLN-EMELSLFKPIKNAV*PGLNVTLIFVSAIAKEL -70063 + + EMEL+ + IKNAV GL + VSAIAKEL 85906- NQNGIDSTRFKIEMELNSVEAIKNAVQSGLGAAFVSVSAIAKEL -85775 ycf3 Photosystem I assembly protein Identities = 25/59 (42%), Positives = 39/59 (66%), Gaps = 3/59 (5%) 19162- NRSYML-SIQCM-PNNSDYVNTLKHCR*ALDLSSKL-LAIRNVTISYYCQDIIFSEKKD -19329 +RSY+L +I + +N +YV L++ ALDL+S+L AI N+ + Y+ Q + SEKKD 19583- DRSYILYNIGLIYASNGEYVKALEYYHQALDLNSRLPPAINNIAVIYHYQGVKASEKKD -19759 Fig.S1. The pairwise aligments of high scoring pairs of recognizable pseudogenes. The upper amino acid sequences indicates Cryptomonas sp. SAG977-2f. The lower sequences are corresponding amino acid sequences of homologs in C. curvata CCAP979/52. Table S1. Presence/absence of protein genes in the plastid genomes of Cryptomonas and representative species of Cryptomonadales. Note; y indicates pseudogenes. Photosynthetic Non-Photosynthetic Guillardia Rhodomonas Cryptomonas C. C. curvata C. curvata parameciu Guillardia Rhodomonas FBCC300 CCAP979/ SAG977 CCAC1634 m theta salina -2f B 012D 52 CCAP977/2 a rps2 + + + + -
Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea
Baltic Sea Environment Proceedings No.106 Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Baltic Sea Environment Proceedings No. 106 Biovolumes and size-classes of phytoplankton in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Authors: Irina Olenina, Centre of Marine Research, Taikos str 26, LT-91149, Klaipeda, Lithuania Susanna Hajdu, Dept. of Systems Ecology, Stockholm University, SE-106 91 Stockholm, Sweden Lars Edler, SMHI, Ocean. Services, Nya Varvet 31, SE-426 71 V. Frölunda, Sweden Agneta Andersson, Dept of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden, Umeå Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden Norbert Wasmund, Baltic Sea Research Institute, Seestr. 15, D-18119 Warnemünde, Germany Susanne Busch, Baltic Sea Research Institute, Seestr. 15, D-18119 Warnemünde, Germany Jeanette Göbel, Environmental Protection Agency (LANU), Hamburger Chaussee 25, D-24220 Flintbek, Germany Slawomira Gromisz, Sea Fisheries Institute, Kollataja 1, 81-332, Gdynia, Poland Siv Huseby, Umeå Marine Sciences Centre, Umeå University, SE-910 20 Hörnefors, Sweden Maija Huttunen, Finnish Institute of Marine Research, Lyypekinkuja 3A, P.O. Box 33, FIN-00931 Helsinki, Finland Andres Jaanus, Estonian Marine Institute, Mäealuse 10 a, 12618 Tallinn, Estonia Pirkko Kokkonen, Finnish Environment Institute, P.O. Box 140, FIN-00251 Helsinki, Finland Iveta Ledaine, Inst. of Aquatic Ecology, Marine Monitoring Center, University of Latvia, Daugavgrivas str. 8, Latvia Elzbieta Niemkiewicz, Maritime Institute in Gdansk, Laboratory of Ecology, Dlugi Targ 41/42, 80-830, Gdansk, Poland All photographs by Finnish Institute of Marine Research (FIMR) Cover photo: Aphanizomenon flos-aquae For bibliographic purposes this document should be cited to as: Olenina, I., Hajdu, S., Edler, L., Andersson, A., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I. -
Pioneering Soil Viromics to Elucidate Viral Impacts on Soil Ecosystem Services
Pioneering Soil Viromics to Elucidate Viral Impacts on Soil Ecosystem Services DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Gareth Trubl Graduate Program in Microbiology The Ohio State University 2018 Dissertation Committee: Virginia Rich, Advisor Matthew Sullivan, Co-Advisor Kelly Wrighton Matthew Anderson Copyrighted by Gareth Trubl 2018 Abstract Permafrost contains 30–50% of global soil carbon (C) and is rapidly thawing. While the fate of this C is unknown, it will be shaped in part by microbes and their associated viruses, which modulate microbial activities via mortality and metabolic control. To date, viral research in soils has been outpaced by that in aquatic environments due to the technical challenges of accessing soil viruses, compounded by the dramatic physicochemical heterogeneity in soils. The Stordalen Mire long-term ecological field site in Arctic Sweden encompasses a mosaic of natural permafrost thaw stages, and has been well characterized biogeochemically and microbiologically, making it an ideal site to characterize the soil virosphere and its potential impacts on the C cycle. A viral resuspension protocol was developed to generate quantitatively- amplified dsDNA viromes. The protocol yielded ~108 virus-like particles (VLPs) g−1 of soil across three thaw-stage habitats, and seven resulting viromes yielded 53 vOTUs. Viral-specific bioinformatics methods were used to recover viral populations, define their gene content, connect them to other related viruses (globally) and potential hosts (locally). Only 15% of these vOTUs had genetic similarity to publicly available viruses in the RefSeq database, and ∼30% of the genes could be annotated, supporting the concept of soils as reservoirs of substantial undescribed viral genetic diversity. -
Viruses-10-00676
UvA-DARE (Digital Academic Repository) Influence of irradiance and temperature on the virus MpoV-45T infecting the Arctic picophytoplankter Micromonas polaris Piedade, G.J.; Wesdorp, E.M.; Montenegro-Borbolla , E.; Maat, D.S.; Brussaard, C.P.D. DOI 10.3390/v10120676 Publication date 2018 Document Version Final published version Published in Viruses License CC BY Link to publication Citation for published version (APA): Piedade, G. J., Wesdorp, E. M., Montenegro-Borbolla , E., Maat, D. S., & Brussaard, C. P. D. (2018). Influence of irradiance and temperature on the virus MpoV-45T infecting the Arctic picophytoplankter Micromonas polaris. Viruses, 10(12), [676]. https://doi.org/10.3390/v10120676 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:24 Sep 2021 viruses Article Influence of Irradiance and Temperature on the Virus MpoV-45T Infecting the Arctic Picophytoplankter Micromonas polaris Gonçalo J. -
Bangor University DOCTOR of PHILOSOPHY
Bangor University DOCTOR OF PHILOSOPHY Studies on micro algal fine-structure, taxonomy and systematics : cryptophyceae and bacillariophyceae. Novarino, Gianfranco Award date: 1990 Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Studies on microalgal fine-structure, taxonomy, and systematics: Cryptopbyceae and Bacillariopbyceae In Two Volumes Volume I (Text) ,, ý,ý *-ýýI Twl by Gianfranco Novarino, Dottore in Scienze Biologiche (Rom) A Thesis submitted to the University of Wales in candidature for the degree of Philosophiae Doctor University of Wales (Bangor) School of Ocean Sciences Marine Science Laboratories Menai Bridge, Isle of Anglesey, United Kingdom December 1990 Lýýic. JýýVt. BEST COPY AVAILABLE Acknowledge mehts Dr I. A. N. Lucas, who supervised this work, kindly provided his helpful guidance, sharing his knowledge and expertise with patience and concern, critically reading the manuscripts of papers on the Cryptophyceae, and supplying many starter cultures of the strains studied here.