Assessment of the Ecological Bias of Seven Aggregate Social Deprivation

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of the Ecological Bias of Seven Aggregate Social Deprivation Bryere et al. BMC Public Health (2017) 17:86 DOI 10.1186/s12889-016-4007-8 RESEARCHARTICLE Open Access Assessment of the ecological bias of seven aggregate social deprivation indices Josephine Bryere1*, Carole Pornet1,2,3, Nane Copin4, Ludivine Launay1,5, Gaëlle Gusto4, Pascale Grosclaude6, Cyrille Delpierre6,7, Thierry Lang6,7, Olivier Lantieri4, Olivier Dejardin1,2 and Guy Launoy1,2,3 Abstract Background: In aggregate studies, ecological indices are used to study the influence of socioeconomic status on health. Their main limitation is ecological bias. This study assesses the misclassification of individual socioeconomic status in seven ecological indices. Methods: Individual socioeconomic data for a random sample of 10,000 persons came from periodic health examinations conducted in 2006 in 11 French departments. Geographical data came from the 2007 census at the lowest geographical level available in France. The Receiver Operating Characteristics (ROC) curves, the areas under the curves (AUC) for each individual variable, and the distribution of deprived and non-deprived persons in quintiles of each aggregate score were analyzed. Results: The aggregate indices studied are quite good “proxies” for individual deprivation (AUC close to 0.7), and they have similar performance. The indices are more efficient at measuring individual income than education or occupational category and are suitable for measuring of deprivation but not affluence. Conclusions: The study inventoried the aggregate indices available in France and evaluated their assessment of individual SES. Keywords: Ecological social deprivation indices, Social inequalities in health, Aggregate-level, Individual-level Background conditions independent of income, experienced by people Evidence-based policy-making for reducing social dispar- who are poor” [3]. Evaluate deprivation in its entire di- ities in health requires measuring disparities accurately mension suggests that the proper evaluation of the social and to follow trends over time. Various approaches are environment should not be limited to any particular indi- used to measure socioeconomic status (SES). At the indi- cator such as financial resources, education or profession. vidual level, SES is mainly explored in three domains: Geographical approaches are thus particularly relevant for income, education and occupational status [1]. At an studying social inequalities in health. Measuring only one aggregate level, publicly available measures of SES in resi- of the components of deprivation is insufficient to cor- dential areas are frequently used [2]. Several geographical rectly classify communities [4], while deprivation indices, composite indices have been created, these are known as by their composite nature, are less sensitive to measure- ecological deprivation indices. As described by Townsend, ment bias and provide a comprehensive approach to deprivation, a “state of observable and demonstrable deprivation [5, 6]. disadvantage relative to the local community or the wider Deprivation indices, which are mainly derived from society to which an individual, family or group belongs”,is population census data, were first developed in the a broad multidimensional concept that is closely linked to 1970s in the United Kingdom, the United States and poverty. “The concept of deprivation covers the various Canada [3, 4, 7–12]. They have been implemented more recently in Europe [13–20]. Their main limitation when used to approximate individual SES is ecological bias, * Correspondence: [email protected] 1“Cancers & Préventions” U1086 INSERM-UCN, Centre François Baclesse, leading to misclassification. Ecological bias is a particular Avenue Général Harris, 14076 Caen, France bias related to studies using aggregate data. It can lead Full list of author information is available at the end of the article © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Bryere et al. BMC Public Health (2017) 17:86 Page 2 of 7 to estimation error of the degree of association between Since the geocoding process was not fully automated exposure and effect. Individuals who have had an effect and was relatively intensive, a random sample of 10,000 are not necessary those who were exposed. One way to people was used. Among these, 402 could not be geo- minimize ecological bias is to use the lowest geograph- coded because they lived in a neighboring department. ical unit [21], although even at the lowest geographical level, ecological bias is expected to persist. Individual data The overall objective of this study was to assess the All subjects were interviewed about four characteristics: ecological bias induced by using seven deprivation indi- ces that evaluate deprivation at the lowest geographical – Their education level. unit level for which census data are available in France: – Their occupation and position. Townsend index [3], Carstairs index [8], Lasbeur index – The feeling of having financial difficulties, as [14], Havard index [15], European Deprivation index assessed by the following question “Are there times (EDI) [18], and the social (SCP) and material (MCP) of the month when you are having real financial components of Pampalon index [12, 22]. problems in meeting your needs (food, rent, electricity)?” – If they receive CMU. Methods A general population sample was constituted in north- Calculation of the seven aggregated deprivation indices west France using exact known addresses allowing Two British indices, Townsend and Carstairs, were geolocalization and geocoding for IRIS (Ilots Regroupés calculated based on the unweighted sum of four socio- pour l’Information Statistique). An IRIS comprises an economic standardized variables. average of 2000 inhabitants as defined by INSEE SCP, MCP (designed in Canada) were calculated using (National Institute of Statistics and Economic Studies). principal component analysis (PCA) [12–16, 19]. Unlike On 1st January 2009, Metropolitan France contained the components of other indices built by PCA, SCP and 16,076 IRIS based on divisions of urban municipalities of MCP components were selected a priori according to at least 10,000 inhabitants. Most municipalities had 5000 the literature [12, 16]. to 10,000 inhabitants. For the smallest undivided muni- The Havard and Lasbeur scores were designed in cipalities (34,115), an IRIS is considered equivalent to France and were defined as the first principal compo- the municipality [23]. nents of a PCA of nine (Havard) or 19 (Lasbeur) 2007 For each deprivation index, ecological bias was census variables [14, 16]. The SCP and MCP were calcu- assessed by comparing the deprivation level of the IRIS lated from the first two principal components of a six- with the individual level socioeconomic characteristics. variable PCA [12, 22]. The methodology of the French EDI [18] is based on Study population the weighted combination of geographical census vari- Approximately 85% of the French population affiliated ables correlated with an individual indicator of with the general health coverage system is invited to a deprivation, itself obtained from individual data from the periodic health examination in a health examination European Union Statistics on Income and Living Condi- center (HEC). The study sample of 10,000 subjects tions (EU-SILC) survey. consisted of individuals 16 years and older who The aggregate socioeconomic data in IRIS were ob- consulted in 2006 at one of the 11 HEC located in tained from the 2007 census for homogeneity with the northwest France—about 60,000 people. The study sam- individual data from 2006. A version in national quintiles ple average age was 44.34 years (median 45 years), older was available for each deprivation index. than the French general population average age of 37.9 years (median 37.9). Compared with the French Statistical analysis general population rates, the rate of Couverture Maladie Each individual-level socioeconomic variable was dichoto- Universelle (CMU), rate of unemployment among the mized as follows. “Education level”: having a diploma/not active population, and rate of people without diploma having a diploma. “Occupation and position”: employed/ were 10.3 vs 3.4%, 8.4 vs 8.8%, and 14.2 vs 19.4%, re- unemployed. “Financial difficulties”: having/not having spectively [24]. The CMU is a French public health financial difficulties. “CMU”: yes/no. People were synthet- welfare program. For people with low incomes (less than ically considered deprived at the individual level if they 720€ per month), the CMU offers complementary 100% were disadvantaged in at least two of the four variables health coverage, which is added to standard Social presented above. We set a threshold of at least two vari- Security payments; this avoids the necessity of additional ables both because we wanted to ensure that at least two private insurance. dimensions of deprivation were integrated and because Bryere et al. BMC Public Health (2017) 17:86 Page 3 of 7 with a threshold of at
Recommended publications
  • Eprints.Whiterose.Ac.Uk
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by White Rose Research Online promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ This is an author produced version of a paper published in Applied Spatial Analysis and Policy. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/76875/ Paper: Norman, PD (2010) Identifying change over time in small area socio-economic deprivation. Applied Spatial Analysis and Policy, 3 (2-3). 107 - 138. http://dx.doi.org/10.1007/s12061-009-9036-6 White Rose Research Online [email protected] Identifying change over time in small area socio-economic deprivation Paul Norman School of Geography, University of Leeds, Leeds, LS2 9JT, UK * Correspondence to: Paul Norman School of Geography University of Leeds Leeds, LS2 9JT Tel: +44 (0)113 34 38199 Fax: +44 (0)113 34 33308 [email protected] Please cite as: Norman P (2010) Identifying change over time in small area socio-economic deprivation. Applied Spatial Analysis and Policy 3(2-3) 107-138 1 Identifying change over time in small area socio-demographic deprivation Abstract The measurement of area level deprivation is the subject of a wide and ongoing debate regarding the appropriateness of the geographical scale of analysis, the input indicator variables and the method used to combine them into a single figure index. Whilst differences exist, there are strong correlations between schemes. Many policy-related and academic studies use deprivation scores calculated cross-sectionally to identify areas in need of regeneration and to explain variations in health outcomes.
    [Show full text]
  • Development of Composite Deprivation Index for Korea: the Correlation with Standardized Mortality Ratio
    J Prev Med Public Health 2009;42(6):392-402 DOI: 10.3961/jpmph.2009.42.6.392 신호성, 이수형, 추장민1) 한국보건사회연구원, 한국환경정책·평가연구원1) Development of Composite Deprivation Index for Korea: The Correlation with Standardized Mortality Ratio Hosung Shin, Suehyung Lee, Jang Min Chu1) Korea Institute for Health and Social Affairs; Korea Environment Institute1) Objectives : The aims of this paper were to develop the rural areas, respectively. The distributional variation of the composite deprivation index (CDI) for the sub-district (Eup- CDI was the highest in metropolitan areas (8.9 - 353.7) and Myen-Dong) levels based on the theory of social exclusion the lowest was in the rural areas (26.8 - 209.7). The extent and to explore the relationship between the CDI and the and relative differences of deprivation increased with standardized mortality ratio (SMR). urbanization. Compared to the Townsend and Carstairs Methods : The paper calculated the age adjusted SMR index, the CDI better represented the characteristics of and we included five dimensions of social exclusion for rural deprivation. The correlation with the SMR was CDI; unemployment, poverty, housing, labor and social statistically significant and the direction of the CDI effects network. The proxy variables of the five dimensions were on the SMR was in accordance with that of the previous the proportion of unemployed males, the percent of studies. recipients receiving National Basic Livelihood Security Act Conclusions : The study findings indicated mortality benefits, the proportion of households under the minimum inequalities due to the difference in the CDI. Despite the housing standard, the proportion of people with a low social attempt to improve deprivation measures, further research class and the proportion of single-parent household.
    [Show full text]
  • Social Pathogenic Sources of Poor Community Health
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2007 Social Pathogenic Sources Of Poor Community Health Hayden Smith University of Central Florida Part of the Public Affairs, Public Policy and Public Administration Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Smith, Hayden, "Social Pathogenic Sources Of Poor Community Health" (2007). Electronic Theses and Dissertations, 2004-2019. 3355. https://stars.library.ucf.edu/etd/3355 SOCIAL PATHOGENIC SOURCES OF POOR COMMUNITY HEALTH by HAYDEN P. SMITH B.Ed. University of Wollongong, Australia, 1992 M.S. University of Central Florida, 2003 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Public Affairs in the College of Health and Public Affairs at the University of Central Florida Orlando, Florida Spring Term 2007 Major Professor: Thomas T.H. Wan © 2007 Hayden P. Smith ii ABSTRACT The United States currently provides a health care system that is neither efficient nor equitable. Despite outspending the world on health care, over three-fourths of developed countries produce better health outcomes (Auerbach et al., 2000). Simultaneously, the “Ecological School of Thought” has documented the large impact that social, economic, and environmental circumstances play in health outcomes. Unfortunately, these ‘ecological” studies are frequently conducted without theoretical justification, and rely solely on a cross-sectional research design and a myriad of unrelated variables.
    [Show full text]
  • Stewart, Joanna L. (2016) Glasgow's Spatial Arrangement of Deprivation Over Time: Methods to Measure It and Meanings for Health
    Stewart, Joanna L. (2016) Glasgow's spatial arrangement of deprivation over time: methods to measure it and meanings for health. PhD thesis. http://theses.gla.ac.uk/7936/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Glasgow’s spatial arrangement of deprivation over time: methods to measure it, and meanings for health. Joanna L. Stewart BA (Hons) MRes MSc Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy (PhD) Institute of Health and Wellbeing College of Medical, Veterinary and Life Sciences, University of Glasgow July 2016 © [Joanna L. Stewart] [July 2016] 2 Abstract Background Socio-economic deprivation is a key driver of population health. High levels of socio-economic deprivation have long been offered as the explanation for exceptionally high levels of mortality in Glasgow, Scotland. A number of recent studies have, however, suggested that this explanation is partial. Comparisons with Liverpool and Manchester suggest that mortality rates have been higher in Glasgow since the 1970s despite very similar levels of deprivation in these three cities.
    [Show full text]
  • Glasgow Effect
    Excess mortality in the Glasgow conurbation: exploring the existence of a Glasgow effect James Martin Reid MSci Submitted in fulfilment of the requirements for the Degree of PhD University of Glasgow Faculty of Medicine, Section of Public Health and Health Policy September 2008 ii Abstract Introduction There exists a ‘Scottish effect’, a residue of excess mortality that remains for Scotland relative to England and Wales after standardising for age, sex and local area deprivation status. This residue is largest for the most deprived segments of the Scottish population. Most Scottish areas that can be classified as deprived are located in West Central Scotland and, in particular, the City of Glasgow. Therefore the central aim of this thesis is to establish the existence of a similar ‘Glasgow effect’ and identify if the relationship between deprivation and all cause mortality is different in Glasgow to what is in other, comparable cities in the UK. Methods A method to compare the deprivation status of several UK cities was devised using the deprivation score first calculated by Carstairs and Morris. The population of mainland UK was broken into deciles according to the Carstairs score of Scottish postcode sectors and English wards. Deprivation profiles for particular cities were drawn according to the percentage of the local population that lived in each Carstairs decile. Using data from the three censuses since 1981, longitudinal trends in relative deprivation status for each city could be observed. Analysis of death rates in cities was also undertaken. Two methods were used to compare death rates in cities. Indirect standardisation was used to compare death rates adjusting for the categorical variables of age group, sex and Carstairs decile of postcode sector or ward of residence.
    [Show full text]
  • Socioeconomic Disadvantage and Suicidal Behaviour Report March 2017 Page No
    SOCIOECONOMIC DISADVANTAGE AND SUICIDAL BEHAVIOUR Full report March 2017 1 CONTENTS Socioeconomic disadvantage and suicidal behaviour report March 2017 Page No. Chapter 1 3 Introduction Chapter 2: Professor Clare Bambra & Dr Joanne Cairns 8 The impact of place on suicidal behaviour Chapter 3: Associate professor David McDaid 32 Socioeconomic disadvantage and suicidal behaviour during times of economic recession and recovery Chapter 4: Dr Elke Heins 69 Social and labour market policies and suicidal behaviour Chapter 5: Professor Rory O’Connor & Dr Olivia Kirtley 94 Socioeconomic disadvantage and suicidal behaviour: psychological factors Chapter 6: Dr Amy Chandler 126 Explaining the relationship between socioeconomic disadvantage, self-harm and suicide: a qualitative synthesis of the accounts of those who have self-harmed Chapter 7: Dr Katherine Smith 152 In their own words: How do people in the UK understand the impacts of socioeconomic disadvantage on their mental health and risk factors for suicide? Chapter 8 175 Conclusions Chapter 9 179 Recommendations Thanks to everyone who has contributed to the development and production of this report. 2 Chapter 1: Introduction Suicide is a public health issue Suicide is a complex and multi-faceted behaviour, resulting from a wide range of genetic, psychological, psychiatric, social, economic and cultural risk factors which interact to increase vulnerability to trauma and adversity in individuals, communities and society as a whole. The socio-ecological model proposed by the World Health Organization (World Health Organization, 2014) identifies several types (or levels) of risk factors: health system (e.g. barriers to accessing care in the health system); societal (e.g. easy access to means of suicide); community (e.g.
    [Show full text]
  • Children Aged 0-14 Years Living in Poverty
    CHILDREN AGED 0-14 YEARS LIVING IN POVERTY GENERAL CONSIDERATIONS Issues Perinatal diseases Respiratory diseases Diarrhoeal diseases Physical injuries Type of Exposure (distal/driving force) indicator Can also be used as a measure of action in relation to social policy. Rationale Poverty is a major risk factor for children's environmental health. It operates in three main ways. First, because of what has been termed environmental injustice, there is a marked tendency for the poorest in society to be more exposed to environmental hazards. This occurs both because the poor are more likely to live in inadequate housing, and in more hazardous areas, and because there is a tendency for polluting industries and other activities to congregate in poorer areas (e.g. because of lower land prices, less strict regulations and less effective opposition from the communities involved). Secondly, poverty tends to be associated with more harmful (or less self- protective) lifestyles and behaviours, for example in terms of diet, smoking, exercise and drug usage, both because of lack of awareness of the risks concerned and the lack of resources to avoid them. Thirdly, poverty makes it harder for those at risk to obtain treatment or help, often because of their remoteness from the necessary services, their lack of resources to access them and – in some cases – inherent biases and inadequacies within the services themselves. As a result, almost all environmental health effects show strong associations with poverty. Poverty thus represents an important, complex and inter-related set of social and environmental risks that cannot easily be separately specified. It also acts as an important confounder and modifier to relationships between many other risk factors and human health.
    [Show full text]
  • Thomas Laurie Clemens Phd Thesis
    A PRICE NOT WORTH PAYING: USING CAUSAL EFFECT MODELLING TO EXAMINE THE RELATIONSHIP BETWEEN WORKLESSNESS AND MORTALITY FOR MALE INDIVIDUALS IN SCOTLAND Thomas Laurie Clemens A Thesis Submitted for the Degree of PhD at the University of St Andrews 2012 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/4036 This item is protected by original copyright A PRICE NOT WORTH PAYING: USING CAUSAL EFFECT MODELLING TO EXAMINE THE RELATIONSHIP BETWEEN WORKLESSNESS AND MORTALITY FOR MALE INDIVIDUALS IN SCOTLAND THOMAS LAURIE CLEMENS A THESIS SUBMITTED FOR THE DEGREE OF PHD AT THE UNIVERSITY OF ST ANDREWS 2012 1. Candidate’s declarations: I, Thomas Clemens, hereby certify that this thesis, which is approximately 63,000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September 2006 and as a candidate for the degree of Ph.D in September 2007 the higher study for which this is a record was carried out in the University of St Andrews between 2007 and 2012. Date signature of candidate 2. Supervisor’s declaration: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Ph.D in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree.
    [Show full text]
  • The Index of Local Area Relative Disadvantage a Cross-Country Comparison
    The Index of Local Area Relative Disadvantage A Cross-Country Comparison By Anthony Buttaro, Jr. and Ludovica Gambaro Centre for Longitudinal Studies Working paper 2018/3 Contact the author Anthony Buttaro Jr Visiting Academic Centre for Longitudinal Studies University College London [email protected] This working paper was first published in August, 2018 by the Centre for Longitudinal Studies, UCL Institute of Education University College London 20 Bedford Way London WC1H 0AL www.cls.ioe.ac.uk The Centre for Longitudinal Studies (CLS) is an Economic and Social Research Council (ESRC) Resource Centre based at the UCL Institution of Education (IOE). It manages four internationally-renowned cohort studies: the 1958 National Child Development Study, the 1970 British Cohort Study, Next Steps, and the Millennium Cohort Study. For more information, visit www.cls.ioe.ac.uk. The views expressed in this work are those of the author and do not necessarily reflect the views of CLS, the IOE or the ESRC. All errors and omissions remain those of the author. This document is available in alternative formats. Please contact the Centre for Longitudinal Studies. tel: +44 (0)20 7612 6875 email: [email protected] Contents 1. INTRODUCTION ............................................................................................................................. 1 2. MOTIVATING CONSIDERATIONS .................................................................................................. 2 3. METHODOLOGICAL CONSIDERATIONS .....................................................................................
    [Show full text]
  • GLA147851 Hypothesis Report
    ACCOUNTING FOR SCOTLAND’S EXCESS MORTALITY: TOWARDS A SYNTHESIS Gerry McCartney, Chik Collins, David Walsh & David Batty April 2011 Glasgow Centre for Population Health CONTENTS Summary ...................................................................................................................................................................................... 3 Purpose .......................................................................................................................................................................................... 6 Introduction .............................................................................................................................................................................. 7 Methods ...................................................................................................................................................................................... 17 Results .......................................................................................................................................................................................... 23 Discussion .................................................................................................................................................................................. 73 Conclusion .................................................................................................................................................................................. 75 Appendix ...................................................................................................................................................................................
    [Show full text]
  • Children Aged 0-14 Years Living in Poverty
    CHILDREN AGED 0-14 YEARS LIVING IN POVERTY GENERAL CONSIDERATIONS Issues Perinatal diseases Respiratory diseases Diarrhoeal diseases Physical injuries Type of Exposure (distal/driving force) indicator Can also be used as a measure of action in relation to social policy. Rationale Poverty is a major risk factor for children's environmental health. It operates in three main ways. First, because of what has been termed environmental injustice, there is a marked tendency for the poorest in society to be more exposed to environmental hazards. This occurs both because the poor are more likely to live in inadequate housing, and in more hazardous areas, and because there is a tendency for polluting industries and other activities to congregate in poorer areas (e.g. because of lower land prices, less strict regulations and less effective opposition from the communities involved). Secondly, poverty tends to be associated with more harmful (or less self- protective) lifestyles and behaviours, for example in terms of diet, smoking, exercise and drug usage, both because of lack of awareness of the risks concerned and the lack of resources to avoid them. Thirdly, poverty makes it harder for those at risk to obtain treatment or help, often because of their remoteness from the necessary services, their lack of resources to access them and – in some cases – inherent biases and inadequacies within the services themselves. As a result, almost all environmental health effects show strong associations with poverty. Poverty thus represents an important, complex and inter-related set of social and environmental risks that cannot easily be separately specified. It also acts as an important confounder and modifier to relationships between many other risk factors and human health.
    [Show full text]
  • Geocoding and Monitoring of US Socioeconomic Inequalities in Mortality and Cancer Incidence: Does the Choice of Area-Based Measure and Geographic Level Matter?
    American Journal of Epidemiology Vol. 156, No. 5 Copyright © 2002 by the Johns Hopkins Bloomberg School of Public Health Printed in U.S.A. All rights reserved DOI: 10.1093/aje/kwf068 Geocoding and Monitoring of US Socioeconomic Inequalities in Mortality and Cancer Incidence: Does the Choice of Area-based Measure and Geographic Level Matter? The Public Health Disparities Geocoding Project Nancy Krieger, Jarvis T. Chen, Pamela D. Waterman, Mah-Jabeen Soobader, S. V. Subramanian, and Rosa Carson From the Department of Health and Social Behavior, Harvard School of Public Health, Boston, MA. Received for publication October 18, 2001; accepted for publication May 7, 2002. Despite the promise of geocoding and use of area-based socioeconomic measures to overcome the paucity of socioeconomic data in US public health surveillance systems, no consensus exists as to which measures should be used or at which level of geography. The authors generated diverse single-variable and composite area-based socioeconomic measures at the census tract, block group, and zip code level for Massachusetts (1990 population: 6,016,425) and Rhode Island (1990 population: 1,003,464) to investigate their associations with mortality rates (1989–1991: 156,366 resident deaths in Massachusetts and 27,291 in Rhode Island) and incidence of primary invasive cancer (1988–1992: 140,610 resident cases in Massachusetts; 1989–1992: 19,808 resident cases in Rhode Island). Analyses of all-cause and cause-specific mortality rates and all-cause and site- specific cancer incidence rates indicated that: 1) block group and tract socioeconomic measures performed comparably within and across both states, but zip code measures for several outcomes detected no gradients or gradients contrary to those observed with tract and block group measures; 2) similar gradients were detected with categories generated by quintiles and by a priori categorical cutpoints; and 3) measures including data on economic poverty were most robust and detected gradients that were unobserved using measures of only education and wealth.
    [Show full text]